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What is OptalCP? U®,

e Constraint Programming solver for scheduling problems.
e From the outside similar to IBM ILOG CP Optimizer.

= Similar modeling language and concepts.

= |nterval variables, sequences, cumulative resources.

e From the inside, completely different.
= Modern architecture, designed for parallel search.
= Written in C++20, APIs in TypeScript/JavaScript and Python.

Today's focus: How does the solver work inside?



What makes OptalCP Different? >

I’ve built CP solvers before. Now I’m free to rethink EVERYTHING.
In particular the internals.

Architecture: Modeling & API:
e Built for speed from the ground up. e Native Python and TypeScript APlIs.
e True parallelism. e Async event-driven solving.
e Heterogeneous workers. e Integers with optional presence.
o External heuristic hybridization. e New modeling constructs.

It's not "just faster" — it's a different architecture that enables new capabilities.



What makes OptalCP Different? >

I’ve built CP solvers before. Now I’m free to rethink EVERYTHING.
In particular the internals.

Architecture: Modeling & API:

Built for speed from the ground up. Native Python and TypeScript APIs.

True parallelism. e Async event-driven solving.

e Heterogeneous workers. Integers with optional presence.

External heuristic hybridization.

New modeling constructs.

It's not "just faster" — it's a different architecture that enables new capabilities.

For academic licenses, send me your GitHub username.



Inside the Solver 8
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Every algorithm has strengths and weaknesses.



Propagation >
Propagation
Always in the Party

Role: Support
Action: Remove impossible values

Produces: Smaller domains

v Detects infeasibility

)@ Can't solve alone




Propagation Algorithms for Scheduling L@,

-

Algorithms for resource constraints in OptalCP:

e Detectable Precedences
e Edge-finding

e Not-first / Not-last

e Timetabling

e Timetable Edge-Finding



Propagation L@,

-

In every search node, propagation removes impossible values until fixpoint or infeasibility.

v

Fast & High yielol [ Priority 1 ]

¢ no cl«ange

Medium | Priority 2

¢ no cl«omge

Expensive & Low yielo( ( Priority 3

\L no cl'\omge

Fixpoin‘t

CL\O\V\ge




Large Neighborhood Search (LNS) >

-

LNS

Large Neighborhood Search

Type: Local search with CP repair
Assumes: Better solution exists nearby
Strategy: Destroy part, repair with CP

Produces: Better solutions

VA Fast solutions @ Exploits structure

»¥ Requires initial solution

X No optimality proof




How Standard LNS Works

Suppose the following solution:
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How Standard LNS Works

We relax part of it:

T1
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T5

T

Capacitt/

£



How Standard LNS Works

We solve the relaxed problem:

T1

T3

T2 T6
T?
T4 TS5
_

The problem: Standard LNS fixes the values of non-relaxed variables.
Since these are times, we can’t improve the makespan unless we relax more variables.

Keeping variable values fixed is too restrictive.

CaPo«dty

£



How Standard LNS Works /9,

We solve the relaxed problem:

T2 T6
T1 T3 T% Capacity
4 TS5
_

The problem: Standard LNS fixes the values of non-relaxed variables.
Since these are times, we can’t improve the makespan unless we relax more variables.

Keeping variable values fixed is too restrictive.

Idea: Modify relaxation to capture the structure of the solution instead.

Philippe Laborie, Daniel Godard:
Self-adapting large neighborhood search: Application to single-mode scheduling problems



Partial Order Schedule (POS)

Suppose we have the following solution:
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Partial Order Schedule (POS)

Suppose we have the following solution:

T1

T6

T2

T3

T4

T5

T?

Capadty

POS = structure of the solution = a set of precedences between tasks.

6

If the variables respect the precedences, resource constraints are automatically satisfied.

Capadty




Relaxing with POS £

To relax a task, we remove all its precedences.
Transitive precedences between the remaining tasks are added instead.



Relaxing with POS

To relax a task, we remove all its precedences.
Transitive precedences between the remaining tasks are added instead.
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Solving with POS

T1

T2

T3

T6

T4

)j s

W

T7

Capacity

LNS sub-problem:

e Has the same variables (and domains).

e But more constraints (precedences from relaxed POS).

Sub-problem solution:

£



Solving with POS

T1

T2

T3

T6

T4

)j s

W

T7

Capacity

LNS sub-problem:

e Has the same variables (and domains).

e But more constraints (precedences from relaxed POS).

