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What is OptalCP?
• Constraint Programming solver for scheduling problems.
• From the outside similar to IBM ILOG CP Optimizer.

▪ Similar modeling language and concepts.
▪ Interval variables, sequences, cumulative resources.

• From the inside, completely different.
▪ Modern architecture, designed for parallel search.
▪ Written in C++20, APIs in TypeScript/JavaScript and Python.

Today's focus: How does the solver work inside?
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What makes OptalCP Different?
I’ve built CP solvers before. Now I’m free to rethink EVERYTHING.
In particular the internals.

Architecture:

• Built for speed from the ground up.
• True parallelism.
• Heterogeneous workers.
• External heuristic hybridization.

Modeling & API:

• Native Python and TypeScript APIs.
• Async event-driven solving.
• Integers with optional presence.
• New modeling constructs.

It's not "just faster" — it's a different architecture that enables new capabilities.
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For academic licenses, send me your GitHub username.
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Inside the Solver

Propagation
Remove infeasibilities

LNS
Large Neighborhood

Search

FDS
Failure-Directed Search

FDS Dual
Failure-Directed Search

Dual

Every algorithm has strengths and weaknesses.
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Propagation

Propagation
Always in the Party

Role: Support

Action: Remove impossible values

Produces: Smaller domains

✓ Prunes domains Detects infeasibility

✗ Can't solve alone
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Propagation Algorithms for Scheduling
Algorithms for resource constraints in OptalCP:
• Detectable Precedences
• Edge-finding
• Not-first / Not-last
• Timetabling
• Timetable Edge-Finding
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Propagation
In every search node, propagation removes impossible values until fixpoint or infeasibility.

Priority 1

Priority 2

Priority 3

no change

no change

Fixpoint

no change

change

Fast & High yield 

Medium

Expensive & Low yield
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Large Neighborhood Search (LNS)

LNS
Large Neighborhood Search

Type: Local search with CP repair

Assumes: Better solution exists nearby

Strategy: Destroy part, repair with CP

Produces: Better solutions

✓ Fast solutions Exploits structure

✗ Requires initial solution

✗ Local optima No optimality proof
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How Standard LNS Works
Suppose the following solution:

T1

T2

T3
T4 T5

T6

T7 Capacity
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We solve the relaxed problem:
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The problem: Standard LNS fixes the values of non-relaxed variables.
Since these are times, we can’t improve the makespan unless we relax more variables.

Keeping variable values fixed is too restrictive.
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How Standard LNS Works
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We solve the relaxed problem:

T1
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The problem: Standard LNS fixes the values of non-relaxed variables.
Since these are times, we can’t improve the makespan unless we relax more variables.

Keeping variable values fixed is too restrictive.

Idea: Modify relaxation to capture the structure of the solution instead.

Philippe Laborie, Daniel Godard:
Self-adapting large neighborhood search: Application to single-mode scheduling problems
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Partial Order Schedule (POS)
Suppose we have the following solution:

T1

T2

T3
T4 T5

T6

T7 Capacity
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Partial Order Schedule (POS)
Suppose we have the following solution:

T1

T2

T3
T4 T5

T6

T7 Capacity

POS = structure of the solution = a set of precedences between tasks.
If the variables respect the precedences, resource constraints are automatically satisfied.

T1 T2 T3
T4 T5

T6

T7 Capacity
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Relaxing with POS

T1 T2 T3
T4 T5

T6

T7 Capacity

To relax a task, we remove all its precedences.
Transitive precedences between the remaining tasks are added instead.
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Solving with POS

T1 T2 T3
T4 T5

T6

T7 Capacity

LNS sub-problem:

• Has the same variables (and domains).
• But more constraints (precedences from relaxed POS).

Sub-problem solution:
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Failure-Directed Search (FDS)

FDS
Failure-Directed Search

Type: Systematic tree search

Assumes: Problem is infeasible/hard

Strategy: Learn from failures, restart

Produces: Solutions, proofs, nogoods

✓ Optimality proofs Lower bounds

✗ Slow Solutions are a byproduct ?infeasible

backtrack

depth-first search

Vilém Heinz, Petr Vilím, Zdeněk Hanzálek:
Reinforcement Learning for Search Tree Size Minimization in Constraint Programming:
New Results on Scheduling Benchmarks
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Simplified FDS
FDS maintains ratings on choices:

x <= 9    x > 9

Choice 1

x <= 5    x > 5

Choice 2

y <= 7    y > 7

Choice 3

y <= 1    y > 1

Choice 4

z <= 9    z > 9

Choice n

Decided
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The FDS - MAB Connection
• MAB algorithms minimize sum of penalties.
• In (simplified) FDS, sum of penalties is the tree size!

FDS learns to minimize tree size. By design.

I didn't know this when we designed FDS. But it makes sense now.

