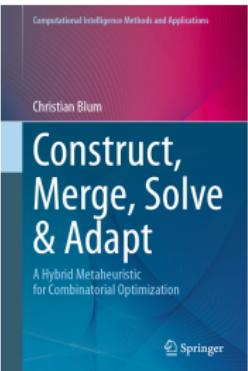


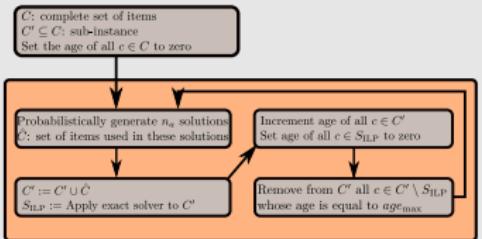
CMSA: A Hybrid Metaheuristic for Combinatorial Optimization

Christian Blum

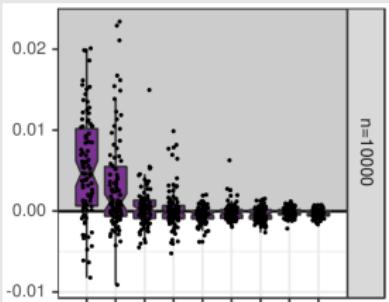
Artificial Intelligence Research Institute (IIIA-CSIC), Barcelona



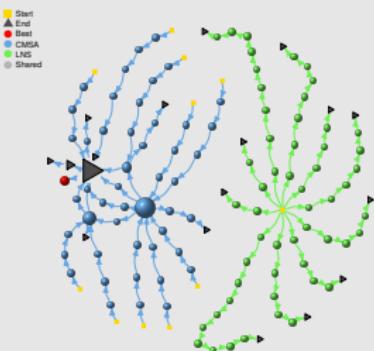
CMSA Algorithm



Appl. to optimization problem



Search Trajectory Networks



Outlook

CSIC: Spanish National Research Council

- Largest public institution dedicated to research in Spain (created in 1939)
- Third-largest in Europe
- 6% of all research staff in Spain work for the CSIC
- 20% of the scientific production in Spain is from the CSIC

Artificial Intelligence Research Institute (IIIA)

- 35 tenured scientists (of three different ranks)
- Around 65 additional staff members (post-docs, Ph.D. students, technicians, administration)
- Research lines: machine learning, **optimization**, logic and reasoning, multi-agent systems

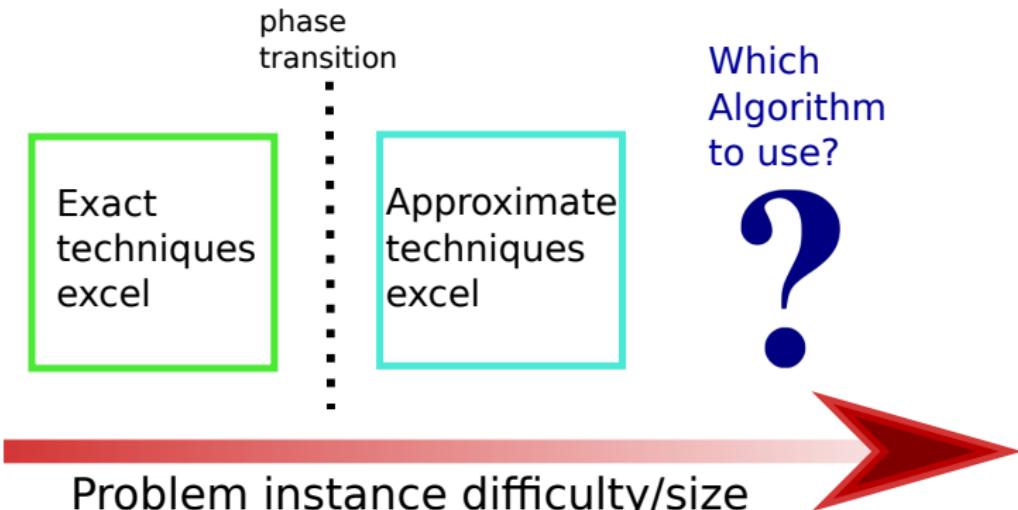


Swarm Intelligence

Hybrid Metaheuristics (Matheuristics)

Topic of today: CMSA

A prominent example of our recent work on hybrid metaheuristics based on problem instance reduction



Note

Hybrid algorithms that exploit synergies between exact and approximate algorithms often excel in the context of large-scale problems.

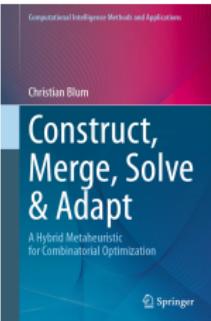
Observation

- An exact technique (such as a black-blox MIP solver) may not be directly applicable for solving large-scale problem instances
- **Nevertheless:** It might still be useful for the application to reduced instances of the original problem instances

Idea is not new

- **Large neighborhood search (LNS)**
 - 1 Based on partial solution destruction
 - 2 Local branching, corridor method
- **Decomposition approaches** such as POPMUSIC
- Generate-and-solve (GS) framework
- Set covering based approaches: for example in the context of VRPs
- Solution merging (resp. optimal recombination) in EAs

Initial CMSA team



CMSA Book 2024

Winners of the **SEIO-FBBVA award 2021** for the **best methodological contribution to Operations Research**.

