
OptalCP
Constraint Programming with Parallel Search and Reinforcement
Learning-Based Acceleration

Petr Vilím · ScheduleOpt

Vilém Heinz · Czech Technical University in Prague

Scheduling Seminar · schedulingseminar.com

1

http://schedulingseminar.com/
http://schedulingseminar.com/

What is OptalCP?
• Constraint Programming solver for scheduling problems.
• From the outside similar to IBM ILOG CP Optimizer.

▪ Similar modeling language and concepts.
▪ Interval variables, sequences, cumulative resources.

• From the inside, completely different.
▪ Modern architecture, designed for parallel search.
▪ Written in C++20, APIs in TypeScript/JavaScript and Python.

Today's focus: How does the solver work inside?

2

What makes OptalCP Different?
I’ve built CP solvers before. Now I’m free to rethink EVERYTHING.
In particular the internals.

Architecture:

• Built for speed from the ground up.
• True parallelism.
• Heterogeneous workers.
• External heuristic hybridization.

Modeling & API:

• Native Python and TypeScript APIs.
• Async event-driven solving.
• Integers with optional presence.
• New modeling constructs.

It's not "just faster" — it's a different architecture that enables new capabilities.

3

What makes OptalCP Different?
I’ve built CP solvers before. Now I’m free to rethink EVERYTHING.
In particular the internals.

Architecture:

• Built for speed from the ground up.
• True parallelism.
• Heterogeneous workers.
• External heuristic hybridization.

Modeling & API:

• Native Python and TypeScript APIs.
• Async event-driven solving.
• Integers with optional presence.
• New modeling constructs.

It's not "just faster" — it's a different architecture that enables new capabilities.

For academic licenses, send me your GitHub username.

3.1

Inside the Solver

Propagation
Remove infeasibilities

LNS
Large Neighborhood

Search

FDS
Failure-Directed Search

FDS Dual
Failure-Directed Search

Dual

Every algorithm has strengths and weaknesses.

4

Propagation

Propagation
Always in the Party

Role: Support

Action: Remove impossible values

Produces: Smaller domains

✓ Prunes domains Detects infeasibility

✗ Can't solve alone

5

Propagation Algorithms for Scheduling
Algorithms for resource constraints in OptalCP:
• Detectable Precedences
• Edge-finding
• Not-first / Not-last
• Timetabling
• Timetable Edge-Finding

6

Propagation
In every search node, propagation removes impossible values until fixpoint or infeasibility.

Priority 1

Priority 2

Priority 3

no change

no change

Fixpoint

no change

change

Fast & High yield

Medium

Expensive & Low yield

7

Large Neighborhood Search (LNS)

LNS
Large Neighborhood Search

Type: Local search with CP repair

Assumes: Better solution exists nearby

Strategy: Destroy part, repair with CP

Produces: Better solutions

✓ Fast solutions Exploits structure

✗ Requires initial solution

✗ Local optima No optimality proof

8

How Standard LNS Works
Suppose the following solution:

T1

T2

T3
T4 T5

T6

T7 Capacity

9

How Standard LNS Works
Suppose the following solution:

T1

T2

T3
T4 T5

T6

T7 Capacity

We relax part of it:

T1

T2

T3
T4 T5

T6

T7 Capacity

9.1

How Standard LNS Works
Suppose the following solution:

T1

T2

T3
T4 T5

T6

T7 Capacity

We relax part of it:

T1

T2

T3
T4 T5

T6

T7 Capacity

We solve the relaxed problem:

T1

T2

T3
T4 T5

T6

T7 Capacity

The problem: Standard LNS fixes the values of non-relaxed variables.
Since these are times, we can’t improve the makespan unless we relax more variables.

Keeping variable values fixed is too restrictive.

9.2

How Standard LNS Works
Suppose the following solution:

T1

T2

T3
T4 T5

T6

T7 Capacity

We relax part of it:

T1

T2

T3
T4 T5

T6

T7 Capacity

We solve the relaxed problem:

T1

T2

T3
T4 T5

T6

T7 Capacity

The problem: Standard LNS fixes the values of non-relaxed variables.
Since these are times, we can’t improve the makespan unless we relax more variables.

Keeping variable values fixed is too restrictive.

Idea: Modify relaxation to capture the structure of the solution instead.