Sub-problem solution:

T1

T3
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T4
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T7
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LNS Iterations
Time >

Heuristics, FDS

Initial
solution constraints
~—>> + relaxed POS
Q

fail imit
hit

solution



LNS Iterations 8y
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Time

Heuristics, FDS

Initial .
colution constraints constraints
~—>> + relaxed POS + relaxed POS
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13.1



LNS Iterations 8y

-

Time

Heuristics, FDS

Initial .
colution constraints constraints constraints
~—>> + relaxed POS + relaxed POS + different relaxed POS

A
\

e
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fail imit fail limit

hit

./

no solution

fail imit
hit

solution no solution

13.2



LNS Iterations 8y

-

Time
Heuristics, FDS :ira“e_l alaorithms
V\ogooo( constraints
Initial solut?on )
solution constraints constraints constraints \ ior\stm.:(ts
nogooas
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LNS Iterations 8y

-

Time
Heuristics, FDS Parallel o«lﬂor?‘tl«ms
—_ \ i
V\ogooo( constraints nogooo{ constraints
Initial solution ‘
solution constraints constraints constraints \ ionstra.:(ts constrointe
nogoods
~—_> + relaxed POS + relaxed POS + different relaxed POS . relaxge g Pos\_> + nogoods

+ relaxed POS

Q

"
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hit

fail imit
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solution no solution

solution solution
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Failure-Directed Search (FDS) 6y

7

FDS

Failure-Directed Search

Type: Systematic tree search

Assumes: Problem is infeasible/hard

Strategy: Learn from failures, restart

Produces: Solutions, proofs, nogoods

Y4 Optimality proofs
X Solutions are a byproduct

.

N

Vilém Heinz, Petr Vilim, Zdenék Hanzalek:

\\V

o(e(at h-First search Q

A

Reinforcement Learning for Search Tree Size Minimization in Constraint Programming;:

New Results on Scheduling Benchmarks



Simplified FDS

FDS maintains ratings on choices:

Choice 1 Choice 2 Choice 3 Choice ¢
x £= 9 X>Jx<=5 x)JQ(-‘-? y)JLVT ¥>1j
Decided

Choice n

.

/N

=9 z>

g

£



Simplified FDS 8y

-_

FDS maintains ratings on choices:

Choice 1 Choice 2 Choice 3 Choice 4 Choice n
ch X>Jx<=5 x>gg<=7 V>JL:/1’ ¥>1j ch z>9
Decided

372 773 777 >< 372

o e

15.1



Simplified FDS 3

FDS maintains ratings on choices:

Choice 1 Choice 2 Choice 3 Choice 4 Choice n
x <=9 x>Jx<=5 X)JQ<=¥ V>JLVT ¥>1j Lc:q z>q
Decided
372 773 7777 >< 372

@

) N AN

15.2



Simplified FDS

FDS maintains ratings on choices:

Choice 1 Choice 2 Cl«o\ce 3 Choice 4 Choice n
Decided

j jj>< ---------------
AN A

w
N
N

Reward -2 Reward -1 Reward 0 Reward -2
Penalty 2 Penalty 1 Penalty O Penalty 2

rating(choice) := « - rating(choice) + (1 — a) - penalty

£




The FDS - MAB Connection

e MAB algorithms minimize sum of penalties.
e In (simplified) FDS, sum of penalties is the tree size!

FDS learns to minimize tree size. By design.

| didn't know this when we designed FDS. But it makes sense now.

Vilém will explore the MAB perspective in more depth.



FDS Restarts

constraints

NS 4
S

8%



FDS Restarts 8y

-

Time

constraints

constraints
+ nogooo(s

nogood
constraint

Q\ Unexploreo(

Bigger
fail limit fail imit
hit

XX XXXX

XXXXX
infeasible

infeasible

swaller tree

Underlying trees get smaller due to better choices and accumulated nogoods.
Explored subtrees get bigger due to increased fail limits.

171



FDS Restarts 6y

-

Time
Parallel algoritl«mS\
solution
constraints d
constraints I
+ v\ogooo(s constraints
+ upper bound
+ nogooo(S
nogood

nogood nege d constraint

constraint constraint

¢
\ Unex(oloreo( Unexploreo(

Bigger

l::igger
fail limit

fail imit fail mit
hit

X X X X X

easible

Swm“er tree
infeasible

XX XXX
infeasible

X X
swmaller tree n

Underlying trees get smaller due to better choices and accumulated nogoods.
Explored subtrees get bigger due to increased fail limits.