■ Spanish Society of Statistics and Operations Research

■ BBVA Foundation (Banco Bilbao Vizcaya Argentaria)

Observation

In the presence of a large number of solution components, many of them only form part of low-quality solutions

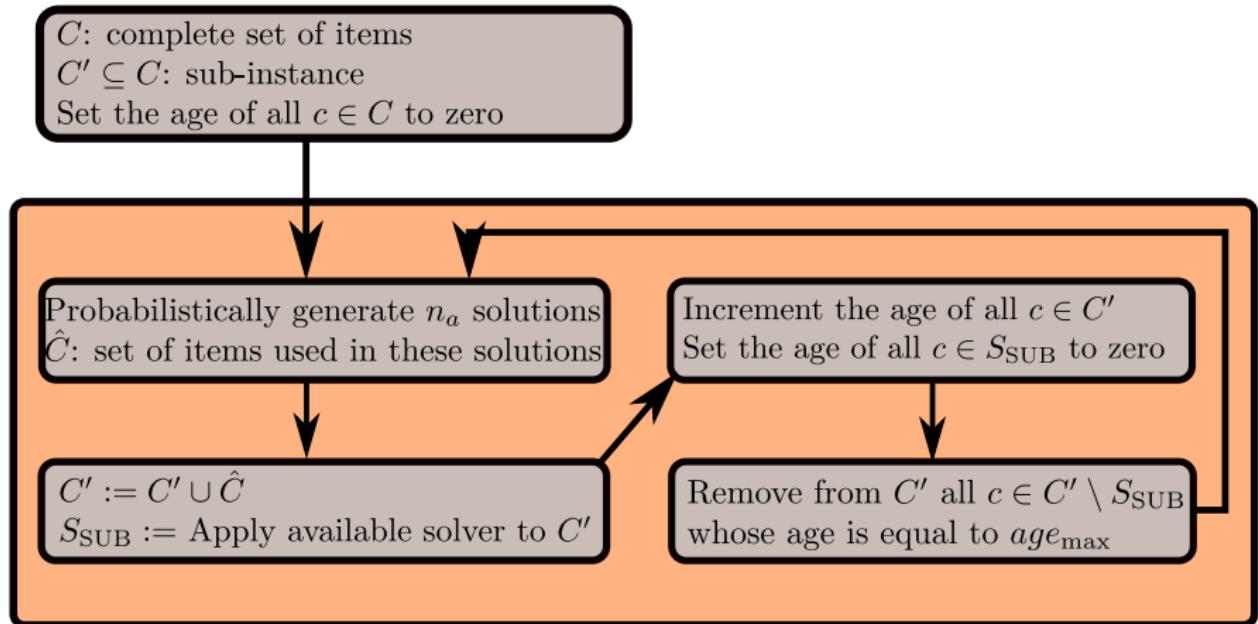
Idea

Exclude these **presumably bad solution components** before applying your solver

Steps of one CMSA iteration

- Iteratively generate presumably good **solutions in a probabilistic way**
- Assemble a **sub-instance** from the used solution components
- **Solve the sub-instance** by means of an **available solver**
- Delete useless solution components from the sub-instance

CMSA: flow diagram

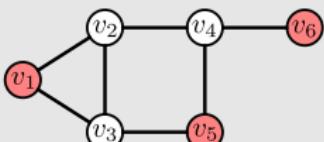
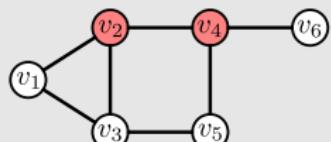


Topic 1: CMSA Application to Minimum Dominating Set (MDS)

Definition: Minimum Dominating Set (MDS) problem

- **Given:** An undirected graph $G = (V, E)$.
- **Search space:** Every set $S \subseteq V$ such that every $v \in V \setminus S$ has at least one neighbor in S .
- **Objective function:** $F(S) := |S|$ (cardinality of set S)
- **Optimization objective:** minimization

Examples of solutions



ILP model of the MDS Problem

$$\min \sum_{v \in V} x_v$$

$$\text{subject to } x_v + \sum_{u \in N(v)} x_u \geq 1 \quad \forall v \in V$$

$$x_v \in \{0, 1\} \quad \forall v \in V$$

What do we need for implementing a CMSA?

- 1 Define the **set of solution components**
- 2 A **greedy heuristic** used in a probabilistic way for generating solutions
- 3 An **approach for solving the sub-instance** of each iteration:
 - An exact technique
 - A metaheuristic approach

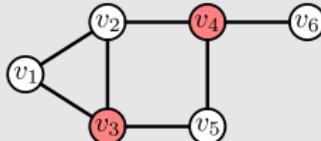
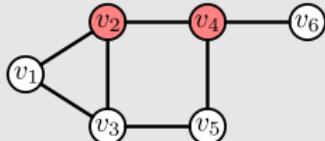
Definition of solution components

- **Variant 1:** for each vertex v_i we introduce a solution component c_i
- **Variant 2:** each combination of a decision variable x_i with one of its values is a solution component. That is, for all $v_i \in V$:
 - x_i and value 0 \rightarrow solution component $c_{i,0}$
 - x_i and value 1 \rightarrow solution component $c_{i,1}$

MDS Greedy Heuristic

- Add one vertex at each construction step
- Among the unselected vertices: choose the one that covers the largest number of the so-far uncovered vertices
- Apply the heuristic in a probabilistic way

Example: two solutions constructed per iteration



CMSA Variant 1: solving the sub-instance

Solution 1:

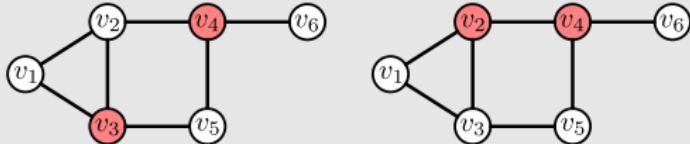
c_1	c_2	c_3	c_4	c_5	c_6
c_1	c_2	c_3	c_4	c_5	c_6

Solution 2:

Therefore: add the following constraints to the ILP model

$$x_i = 0 \quad \text{for } v_1, v_5, v_6$$

Example: two solutions constructed per iteration



CMSA Variant 2: solving the sub-instance

Solution 1:	$c_{1,0}$	$c_{2,0}$	$c_{3,0}$	$c_{4,0}$	$c_{5,0}$	$c_{6,0}$
	$c_{1,1}$	$c_{2,1}$	$c_{3,1}$	$c_{4,1}$	$c_{5,1}$	$c_{6,1}$
Solution 2:	$c_{1,0}$	$c_{2,0}$	$c_{3,0}$	$c_{4,0}$	$c_{5,0}$	$c_{6,0}$
	$c_{1,1}$	$c_{2,1}$	$c_{3,1}$	$c_{4,1}$	$c_{5,1}$	$c_{6,1}$

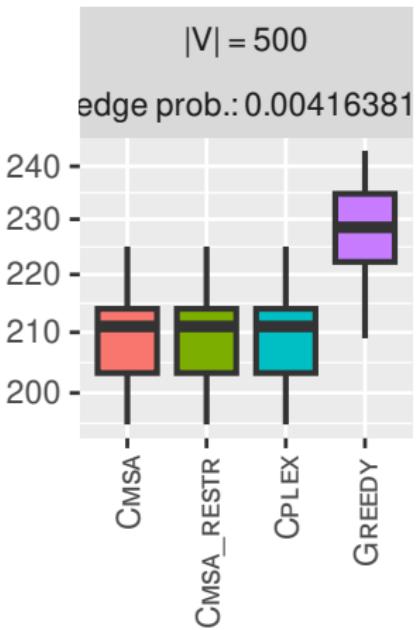
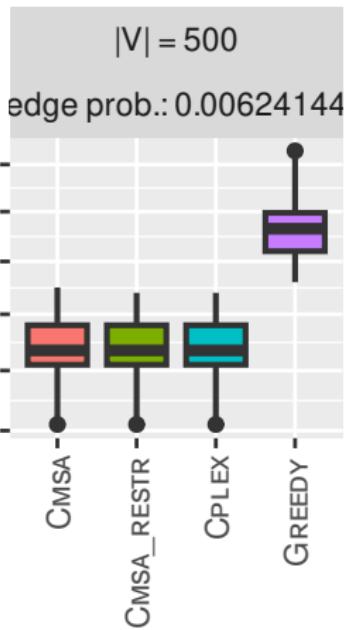
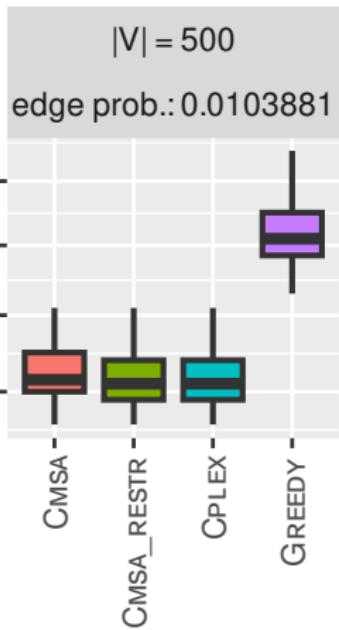
Therefore: add the following constraints to the ILP model

$$x_i = 0 \quad \text{for } v_1, v_5, v_6$$

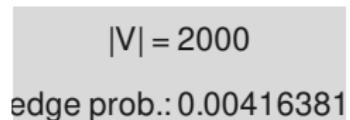
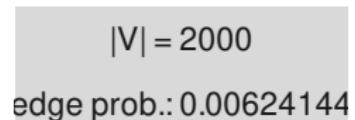
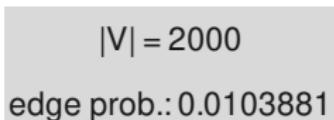
$$x_i = 1 \quad \text{for } v_4$$

- **Problem instances:** Erdős-Rényi random graphs with {500, 1000, 1500, 2000} nodes and three different densities
- **Applied algorithms:** CMSA, CMSA_RESTR, CPLEX, GREEDY
- **Algorithm tuning:** with `irace`, a scientific tool for parameter tuning
- **Parameters considered for tuning:**
 - 1 CMSA algorithms: number of solution constructions per iteration, degree of randomness, maximum age for solution components
 - 2 CPLEX within CMSA: time limit, whether to use warm start, whether to use heuristic emphasis, whether to abort a run when best-so-far solution improved

Erdős-Rényi graphs, 500 nodes



Erdős-Rényi graphs, 2000 nodes



Topic 2: CMSA for Set-Covering Based Problem Transformations

Expressing a problem as a **set covering problem**

INFORMS JOURNAL ON COMPUTING

Journal Menu

About Sections

A Set-Covering-Based Heuristic Approach for Bin-Packing Problems

Michele Monaci, Paolo Toth

Published Online: 1 Feb 2006 | <https://doi.org/10.1287/ijoc.1040.0089>

Home > [Journal of Combinatorial Optimization](#) >

Article

A set covering approach for multi-depot train driver scheduling

Published: 07 April 2013

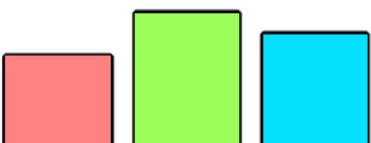
Volume 29, pages 636–654, (2015)

Opportunity for CMSA

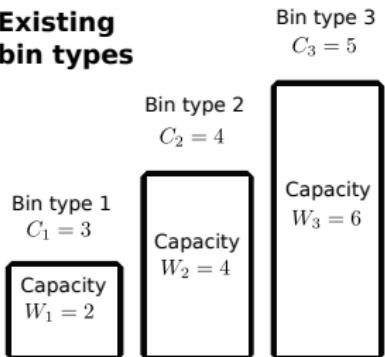
Define **solution components** to be complete sets of the **set covering model** of a problem.