Philippe Laborie, Daniel Godard:
Self-adapting large neighborhood search: Application to single-mode scheduling problems

9.3

Partial Order Schedule (POS)
Suppose we have the following solution:

T1

T2

T3
T4 T5

T6

T7 Capacity

10

Partial Order Schedule (POS)
Suppose we have the following solution:

T1

T2

T3
T4 T5

T6

T7 Capacity

POS = structure of the solution = a set of precedences between tasks.
If the variables respect the precedences, resource constraints are automatically satisfied.

T1 T2 T3
T4 T5

T6

T7 Capacity

10.1

Relaxing with POS

T1 T2 T3
T4 T5

T6

T7 Capacity

To relax a task, we remove all its precedences.
Transitive precedences between the remaining tasks are added instead.

11

Relaxing with POS

T1 T2 T3
T4 T5

T6

T7 Capacity

To relax a task, we remove all its precedences.
Transitive precedences between the remaining tasks are added instead.

T1 T2 T3
T4 T5

T6

T7 Capacity

11.1

Solving with POS

T1 T2 T3
T4 T5

T6

T7 Capacity

LNS sub-problem:

• Has the same variables (and domains).
• But more constraints (precedences from relaxed POS).

Sub-problem solution:

12

Solving with POS

T1 T2 T3
T4 T5

T6

T7 Capacity

LNS sub-problem:

• Has the same variables (and domains).
• But more constraints (precedences from relaxed POS).

Sub-problem solution:

T1

T2

T3
T4 T5

T6

T7 Capacity

12.1

LNS Iterations

Initial
solution constraints

+ relaxed POS

fail limit
hit

solution

br
an

ch
 o

n
va

ria
bl
e

va
lu
es

Time

Heuristics, FDS

13

LNS Iterations

Initial
solution constraints

+ relaxed POS

fail limit
hit

solution

br
an

ch
 o

n
va

ria
bl
e

va
lu
es

Time

Heuristics, FDS

constraints
+ relaxed POS

fail limit
hit

no solution

Initial
solution constraints

+ relaxed POS

fail limit
hit

solution

br
an

ch
 o

n
va

ria
bl
e

va
lu
es

Time

Heuristics, FDS

13.1

LNS Iterations

Initial
solution constraints

+ relaxed POS

fail limit
hit

solution

br
an

ch
 o

n
va

ria
bl
e

va
lu
es

Time

Heuristics, FDS

constraints
+ relaxed POS

fail limit
hit

no solution

Initial
solution constraints

+ relaxed POS

fail limit
hit

solution

br
an

ch
 o

n
va

ria
bl
e

va
lu
es

Time

Heuristics, FDS

constraints
+ relaxed POS

fail limit
hit

no solution

Initial
solution constraints

+ relaxed POS

fail limit
hit

solution

br
an

ch
 o

n
va

ria
bl
e

va
lu
es

Time

Heuristics, FDS

constraints
+ di�ferent relaxed POS

fail limit
hit

no solution

13.2

LNS Iterations

Initial
solution constraints

+ relaxed POS

fail limit
hit

solution

br
an

ch
 o

n
va

ria
bl
e

va
lu
es

Time

Heuristics, FDS

constraints
+ relaxed POS

fail limit
hit

no solution

Initial
solution constraints

+ relaxed POS

fail limit
hit

solution

br
an

ch
 o

n
va

ria
bl
e

va
lu
es

Time

Heuristics, FDS

constraints
+ relaxed POS

fail limit
hit

no solution

Initial
solution constraints

+ relaxed POS

fail limit
hit

solution

br
an

ch
 o

n
va

ria
bl
e

va
lu
es

Time

Heuristics, FDS

constraints
+ di�ferent relaxed POS

fail limit
hit

no solution

constraints
+ relaxed POS

fail limit
hit

no solution

solutionInitial
solution constraints

+ relaxed POS

fail limit
hit

solution

br
an

ch
 o

n
va

ria
bl
e

va
lu
es

Time

Heuristics, FDS

constraints
+ di�ferent relaxed POS

fail limit
hit

no solution solution

nogood constraints

constraints
+ nogoods

fail limit
hit

+ relaxed POS

Parallel algorithms

13.3

LNS Iterations

Initial
solution constraints

+ relaxed POS

fail limit
hit

solution

br
an

ch
 o

n
va

ria
bl
e

va
lu
es

Time

Heuristics, FDS

constraints
+ relaxed POS

fail limit
hit

no solution

Initial
solution constraints

+ relaxed POS

fail limit
hit

solution

br
an

ch
 o

n
va

ria
bl
e

va
lu
es

Time

Heuristics, FDS

constraints
+ relaxed POS

fail limit
hit

no solution

Initial
solution constraints

+ relaxed POS

fail limit
hit

solution

br
an

ch
 o

n
va

ria
bl
e

va
lu
es

Time

Heuristics, FDS

constraints
+ di�ferent relaxed POS

fail limit
hit

no solution

constraints
+ relaxed POS

fail limit
hit

no solution

solutionInitial
solution constraints

+ relaxed POS

fail limit
hit

solution

br
an

ch
 o

n
va

ria
bl
e

va
lu
es

Time

Heuristics, FDS

constraints
+ di�ferent relaxed POS

fail limit
hit

no solution solution

nogood constraints

constraints
+ nogoods

fail limit
hit

+ relaxed POS

Parallel algorithms

constraints
+ relaxed POS

fail limit
hit

no solution

solution
constraints

+ relaxed POS
+ nogoods

nogood constraints

solution

Initial
solution constraints

+ relaxed POS

fail limit
hit

solution

br
an

ch
 o

n
va

ria
bl
e

va
lu
es

Time

Heuristics, FDS

constraints
+ di�ferent relaxed POS

fail limit
hit

no solution solution

nogood constraints

constraints
+ nogoods

fail limit
hit

+ relaxed POS

Parallel algorithms

13.4

Failure-Directed Search (FDS)

FDS
Failure-Directed Search

Type: Systematic tree search

Assumes: Problem is infeasible/hard

Strategy: Learn from failures, restart

Produces: Solutions, proofs, nogoods

✓ Optimality proofs Lower bounds

✗ Slow Solutions are a byproduct ?infeasible

backtrack

depth-first search

Vilém Heinz, Petr Vilím, Zdeněk Hanzálek:
Reinforcement Learning for Search Tree Size Minimization in Constraint Programming:
New Results on Scheduling Benchmarks

14

Simplified FDS
FDS maintains ratings on choices:

x <= 9 x > 9

Choice 1

x <= 5 x > 5

Choice 2

y <= 7 y > 7

Choice 3

y <= 1 y > 1

Choice 4

z <= 9 z > 9

Choice n

Decided

15

Simplified FDS
FDS maintains ratings on choices:

x <= 9 x > 9

Choice 1

x <= 5 x > 5

Choice 2

y <= 7 y > 7

Choice 3

y <= 1 y > 1

Choice 4

z <= 9 z > 9

Choice n

Decided

x <= 9 x > 9

Choice 1

7 7 73 7 2 3 7 27 7 3

x <= 5 x > 5

Choice 2

y <= 7 y > 7

Choice 3

y <= 1 y > 1

Choice 4

z <= 9 z > 9

Choice n

Decided

15.1

Simplified FDS
FDS maintains ratings on choices:

x <= 9 x > 9

Choice 1

x <= 5 x > 5

Choice 2

y <= 7 y > 7

Choice 3

y <= 1 y > 1

Choice 4

z <= 9 z > 9

Choice n

Decided

x <= 9 x > 9

Choice 1

7 7 73 7 2 3 7 27 7 3

x <= 5 x > 5

Choice 2

y <= 7 y > 7

Choice 3

y <= 1 y > 1

Choice 4

z <= 9 z > 9

Choice n

Decided

x <= 9 x > 9

Choice 1

7 7 73 7 2 3 7 27 7 3

x x x

x <= 5 x > 5

Choice 2

y <= 7 y > 7

Choice 3

y <= 1 y > 1

Choice 4

z <= 9 z > 9

Choice n

Decided

15.2

Simplified FDS
FDS maintains ratings on choices:

x <= 9 x > 9

Choice 1

x <= 5 x > 5

Choice 2

y <= 7 y > 7

Choice 3

y <= 1 y > 1

Choice 4

z <= 9 z > 9

Choice n

Decided

x <= 9 x > 9

Choice 1

7 7 73 7 2 3 7 27 7 3

x <= 5 x > 5

Choice 2

y <= 7 y > 7

Choice 3

y <= 1 y > 1

Choice 4

z <= 9 z > 9

Choice n

Decided

x <= 9 x > 9

Choice 1

7 7 73 7 2 3 7 27 7 3

x x x

x <= 5 x > 5

Choice 2

y <= 7 y > 7

Choice 3

y <= 1 y > 1

Choice 4

z <= 9 z > 9

Choice n

Decided

x <= 9 x > 9

Choice 1

7 7 73 7 2 3 7 27 7 3

x x x
Reward -2
Penalty 2

Reward -1
Penalty 1

Reward 0
Penalty 0

Reward -2
Penalty 2

x <= 5 x > 5

Choice 2

y <= 7 y > 7

Choice 3

y <= 1 y > 1

Choice 4

z <= 9 z > 9

Choice n

Decided

rating(choice) := α ⋅ rating(choice) + (1 − α) ⋅ penalty

15.3

The FDS - MAB Connection
• MAB algorithms minimize sum of penalties.
• In (simplified) FDS, sum of penalties is the tree size!

FDS learns to minimize tree size. By design.

I didn't know this when we designed FDS. But it makes sense now.

Vilém will explore the MAB perspective in more depth.

16

FDS Restarts

constraints

fail limit
hit

Time

Unexplored

explored

x x x xx
infeasible

17

FDS Restarts

constraints

fail limit
hit

Time

Unexplored

explored

x x x xx
infeasible

constraints

fail limit
hit

Time

Unexplored

explored

x x x xx

nogood
constraint

constraints

bigger
fail limit

Unexplored

explored

x x x xx x

+ nogoods

infeasible infeasible smaller tree

Underlying trees get smaller due to better choices and accumulated nogoods.
Explored subtrees get bigger due to increased fail limits.

17.1

FDS Restarts

constraints

fail limit
hit

Time

Unexplored

explored

x x x xx
infeasible

constraints

fail limit
hit

Time

Unexplored

explored

x x x xx

nogood
constraint

constraints

bigger
fail limit

Unexplored

explored

x x x xx x

+ nogoods

infeasible infeasible smaller tree

constraints

fail limit
hit

solution

Parallel algorithms

nogood

Time

Unexplored

explored

x x x xx

nogood
constraint

constraints

bigger
fail limit

Unexplored

explored

x x x xx x

+ nogoods

infeasible infeasible smaller tree

constraints

bigger
fail limit

Unexplored

explored

x x x xx x

+ nogoods

infeasible smaller tree
x x

nogood
constraint

+ upper bound

nogood
constraint

Underlying trees get smaller due to better choices and accumulated nogoods.
Explored subtrees get bigger due to increased fail limits.

17.2

FDS Dual

FDS Dual
Lower Bound Prover

Type: Bound-focused search

Assumes: Lower bound can be improved

Strategy: Prove infeasible, increment

Produces: Tighter lower bound, nogoods

✓ Fast bound proofs Efficient for LB

✗ No solutions Not good team player

Smarter version of destructive lower bounds.

18

FDS Dual Search
Efficient lower bound proving
Start with a tight bound, prove it infeasible, then relax.

FDS Dual workers focus specifically on tightening the lower bound.

bound = current_LB
while solve(objective <= bound) == INFEASIBLE:
 reportLB(bound + 1) # Assuming integer
 bound += new_bound_to_try(..) # by parameter FDSDualStrategy

19

The Perfect Combo
LNS

Fast solutions
FDS

Proves optimality
FDS Dual

Tightens bounds

They complement each other:

LNS finds solutions → FDS has a better bound

FDS finds solutions → LNS escapes local optima

FDS Dual proves bounds → Gap shrinks from below

FDS FDS Dual restarts → Generate nogoods for LNS FDS FDS Dual

LNS FDS FDS Dual prove optimality together → Search ends

20

Parallel Architecture

Model,
Solutions

Solutions,
Bounds,

Log
real-time communication

Python / Node.js

Your code

OptalCP thin API

(may be async)

Master thread

OptalCP

LNS FDS FDS
Dual

LNS FDSLNS

Workers

21

Heterogeneous Workers
Each worker can be configured independently:

Or you can just let OptalCP to decide.