17.2



FDS Dual >

NS 4
e

FDS Dual

Lower Bound Prover

Type: Bound-focused search
Assumes: Lower bound can be improved
Strategy: Prove infeasible, increment

Produces: Tighter lower bound, nogoods

Al Fast bound proofs @ Efficient for LB
X Not good team player

\_ y,
Smarter version of destructive lower bounds.




FDS Dual Search

Efficient lower bound proving

Start with a tight bound, prove it infeasible, then relax.

bound = current LB
while solve (objective <= bound) == INFEASIBLE:
reportLB (bound + 1) # Assuming integer
bound += new bound to try(..) # by parameter FDSDualStrategy

FDS Dual workers focus specifically on tightening the lower bound.

7N

N?



The Perfect Combo

They complement each other:

LNS

FDS

RS 4

LNS
Fast solutions

FDS FDS Dual
Proves optimality Tightens bounds

finds solutions =

finds solutions =

FDS Dual

FDS

LNS |

FDS

LNS

has a better bound

escapes local optima

proves bounds = Gap shrinks from below

FDS Dual] restarts ® Generate nogoods for LNS]

FDS

FDS Dual |

FDS || FDS Dual | prove optimality together - Search ends

8



Parallel Architecture /®,

( Py‘tl«on / A/oo(e_.:\s \
Your code (may be async)
k OptalCP thin API J
-~ N\
Sjjéil:\s real-time communication Sglc:fv‘\j(‘;?
Log
é v OptalcP A
[ Master thread )
v T v T v T v T v T J T
FD

[LMS ] [LNS j ...... :D Sl

Workers J

(




Heterogeneous Workers 3,

Each worker can be configured independently:

model.solve ({

nbWorkers: 4,

workers: |
// Fast exploration:
{ searchType: "LNS", noOverlapPropagationLevel: 2 },
// Stronger reasoning:
{ searchType: "LNS", noOverlapPropagationLevel: 4 1},
// Optimality focus, escape local optima:
{ searchType: "FDS", noOverlapPropagationLevel: 4 },
// Prove lower bounds:
{ searchType: "FDSDual", noOverlapPropagationLevel: 4 }

1Y)

Or you can just let OptalCP to decide.



Hybrid Solution Using Your Algorithm 6y

Your Algorithm

Your Secret Weapon

Type: Revolutionary
Solutions: Always the best
Speed: Blazing fast

Code: Beautiful and bug-free

V4l Perfect for the problem
V4 Scales effortlessly




Hybrid Solution Using Your Algorithm >

f

Your Algorithm

Your Secret Weapon

Type: Revolutionary
Solutions: Always the best
Speed: Blazing fast

Code: Beautiful and bug-free

V4l Perfect for the problem
VAl Scales effortlessly

~\

Why hybridize?

e Solution exchange both ways

Improved robustness

Escape local optima

Better than parallel alone

Adds optimality gap, stops at optimum
How to plugin:

e Your algorithm in any language

e Communicates via stdin/stdout

e Short glue code in Python/TypeScript
e Example on GitHub

231



Architecture Enabling Hybrid Solution

8%

N 4
-

~

Model, Solutions,
real-time communication Bounds,

Solutions

Workers J

( P(/tl«on / A/oole.js W{Solutbns
glue code (asinc) =

std in/out

\ OPthCP tl’\;n API J real-‘tim:_

_

Your Algoﬁ‘thm

W

y,




Plugging In Your Algorithm L@,

your algorithm = await asyncio.create subprocess exec(...)
solver = cp.Solver ()

def on optalcp solution(event: cp.SolutionEvent) -> None:
serialized = your solution format (event.solution)
your algorithm.stdin.write(serialized + b'\n'")

async def read your solutions() -> None:
while True:
line = await your algorithm.stdout.readline ()
solution = to optalcp solution(line)
awalit solver.send solution(solution)

solver.on solution = on optalcp solution
asyncio.create task(read your solutions())
await solver.solve (model, parameters)

your algorithm.kill ()



Live Demo &

NS 4
[—

8}



Research Results

« Hybridization with (Meta)heuristics

« Search Acceleration using Reinforcement Learning

6



Hybridization with (Meta)heuristics 0y

Experiments on Scheduling and Routing Problems



Motivation >,

Capability CP Solver (Meta)heuristics
Bounds and optimality proofs v

Systematic and complete search v

Can prove infeasibility v

Scales to large instances (V) V4

Good anytime behavior v
Problem-aware search (V)

Question: Can we benefit from their complementary nature?