Variable Sized Bin Packing (VSBP)

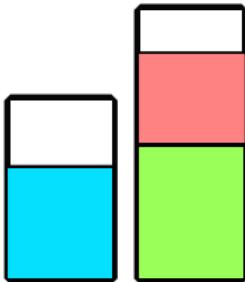
Items to be packed



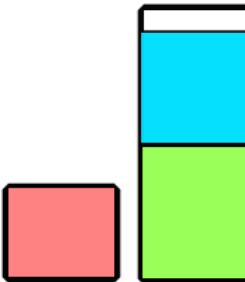
Existing bin types



Possible solution.
Cost = $4 + 5 = 9$



Alternative solution.
Cost = $3 + 5 = 8$



Standard ILP Model

$$\min \sum_{j=1}^n \sum_{k=1}^m c_k \cdot y_{jk}$$

$$\text{s.t.: } \sum_{j=1}^n x_{ij} = 1 \quad \text{for } i = 1, \dots, n$$

$$\sum_{k=1}^m y_{jk} \leq 1 \quad \text{for } j = 1, \dots, n$$

$$\sum_{i=1}^n w_i \cdot x_{ij} \leq \sum_{k=1}^m W_k \cdot y_{jk} \quad \text{for } j = 1, \dots, n$$

$$x_{ij} \in \{0, 1\} \quad \text{for } i, j = 1, \dots, n$$

$$y_{jk} \in \{0, 1\} \quad \text{for } j = 1, \dots, n$$
$$k = 1, \dots, m$$

Variables of the model

- x_{ij} is set to 1 iff item i is assigned to bin j
- y_{jk} is set to 1 iff bin j is assigned bin type k

Definitions for the Set Covering ILP Model

- Let \mathcal{B} be the set of all possible bins
- The weight w_b of a bin $b \in \mathcal{B}$ is the sum of the weights of its items
- Assign to $b \in \mathcal{B}$ a cost c_b which corresponds to the lowest-cost bin type possible for b
- Let $\mathcal{B}_i \subset \mathcal{B}$ be the set of bins that contain item i

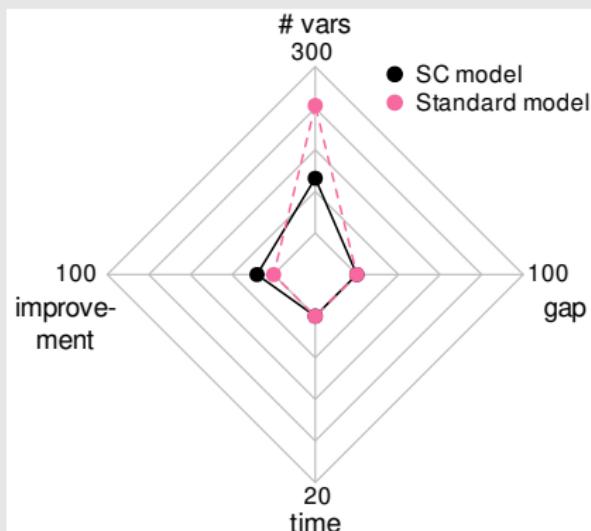
Set Covering ILP Model

$$\min \sum_{b \in \mathcal{B}} c_b \cdot x_b$$

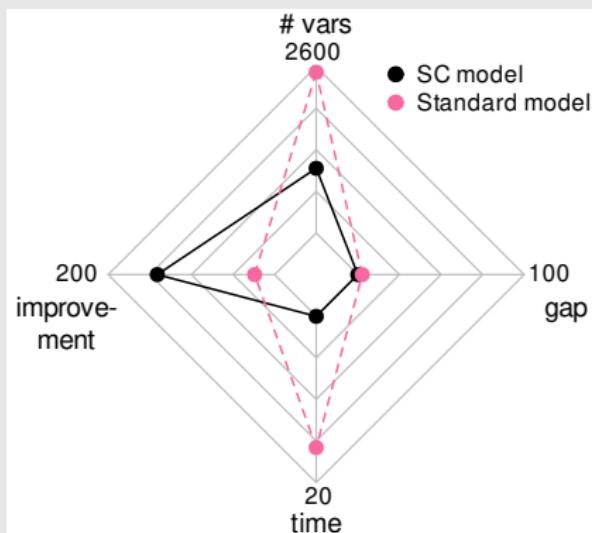
$$\text{s.t.: } \sum_{b \in \mathcal{B}_i} x_b \geq 1 \text{ for } i = 1, \dots, n$$