Vilém will explore the MAB perspective in more depth.
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FDS Restarts
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FDS Dual

FDS Dual
Lower Bound Prover

Type: Bound-focused search

Assumes: Lower bound can be improved

Strategy: Prove infeasible, increment

Produces: Tighter lower bound, nogoods

✓ Fast bound proofs Efficient for LB

✗ No solutions Not good team player

Smarter version of destructive lower bounds.
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FDS Dual Search
Efficient lower bound proving
Start with a tight bound, prove it infeasible, then relax.

FDS Dual workers focus specifically on tightening the lower bound.

bound = current_LB
while solve(objective <= bound) == INFEASIBLE:
  reportLB(bound + 1)            # Assuming integer
  bound += new_bound_to_try(..)  # by parameter FDSDualStrategy
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The Perfect Combo
LNS

Fast solutions
FDS

Proves optimality
FDS Dual

Tightens bounds

They complement each other:

LNS  finds solutions → FDS  has a better bound

FDS  finds solutions → LNS  escapes local optima

FDS Dual  proves bounds → Gap shrinks from below

FDS FDS Dual  restarts → Generate nogoods for LNS FDS FDS Dual

LNS FDS FDS Dual  prove optimality together → Search ends
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Parallel Architecture

Model,
Solutions

Solutions,
Bounds,

Log
real-time communication

Python / Node.js

Your code

OptalCP thin API

(may be async)

Master thread

OptalCP

LNS FDS FDS
Dual

LNS FDSLNS

Workers
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Heterogeneous Workers
Each worker can be configured independently:

Or you can just let OptalCP to decide.

model.solve({
nbWorkers: 4,
workers: [

// Fast exploration:
    { searchType: "LNS", noOverlapPropagationLevel: 2 },

// Stronger reasoning:
    { searchType: "LNS", noOverlapPropagationLevel: 4 },

// Optimality focus, escape local optima:
    { searchType: "FDS", noOverlapPropagationLevel: 4 },

// Prove lower bounds:
    { searchType: "FDSDual", noOverlapPropagationLevel: 4 }
  ]});
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Hybrid Solution Using Your Algorithm

Your Algorithm
Your Secret Weapon

Type: Revolutionary

Solutions: Always the best

Speed: Blazing fast

Code: Beautiful and bug-free

✓ Perfect for the problem

✓ Scales effortlessly

✗ Not in OptalCP No lower bounds
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Hybrid Solution Using Your Algorithm

Your Algorithm
Your Secret Weapon

Type: Revolutionary

Solutions: Always the best

Speed: Blazing fast

Code: Beautiful and bug-free

✓ Perfect for the problem

✓ Scales effortlessly

✗ Not in OptalCP No lower bounds

Why hybridize?

• Solution exchange both ways
• Improved robustness
• Escape local optima
• Better than parallel alone
• Adds optimality gap, stops at optimum

How to plug in:

• Your algorithm in any language
• Communicates via stdin/stdout
• Short glue code in Python/TypeScript
• Example on GitHub

23.1



Architecture Enabling Hybrid Solution

Model,
Solutions

Solutions,
Bounds,
Log

Your Algorithm

real-time communication

Solutions

std in/out
real-time

Python / Node.js

glue code (async)

OptalCP thin API

Master thread

OptalCP

LNS FDS FDS
Dual

LNS FDSLNS

Workers
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Plugging In Your Algorithm
your_algorithm = await asyncio.create_subprocess_exec(...)
solver = cp.Solver()

def on_optalcp_solution(event: cp.SolutionEvent) -> None:
    serialized = your_solution_format(event.solution)
    your_algorithm.stdin.write(serialized + b'\n')

async def read_your_solutions() -> None:
while True:

        line = await your_algorithm.stdout.readline()
        solution = to_optalcp_solution(line)

await solver.send_solution(solution)

solver.on_solution = on_optalcp_solution
asyncio.create_task(read_your_solutions())
await solver.solve(model, parameters)
your_algorithm.kill()
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Live Demo demo
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Research Results

• Hybridization with (Meta)heuristics

• Search Acceleration using Reinforcement Learning
Vilém Heinz
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Hybridization with (Meta)heuristics
Experiments on Scheduling and Routing Problems

Research
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Motivation
Capability CP Solver (Meta)heuristics

Bounds and optimality proofs ✓

Systematic and complete search ✓

Can prove infeasibility ✓

Scales to large instances (✓) ✓

Good anytime behavior ✓

Problem-aware search (✓)

Question: Can we benefit from their complementary nature?
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Goals
• Early search stage:

▪ Heuristics provide good feasible solutions
▪ Heuristics guide solver’s search to promising

regions early

• Advanced search stage:

▪ Solver incrementally improves and provides bounds
▪ Solver helps heuristics to escape local optima

• Overall robustness:

▪ Adversarial instances to one method solved by others
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Benchmark Problem Classes
• Two application domains
• Scheduling

▪ Flow Shop (FSSP)
▪ Job Shop (JSSP)
▪ Resource-Constrained Project Scheduling Problem (RCPSP)

• Routing
▪ Travelling Salesman Problem (TSP)
▪ Capacitated Vehicle Routing Problem (CVRP)
▪ Vehicle Routing Problem with Time Windows (VRP-TW)
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Configuration Scheduling
• 5 different metaheuristics for scheduling problems

▪ Genetic Algorithm (GA)
▪ Large Neighborhood Search (LNS)
▪ Particle Swarm Optimization (PSO)
▪ Simulated Annealing (SA)
▪ Tabu Search (TS)

• 12 threads
▪ one thread for each heuristic (5 threads total)
▪ rest for solver (5 LNS workers + 2 FDS workers)
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Configuration Routing

• 2/3 different (meta)heuristics for routing problems
▪ Genetic Algorithm (GA)
▪ Local Search (LS)
▪ Memetic Algorithm (MA) - only for VRP-TW

• 12 threads
▪ one thread for each heuristic (2/3 threads total)
▪ rest for solver (7/8 LNS workers + 2 FDS workers)
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Practical Example
• Job Shop instance cscmax_40_15_7

• Produces better solution than solver or heuristic portfolio alone
▪ Different methods clearly profit from real-time exchange
▪ Heuristics are useful again once local optima is escaped
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Results: Instance Solutions
• Green bars denote instances where hybrid outperformed solver, red denote the opposite
• 120s runtime per instance
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Conclusion
Hybridization improves overall solution quality, anytime behavior and robustness.

• Clear improvements on 3 problem classes
• Overall 60% of solutions improved, only 10%

worsened (mostly slightly) using same resources
• Improved overall robustness

▪ A few instances unsolved by OptalCP alone were
solved by hybrid configuration

• (Meta)heuristics used were not state-of-the-art
▪ Still potential for improvements in problems

where solver is strong (JSSP, RCPSP)

Problem Improvement

FSSP +3% average

JSSP marginal

RCPSP marginal

TSP +6% average

CVRP marginal

VRP-TW +11% average
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Accelerating FDS with Reinforcement Learning
Application of Multi-Armed Bandit Algorithms

Research

37



Motivation

• FDS always picks (undecided) choice with best rating
• Good choices with bad initial/recent performance are ignored

▪ Choice success can depend on current search state (previous choices)

Question: How to prevent missing such good choices?
38



Goals
• We need to sufficiently test all choices to get an accurate assessment

▪ Test all choices initially
▪ Revisit bad choices occasionally

• Enforcing initial choice exploration

▪ Initialize all choices with good rating (optimistic initialization)

• Reassess choice quality efficiently

▪ FDS choice selection problem ≈ MAB problem
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Reinforcement Learning: MAB Problem

• Exploration-Exploitation dilemma (the problem we have)

▪ When to pick the best-known action (exploit)
▪ When to test new/under-used actions (explore)

• Multi-Armed Bandit problem

▪ Framework for exploration-exploitation dilemma

▪ Different algorithms/ways to handle exploration
▪ Epsilon-greedy (ε), UCB-1 (U), Boltzmann exploration (B),

Thompson sampling (T)
▪ MAB reward maximization → Search tree size minimization
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Exploration in FDS Setting
• MAB-based exploration can be costly in FDS

▪ Bad exploratory choice = doubling the tree size

• Switch between pure exploitation and MAB strategy
▪ In most cases, we exploit

• MAB-based choice rollback
▪ “Test run” to evaluate effect and update rating

(exploration)
▪ Choice is used if it does not increase search tree

size, else best-rated choice is used (exploitation)
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Results: Selection Strategies

• Measurements on JSSP and RCPSP (percentage denotes MAB choice probability)
• 10% of Boltzmann exploration with Choice rollback performs the best
• UCB-1 and Thompson embed exploration in action values (actions regain priority)

▪ Degrades performance in FDS exploitation-heavy setting
42



Conclusion
Application of extended MAB algorithm with optimistic initialization roughly
halved the computation time required by FDS in JSSP and RCPSP instances.

• Improved a large number of lower
bounds for both problems
▪ 78/84 of open standard Job Shop

(JSSP) instances
▪ 226/393 of open standard RCPSP

instances
▪ A few instances for both problems

were closed
▪ 900s time limit per instance

Heinz, S., Vilím, P., & Hanzálek, Z. (2025). Reinforcement learning for search tree size minimization in constraint programming.
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Thank You!
Questions?

Website:

Benchmarks GitHub:

Academic Licenses: Send me your GitHub username

https://optalcp.com

https://github.com/scheduleopt/optalcp-benchmarks
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