model.solve({
nbWorkers: 4,
workers: [

// Fast exploration:
 { searchType: "LNS", noOverlapPropagationLevel: 2 },

// Stronger reasoning:
 { searchType: "LNS", noOverlapPropagationLevel: 4 },

// Optimality focus, escape local optima:
 { searchType: "FDS", noOverlapPropagationLevel: 4 },

// Prove lower bounds:
 { searchType: "FDSDual", noOverlapPropagationLevel: 4 }
]});

22

Hybrid Solution Using Your Algorithm

Your Algorithm
Your Secret Weapon

Type: Revolutionary

Solutions: Always the best

Speed: Blazing fast

Code: Beautiful and bug-free

✓ Perfect for the problem

✓ Scales effortlessly

✗ Not in OptalCP No lower bounds

23

Hybrid Solution Using Your Algorithm

Your Algorithm
Your Secret Weapon

Type: Revolutionary

Solutions: Always the best

Speed: Blazing fast

Code: Beautiful and bug-free

✓ Perfect for the problem

✓ Scales effortlessly

✗ Not in OptalCP No lower bounds

Why hybridize?

• Solution exchange both ways
• Improved robustness
• Escape local optima
• Better than parallel alone
• Adds optimality gap, stops at optimum

How to plug in:

• Your algorithm in any language
• Communicates via stdin/stdout
• Short glue code in Python/TypeScript
• Example on GitHub

23.1

Architecture Enabling Hybrid Solution

Model,
Solutions

Solutions,
Bounds,
Log

Your Algorithm

real-time communication

Solutions

std in/out
real-time

Python / Node.js

glue code (async)

OptalCP thin API

Master thread

OptalCP

LNS FDS FDS
Dual

LNS FDSLNS

Workers

24

Plugging In Your Algorithm
your_algorithm = await asyncio.create_subprocess_exec(...)
solver = cp.Solver()

def on_optalcp_solution(event: cp.SolutionEvent) -> None:
 serialized = your_solution_format(event.solution)
 your_algorithm.stdin.write(serialized + b'\n')

async def read_your_solutions() -> None:
while True:

 line = await your_algorithm.stdout.readline()
 solution = to_optalcp_solution(line)

await solver.send_solution(solution)

solver.on_solution = on_optalcp_solution
asyncio.create_task(read_your_solutions())
await solver.solve(model, parameters)
your_algorithm.kill()

25

Live Demo demo

26

Research Results

• Hybridization with (Meta)heuristics

• Search Acceleration using Reinforcement Learning
Vilém Heinz

27

Hybridization with (Meta)heuristics
Experiments on Scheduling and Routing Problems

Research

28

Motivation
Capability CP Solver (Meta)heuristics

Bounds and optimality proofs ✓

Systematic and complete search ✓

Can prove infeasibility ✓

Scales to large instances (✓) ✓

Good anytime behavior ✓

Problem-aware search (✓)

Question: Can we benefit from their complementary nature?

29

Goals
• Early search stage:

▪ Heuristics provide good feasible solutions
▪ Heuristics guide solver’s search to promising

regions early

• Advanced search stage:

▪ Solver incrementally improves and provides bounds
▪ Solver helps heuristics to escape local optima

• Overall robustness:

▪ Adversarial instances to one method solved by others

30

Benchmark Problem Classes
• Two application domains
• Scheduling

▪ Flow Shop (FSSP)
▪ Job Shop (JSSP)
▪ Resource-Constrained Project Scheduling Problem (RCPSP)

• Routing
▪ Travelling Salesman Problem (TSP)
▪ Capacitated Vehicle Routing Problem (CVRP)
▪ Vehicle Routing Problem with Time Windows (VRP-TW)

31

Configuration Scheduling
• 5 different metaheuristics for scheduling problems

▪ Genetic Algorithm (GA)
▪ Large Neighborhood Search (LNS)
▪ Particle Swarm Optimization (PSO)
▪ Simulated Annealing (SA)
▪ Tabu Search (TS)

• 12 threads
▪ one thread for each heuristic (5 threads total)
▪ rest for solver (5 LNS workers + 2 FDS workers)

32

Configuration Routing

• 2/3 different (meta)heuristics for routing problems
▪ Genetic Algorithm (GA)
▪ Local Search (LS)
▪ Memetic Algorithm (MA) - only for VRP-TW