$$x_b \in \{0, 1\} \text{ for all } b \in \mathcal{B}$$

Problem instance with 100 items

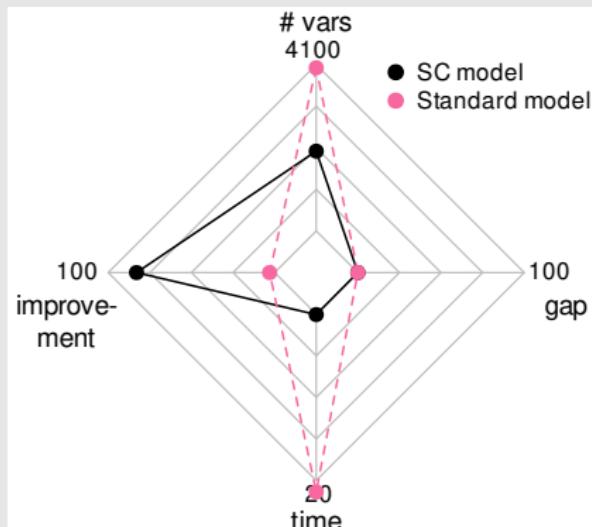


Sub-instance based on **2 solutions**

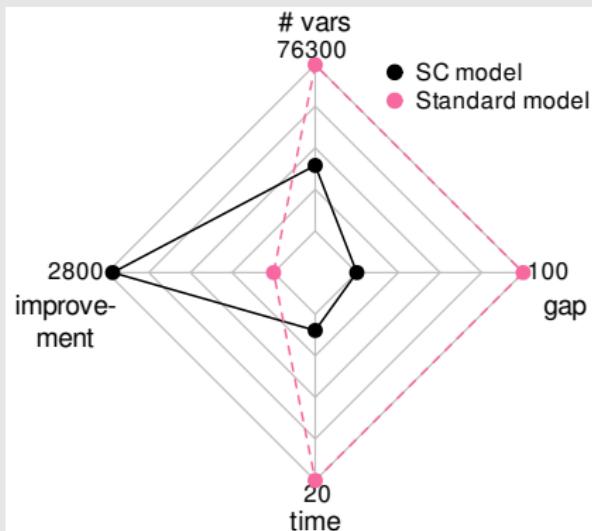


Sub-instance based on **50 solutions**

Problem instance with 2000 items



Sub-instance based on 2 solutions



Sub-instance based on 50 solutions

VSBPP State of the art

Computers & Operations
Research

Volume 39, Issue 5, May 2012, Pages 1097-1108

Variable neighbourhood search for
the variable sized bin packing
problem

Vera Hemmelmayr^a , Verena Schmid^a , Christian Blum^b

Computers & Operations
Research

Heuristics for the variable sized
bin-packing problem

Mohamed Haouari^{a,b}, Mehdi Serairi^b

Implementation Characteristics

- **Heuristic:** based on **ordering the items** and placing them in this order into bins according to **least-increasing cost**
- **Sub-instance solving:** solve the **set covering** model, followed by a simple **repair procedure**

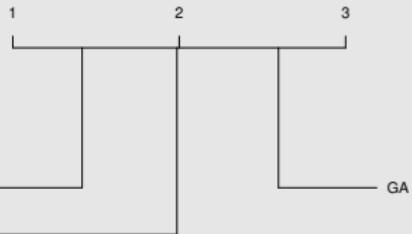
Problem instances

- 150 instances
- Between 100 and 2000 items
- 7 bin types

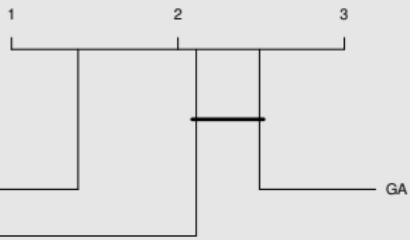
Overall result

68 new best-known solutions. Only worse for 7 instances.

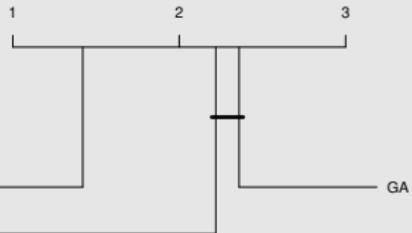
All instances



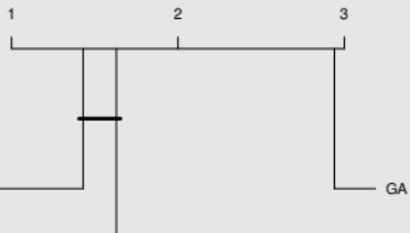
Only B1 instances



Only B2 instances



Only B3 instances



Example: Bus Driver Scheduling (BSD)

Real World Problem from Austria



Publication

[Home](#) > [AixIA 2022 – Advances in Artificial Intelligence](#) >
Conference paper

**Construct, Merge, Solve
and Adapt Applied to a Bus
Driver Scheduling Problem
with Complex Break
Constraints**

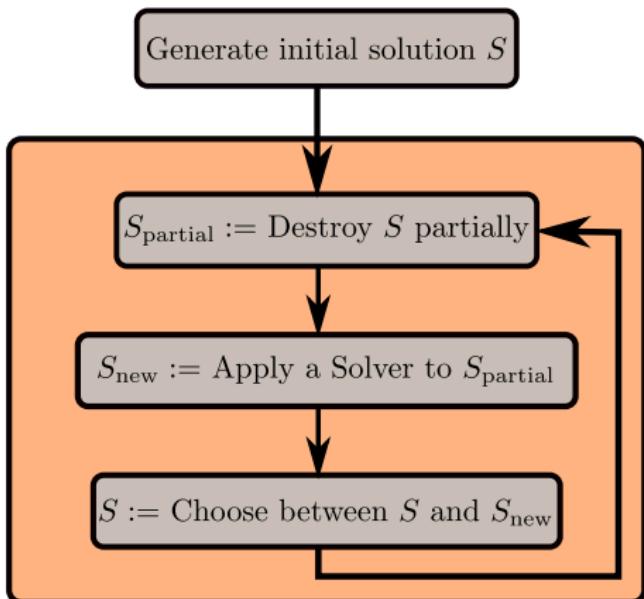
Conference paper | First Online: 11 March 2023