Goals )

e Early search stage:

Heuristic OptalCP
» Heuristics provide good feasible solutions " P N
S
= Heuristics guide solver’s search to promising 3 z:“*~~~~-___>
regions early S N e >
men pasteﬁ
e Advanced search stage: 2«* smprovene™ T
“““ >
. . S P ) =
= Solverincrementally improves and provides bounds <--"7" g
o o o (ESCGPeo( Local Opt g.
= Solver helps heuristics to escape local optima Q-7 e %
1Y
N R A
e Overall robustness: <---"7"
Time V woPtiw‘“M
= Adversarial instances to one method solved by others



Benchmark Problem Classes /9,

e Two application domains
e Scheduling
= Flow Shop (FSSP)
= Job Shop (JSSP)
m Resource-Constrained Project Scheduling Problem (RCPSP)

e Routing
= Travelling Salesman Problem (TSP)
m Capacitated Vehicle Routing Problem (CVRP)
= Vehicle Routing Problem with Time Windows (VRP-TW)



Configuration Scheduling

e 5different metaheuristics for scheduling problems
= Genetic Algorithm (GA)
m Large Neighborhood Search (LNS)
= Particle Swarm Optimization (PSO)
= Simulated Annealing (SA)
= Tabu Search (TS)

e 12 threads
= one thread for each heuristic (5 threads total)
= rest for solver (5 LNS workers + 2 FDS workers)

g A
[mj [Lﬂs] [PSOJ [SA] [TSJ
\_ =1;__1;__)
( Python / Nodejs )
glue code (o.sync)

\_ OptalcP thin APT )
[ v/ OPtalCP A

r




Configuration Routing

e 2/3 different (meta)heuristics for routing problems
= Genetic Algorithm (GA)
= Local Search (LS)
= Memetic Algorithm (MA) - only for VRP-TW

e 12 threads
= one thread for each heuristic (2/3 threads total)
= rest for solver (7/8 LNS workers + 2 FDS workers)

&

Vs
&
r -
T
&A LS I M4
L
\_ ) A
|
( Pt{tl«on / A/o:;(e.:\s
glue code (async)
k Ofato«lCP thin APT F
|

| 1§
- () () )

Workers J




Practical Example

e Job Shop instance cscmax_40_15_7

Objective

6,400 [

5H-5L-2F objective N
6,300 ° Solver provided solution
6.200 B Heuristic provided solution

’ - 10L-2F best objective
6,100 - - 12H best objective —]
6,000 =
5,900 N
5,800 =
5,700 k= — oo
5,600
5,500 ——————————————————————————— Tm—--'k-{: ———————————
5,400 | | \ | |
0 20 40 60 80 100
Time |s]

e Produces better solution than solver or heuristic portfolio alone

= Different methods clearly profit from real-time exchange

m Heuristics are useful again once local optima is escaped

£



Results: Instance Solutions

8%

NS 4
-—

e Green bars denote instances where hybrid outperformed solver, red denote the opposite

e 120s runtime per instance

Relative Difference

Relative Difference

20%
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-10% 1

-15%
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15%
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FSSP

- - - Positive values
- - - Negative values
- - - Average Difference

Instance

TSP

- — - Positive values
- — — Negative values
- - - Average Difference

Instance

Relative Difference

Relative Difference

50% JSSP
0
15% |
10% |
5% |
-5% - - - Positive values
-10% (. Negative values
“15% H - - - Average Difference
-20%
0 Instance
50% CVRP
0
15% |
10% -
5% 3
O% ].l.l.l.l.--— .I'I'.I'II'
-5% "
- - — Positive values
-10% [ _ _ Negative values
15% H - - - Average Difference
-20%