• 12 threads
▪ one thread for each heuristic (2/3 threads total)
▪ rest for solver (7/8 LNS workers + 2 FDS workers)

33

Practical Example
• Job Shop instance cscmax_40_15_7

• Produces better solution than solver or heuristic portfolio alone
▪ Different methods clearly profit from real-time exchange
▪ Heuristics are useful again once local optima is escaped

34

Results: Instance Solutions
• Green bars denote instances where hybrid outperformed solver, red denote the opposite
• 120s runtime per instance

35

Conclusion
Hybridization improves overall solution quality, anytime behavior and robustness.

• Clear improvements on 3 problem classes
• Overall 60% of solutions improved, only 10%

worsened (mostly slightly) using same resources
• Improved overall robustness

▪ A few instances unsolved by OptalCP alone were
solved by hybrid configuration

• (Meta)heuristics used were not state-of-the-art
▪ Still potential for improvements in problems

where solver is strong (JSSP, RCPSP)

Problem Improvement

FSSP +3% average

JSSP marginal

RCPSP marginal

TSP +6% average

CVRP marginal

VRP-TW +11% average

36

Accelerating FDS with Reinforcement Learning
Application of Multi-Armed Bandit Algorithms

Research

37

Motivation

• FDS always picks (undecided) choice with best rating
• Good choices with bad initial/recent performance are ignored

▪ Choice success can depend on current search state (previous choices)

Question: How to prevent missing such good choices?
38

Goals
• We need to sufficiently test all choices to get an accurate assessment

▪ Test all choices initially
▪ Revisit bad choices occasionally

• Enforcing initial choice exploration

▪ Initialize all choices with good rating (optimistic initialization)

• Reassess choice quality efficiently

▪ FDS choice selection problem ≈ MAB problem

39

Reinforcement Learning: MAB Problem

• Exploration-Exploitation dilemma (the problem we have)

▪ When to pick the best-known action (exploit)
▪ When to test new/under-used actions (explore)

• Multi-Armed Bandit problem

▪ Framework for exploration-exploitation dilemma

▪ Different algorithms/ways to handle exploration
▪ Epsilon-greedy (ε), UCB-1 (U), Boltzmann exploration (B),

Thompson sampling (T)
▪ MAB reward maximization → Search tree size minimization

40

Exploration in FDS Setting
• MAB-based exploration can be costly in FDS

▪ Bad exploratory choice = doubling the tree size

• Switch between pure exploitation and MAB strategy
▪ In most cases, we exploit

• MAB-based choice rollback
▪ “Test run” to evaluate effect and update rating

(exploration)
▪ Choice is used if it does not increase search tree

size, else best-rated choice is used (exploitation)

41

Results: Selection Strategies

• Measurements on JSSP and RCPSP (percentage denotes MAB choice probability)
• 10% of Boltzmann exploration with Choice rollback performs the best
• UCB-1 and Thompson embed exploration in action values (actions regain priority)

▪ Degrades performance in FDS exploitation-heavy setting
42

Conclusion
Application of extended MAB algorithm with optimistic initialization roughly
halved the computation time required by FDS in JSSP and RCPSP instances.

• Improved a large number of lower
bounds for both problems
▪ 78/84 of open standard Job Shop

(JSSP) instances
▪ 226/393 of open standard RCPSP

instances
▪ A few instances for both problems

were closed
▪ 900s time limit per instance

Heinz, S., Vilím, P., & Hanzálek, Z. (2025). Reinforcement learning for search tree size minimization in constraint programming.

43

https://doi.org/10.1016/j.cie.2025.111413
https://doi.org/10.1016/j.cie.2025.111413
https://doi.org/10.1016/j.cie.2025.111413
https://doi.org/10.1016/j.cie.2025.111413
https://doi.org/10.1016/j.cie.2025.111413

Thank You!
Questions?

Website:

Benchmarks GitHub:

Academic Licenses: Send me your GitHub username

https://optalcp.com

https://github.com/scheduleopt/optalcp-benchmarks

44

https://optalcp.com/
https://github.com/scheduleopt/optalcp-benchmarks
https://optalcp.com/
https://github.com/scheduleopt/optalcp-benchmarks