**AixIA 2022 – Advances in Artificial
Intelligence**

BSD: Sample Results

Size	CMSA	SA	HC	TS	CH-PR	GIHH	L-GIHH	B&P *
10	14879,7	14739,6	14988,4	15036,4	14956,2	14847,4	14810,6	14709,2
20	30745,9	30971,0	31275,6	31248,4	30896,7	30892,2	30810,8	30294,8
30	50817,2	51258,0	51917,4	51483,0	51331,4	51059,4	51037,6	49846,4
40	68499,9	69379,8	71337,6	69941,2	69182,9	68988,4	69022,2	67000,4
50	86389,2	87557,4	87262,4	87850,6	87394,3	87184,4	87145,2	84341,0
60	102822,9	104333,0	104296,4	104926,2	103921,5	103491,6	103467,3	99727,0
70	121141,9	123225,6	123304,0	123632,2	122502,9	122198,6	122321,8	118524,2
80	138760,3	140914,0	140508,0	140482,4	139931,8	139648,2	139551,9	134513,8
90	155078,3	157426,0	156862,4	156296,4	155520,8	155560,8	155649,6	150370,8
100	171786,7	174501,8	172909,0	172916,0	171901,0	171879,8	172763,7	172582,2
150	263387,7	266705,5	265492,3	265654,8	-	-	-	-
200	349017,0	354408,4	353494,9	350747,2	-	-	-	-
250	439234,5	446525,0	446000,9	443845,8	-	-	-	-

Topic 3: Differences between CMSA and LNS (Large Neighborhood Search)



LNS: recent survey

[Handbook of Metaheuristics](#) pp 99–127 | [Cite as](#)

[Home](#) > [Handbook of Metaheuristics](#) > Chapter

Large Neighborhood Search

[David Pisinger](#) & [Stefan Ropke](#)

Comparison CMSA vs. LNS

European Journal of Operational
Research

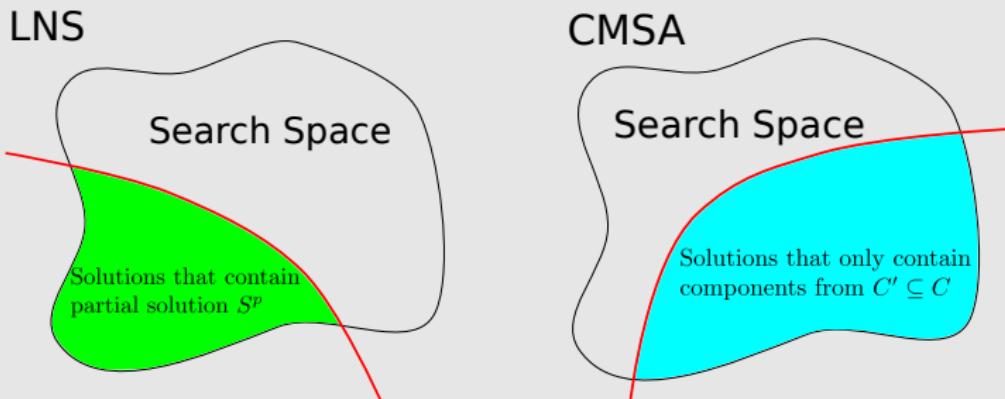
Volume 290, Issue 1, 1 April 2021, Pages 36-56

Discrete Optimization

A comparative analysis of two
metaheuristics by means of merged
local optima networks

Christian Blum ^a , Gabriela Ochoa ^b

How is the original problem instance reduced?



- **LNS:** Partial destruction of the incumbent solution
- **CMSA:** Probabilistically adding solution components
- **Our intuition:** for subset selection problems, CMSA better than LNS when solutions contain few components

CMSA/LNS for the Multi-dimensional knapsack problem (MDKP)

What do we need?

- 1 A constructive **heuristic** for generating solutions
- 2 A way of **solving sub-instances** (in this case: ILP model)

ILP model for the MDKP

$$\begin{aligned} \mathbf{max} \quad & \sum_{i \in C} p_i \cdot x_i \\ \mathbf{subject \ to:} \quad & \sum_{\substack{c_i \in C \\ c_i \in C}} r_{i,k} \cdot x_i \leq \text{cap}_k \quad \forall k \in K \\ & x_i \in \{0, 1\} \quad \forall c_i \in C \end{aligned}$$

Application of CPLEX within LNS and CMSA

- **LNS:** fix $x_i = 1 \forall c_i \in S_{\text{partial}}$.
- **CMSA:** replace C with C'