Instance

Relative Difference

Relative Difference

RCPSP

20%
15%
10%
5%
0%
-5%
-10%
-15%

-20%

20%
15%
10%
5%
0%
-5%
-10%
-15%
-20%

- - - Positive values
- - - Negative values
- - - Average Difference

Instance

VRP-TW

- — - Positive values
- - - Negative values
- - - Average Difference

Instance



Conclusion /9,

-

‘ Hybridization improves overall solution quality, anytime behavior and robustness.

e Clearimprovements on 3 problem classes
Overall 60% of solutions improved, only 10%
worsened (mostly slightly) using same resources

Problem Improvement

FSSP +3% average

e Improved overall robustness JSSP marginal
= Afew instances unsolved by OptalCP alone were RCPSP marginal
solved by hybrid configuration TSP +6% average

(Meta)heuristics used were not state-of-the-art
» Still potential forimprovements in problems
where solver is strong (JSSP, RCPSP)

CVRP marginal
VRP-TW  +119% average




Accelerating FDS with Reinforcement Learning 2"

Application of Multi-Armed Bandit Algorithms



[ ] [ ] , \
Motivation 0,
Choice 1
/\ 777 372 777 372 773
x<=9 x>9
O (@) O O @) O (@)
Choice 2
/\ 773 773 372
x<=5 x>5 not tried not tried
. O O
Choice n
A\ 372
e not tried not tried not tried not tried

e FDS always picks (undecided) choice with best rating

e Good choices with bad initial/recent performance are ignored

= Choice success can depend on current search state (previous choices)

Question: How to prevent missing such good choices?



Goals iy

e We need to sufficiently test all choices to get an accurate assessment

= Test all choices initially
= Revisit bad choices occasionally

e Enforcing initial choice exploration
= |nitialize all choices with good rating (optimistic initialization)
e Reassess choice quality efficiently

= FDS choice selection problem = MAB problem



Reinforcement Learning: MAB Problem L@,

Choice 1
e Exploration-Exploitation dilemma (the problem we have) ( /.\ ’
= When to pick the best-known action (exploit) Qi:—";ﬂ
= When to test new/under-used actions (explore) ( /\ ) 97
e Multi-Armed Bandit problem K25 X258
Choice 3
= Framework for exploration-exploitation dilemma /\ [:]IT
= Different algorithms/ways to handle exploration (EF 1Y

m Epsilon-greedy (€), UCB-1 (U), Boltzmann exploration (B),

Choice n

Thompson sampling (T) /‘\
= MAB reward maximization - Search tree size minimization

H




Exploration in FDS Setting

e MAB-based exploration can be costly in FDS
= Bad exploratory choice = doubling the tree size

e Switch between pure exploitation and MAB strategy
= In most cases, we exploit

e MAB-based choice rollback
= “Test run” to evaluate effect and update rating
(exploration)
m Choiceis used if it does not increase search tree
size, else best-rated choice is used (exploitation)

y>3

®

£

x>f'/ x£=5

y<=3 Q
!,I
/ >2
z>2 // l\ z z<=8
/ \
/] \\ Z)g

MAB choice Greeo(y choice



Results: Selection Strategies 6y

-

10JSSP Time [s|J8 RCPSP Time |s]

Runtime comparison (mean + std)

101

Choice-selection strategy

e Measurements on JSSP and RCPSP (percentage denotes MAB choice probability)

e 10% of Boltzmann exploration with Choice rollback performs the best

e UCB-1 and Thompson embed exploration in action values (actions regain priority)
= Degrades performance in FDS exploitation-heavy setting



Conclusion &y

-

Application of extended MAB algorithm with optimistic initialization roughly
halved the computation time required by FDS in JSSP and RCPSP instances.

lnJssplERCPSP
e Improved a large number of lower ; | |
bounds for both problems 2
= 78/84 of open standard Job Shop % 2.09
(JSSP) instances :f 20 |
m 226/393 of open standard RCPSP ‘é
instances g Ll
= Afew instances for both problems é di . -
were closed e 0.41
= 900s time limit per instance

O ‘ \ \

OptalCP FDS Original FDS IBM CPO FDS
(with RL)

Heinz, S., Vilim, P., & Hanzalek, Z. (2025). Reinforcement learning for search tree size minimization in constraint programming.
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Thank You!

Questions?

Website: https://optalcp.com
Benchmarks GitHub: https://github.com/scheduleopt/optalcp-benchmarks

Academic Licenses: Send me your GitHub username

8}
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