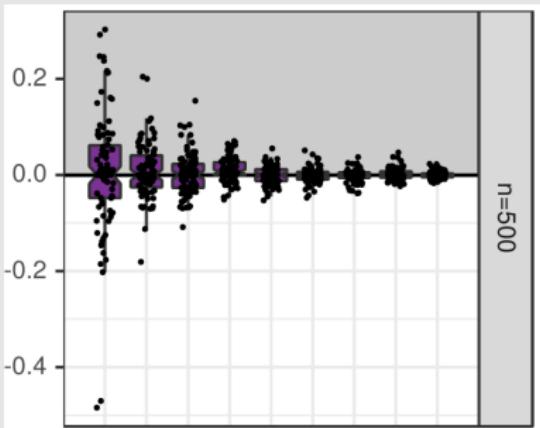
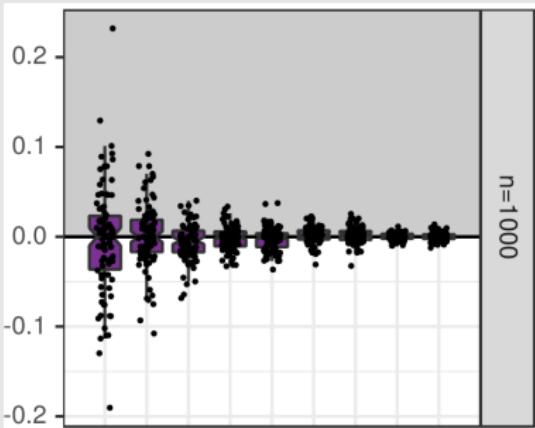
Important parameter for instance generation: *tightness* ($0 \leq \alpha \leq 1$)

- When α is close to zero: capacities are low and valid solution only contain very few items
- When α is close to one: capacities are very high and solutions contain nearly all item

The plan

- Apply both LNS and CMSA to instances from the whole tightness range
- Both algorithms are tuned with *irace* separately for instances of each considered tightness

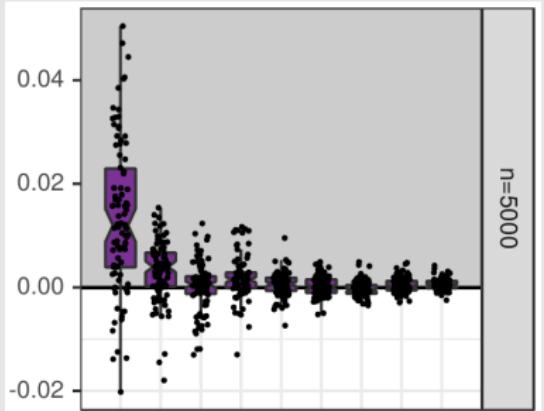
Rather small instances



What is shown in the graphics?

- X axis: instances with an increasing tightness (from left to right)
- Y axis: improvement of CMSA over LNS (in percent)

Larger instances



What is shown in the graphics?

- X axis: instances with an increasing tightness (from left to right)
- Y axis: improvement of CMSA over LNS (in percent)

Gabriela Ochoa
U. of Stirling

Katherine Malan
U. of S. Africa

Applied Soft Computing
Volume 109, September 2021, 107492

Search trajectory networks: A tool for analysing
and visualising the behaviour of metaheuristics

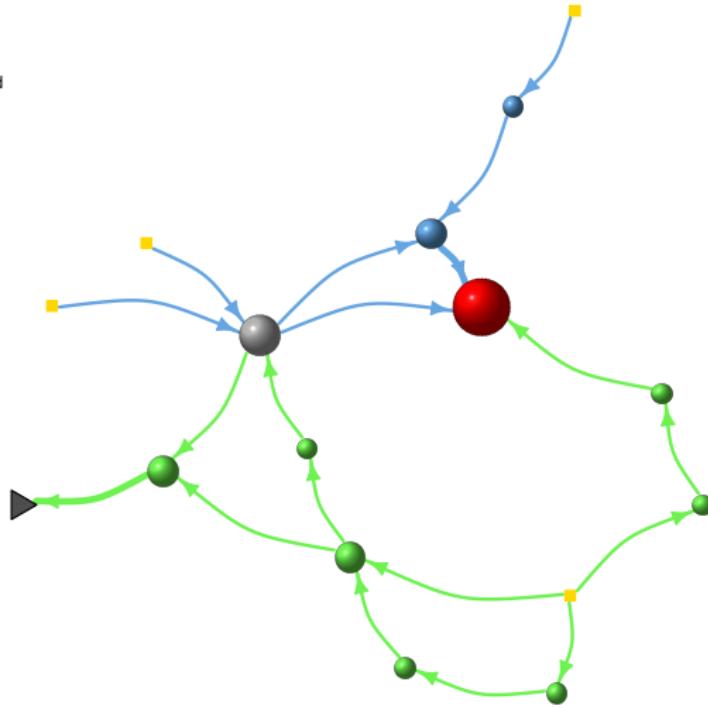
Gabriela Ochoa ^a , Katherine M. Malan ^b, Christian Blum ^c

Available at:
<https://github.com/gabro8a/STNs.git>

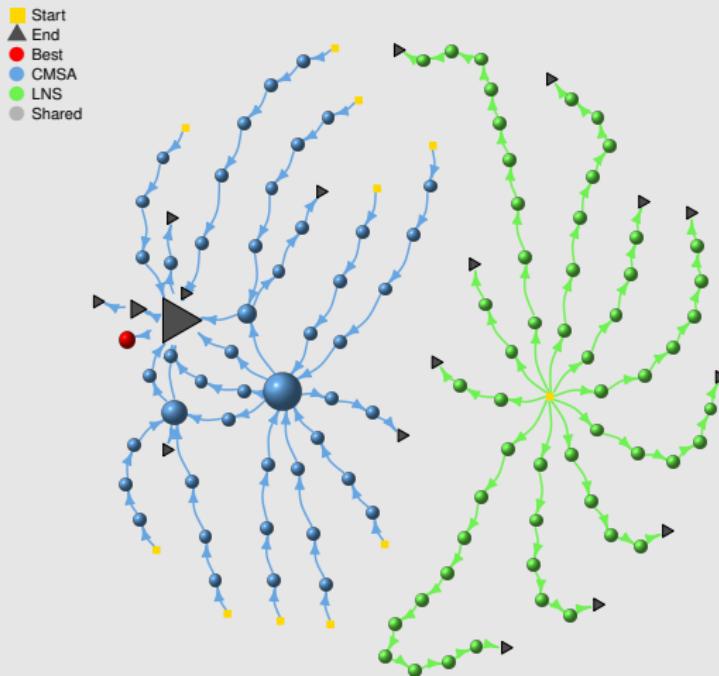
STNWeb: Interactive STN application

Available at: <https://www.stn-analytics.com/>
By: Camilo Chacón (IIIA)

STN Example Graphic

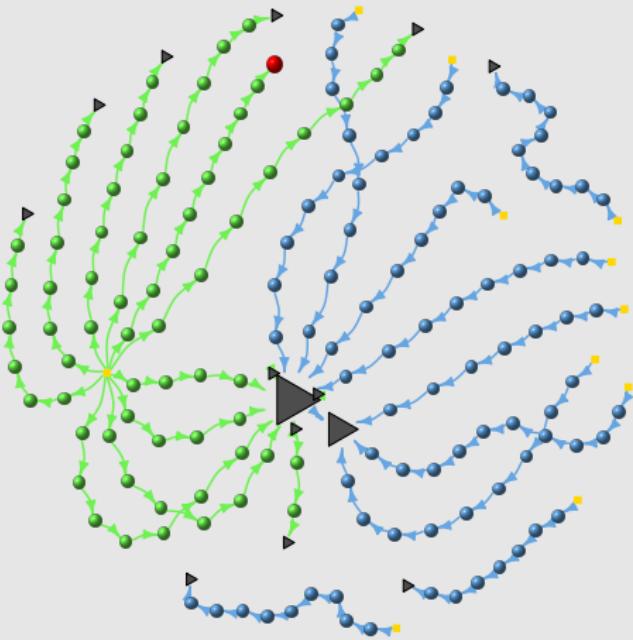


Problem instance with low *tightness* ($n = 10000$)



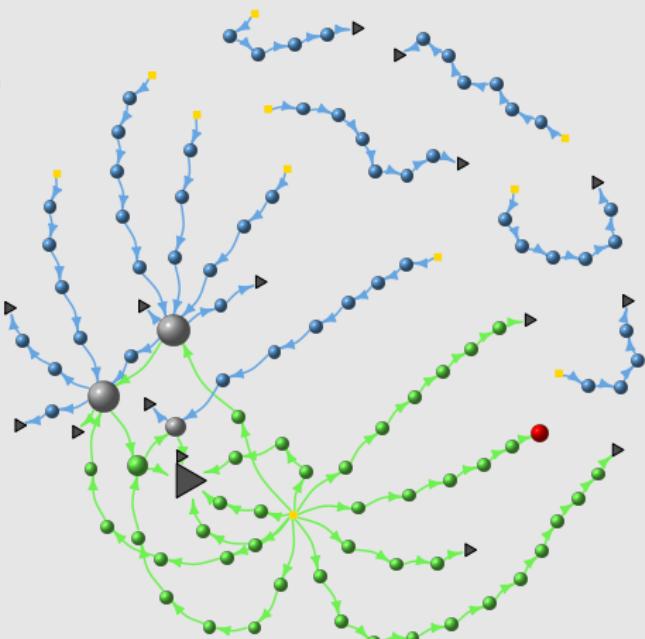
Problem instance with medium *tightness* ($n = 10000$)

Start
End
Best
CMSA
LNS
Shared



Problem instance with high *tightness* ($n = 10000$)

Start
End
Best
CMSA
LNS
Shared



Standard CMSA

- Minimum common string partition
- Several variants of the longest common subsequence problem
- Minimum covering arborescence
- Multi-dimensional knapsack
- Maximising the net present value of project schedules
- Minimum capacitated dominating set
- Route planning for cooperative air-ground robots with fuel constraints
- Maximum disjoint dominating sets
- Bus driver scheduling

Adapt-CMSA

- Minimum positive influence dominating set
- Different versions of electric VRPs
- Multi-way multi-dimensional number partitioning

- **[Hong et al., 2025]**: Flying Sidekick Traveling Salesman Problem, **CITA 2025**
- **[Martí et al., 2024]**: Bi-level diversity and equity optimization, **Journal of Heuristics**
- **[Ghirardi, Salassa, 2022]**: Maximum happy vertices problem, **Top, Springer**
- **[Ferrer et al., 2021]**: Prioritized pairwise test data generation in software product lines, **Journal of Heuristics**
- **[Dupin et al., 2021]**: Refueling and maintenance planning of nuclear power plants, **Journal of Heuristics**
- **[Hawa, 2020]**: Score-constrained Packing Problem, **Doctoral Thesis**
- **[Ben-Smida et al., 2019]**: Taxi sharing, **EuroCast 2019**

Current and Future Work

- Replace (or bias) greedy information for solution construction with information learned employing machine learning techniques
- Can we use LLMs as assistants within CMSA
- Using state-of-the-art solvers within CMSA. Can we improve the performance of state-of-the-art solvers for well-studied problems by plugging them into CMSA? (very promising results for MaxSAT)

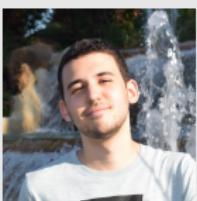
Group members, colleagues, and friends working on these tasks

M. A. Akbay

J. Reixach

M. Djukanovic

P. Pinacho



G. Rodríguez

Questions?

