
Efficient and Robust LLM Inference Scheduling
Optimization

Presenter: Zijie Zhou (jerryzhou@ust.hk)

Department of Industrial Engineering & Decision Analytics, HKUST

Global Scheduling Seminar https://schedulingseminar.com/

Large, general-purpose language models that can be

pre-trained and then fine-tuned for specific purposes

What is Large Language Model (LLM)?

What is LLM Inference?

What color is the
sky? The

sky

is

blueEach output token generated gets fed in as input

.

Input: Prompt Output: Tokens (each small
box)

Large Language
Model (LLM)

1 2 3 4

TCT1 = 1 · 4 + 2 · 3 + 3 · 2 + 4 · 1 = 20

Example:

4 3 2 1

TCT2 = 4 · 4 + 3 · 3 + 2 · 2 + 1 · 1 = 30

Research Background

A core metric for evaluating large language model (LLM) efficiency is the ​Total Completion Time (TCT)—the sum of each request's

completion time (from a unified start at t=0). Unlike makespan (total duration to finish all requests), TCT penalizes individual request

delays, making it critical for user-facing latency.

This metric hinges on three factors:

- Request characteristics: Prompt size and output length are predetermined by user inputs.

- Processing Speed: Accelerating execution risks degrading output quality—an unacceptable tradeoff for reliable LLMs.

- Scheduling Algorithms: This is the only adjustable lever to minimize TCT by reordering requests without hardware changes or

accuracy loss.

Therefore, our goal is to design a scheduling algorithm that dynamically optimize TCT by prioritizing requests based on prompt-output

patterns and system constraints.

Same makespan, but different total completion time.

LLM Inference for One Request

Request ri:

- Prompt (size si = 7): What is the weather like today?

- Response (length oi = 4): It is sunny.

- Initiating time: pi

Input (size = 7):

What is the weather like today?

Output (length = 0):

Memory usage = 7

Input (size = 7):

What is the weather like today?

Output (length = 1):

It

Memory usage = 8

Input (size = 8):

What is the weather like today?

It

Output (length = 1):

is

Memory usage = 9

Input (size = 9):

What is the weather like today?

It is

Output (length = 1):

sunny

Memory usage = 10

Input (size = 10):

What is the weather like today?

It is sunny

Output (length = 1):

.

Memory usage = 11

Remarks:

- Each output token generated get fed in as input

- At time t, memory usage = si + t - pi

Request i
initiates

at pi

Memory
released
at pi + oi

LLM Inference for Multiple Requests

……

……

……

……

t = 0

s1 s1 +

o1

s3 s3 +

o3

s4 s4 +

o4

s5 s5 +

o5

si si +

oi

Memory constraints:

At any time t*, the total memory usage

must not exceed the memory limit M.

p2 p2 + o2

p3 p3 +

o3

p4 p4 +

o4

p4 p4 + o4

pi pi + oi

Request ri -- Prompt size si -- Response length oi -- Initiating time pi

Performance Metric:

t = t*

p1 p1 + o1

s2 s2 +

o2

Literature Review

(Jaillet et al. 2025) first suggests a model which captures the KV cache memory constraint in LLM inference, and designs an efficient

scheduling algorithm based on “Shortest-Job-First”. However, there are two key assumptions:

1. All input sizes are homogeneous.

2. All output length are perfectly predictable.

Under assumption 1, “Shortest-Job-First” makes sense because:

- Shorter output jobs process faster (need fewer batches to process).

- Shorter output jobs need smaller amount of memory, which inproves the concurrency at the beginning.

LLM Serving Optimization with Variable Prefill and
Decode Lengths

Meixuan Wang (wangmx22@mails.tsinghua.edu.cn)

Department of Computer Science and Technology, Tsinghua University

Yinyu Ye (yyye@stanford.edu)

Departmemt of Management Science and Engineering, Stanford

Department of Industrial Engineering & Decision Analytics, HKUST

Zijie Zhou (jerryzhou@ust.hk)

Department of Industrial Engineering & Decision Analytics, HKUST

NP-Hard Statements

Baseline Algorithms

First-Come-First-Serve (FCFS):

- Processes requests in arrival order.

Shortest-First (SF):

- Prioritizes requests with the smallest response length (oi) first.

- Is a special case of FCFS when shorter requests arrive earlier.

Observations:

- When prompt size (si) are the same, SF is a very good algorithm.

- However, when prompt size (si) is variable, neither FCFS nor SF

achieves a constant competitive ratio (CR).

Intuition:

- Requests with a very large prompt size (oi), despite having a small

response length (si), drastically limit the amount of requests processed

early, significantly increasing the total completion time (TCT).

Performance Metric: Example: (Memory limit = M)

Type si oi Amount

1 M0.5 - 1 1 M

2 1 2 M1.5

Under SF, type 1 requests are prioritized:

Consider A that prioritizes type 2 requests:

Compare the two algorithms:

Example: (Memory limit = M)

Consider a simple scenario with two batches, where requests are

homogeneous within each batch but heterogeneous across

batches. We want to determine which batch to prioritize to

minimize the total completion time (TCT).

If we prioritize batch 1 over batch 2, the TCT is o1n1+o2n2+o1n2.

Conversely, if we prioritize batch 2 over batch 1, the TCT

becomes o1n1+o2n2+o2n1. Comparing the metrics, if o1/n1 < o2/n2,

then o1n2 < o2n1, so batch 1 should be prioritized. Otherwise,

batch 2 should be prioritized. Therefore, this decision rule aligns

perfectly with our quality metric’s selection criteria.

Quality Metric

Inspired by the shortcomings of Shortest-First (SF) , we

introduce a novel quality metric to determine request

prioritization. For any list of requests ,

where a smaller value indicates higher priority.

This metric jointly optimizes low average response lengths and

high batch throughput. Unlike SF—which prioritizes requests

with small si regardless of oi—our metric deprioritizes requests

with small si but excessively large oi, thus preventing inefficient

early-stage scheduling.

,

Batch si oi Amount Metric

1 s1 o1 n1 o1/n1

2 s2 o2 n2 o2/n2

Our Algorithm

Sketch:

…
…

…
… …

………

1

2

n1

n1+1

n1+2

n1+n2

…

1

2

n1

n1+1

n1+2

…

n1+n2

…… …… ……

Based on the quality metric

we sort requests by iteratively selecting from the unsorted pool the

sublist that minimizes while respecting memory

constraints, then ordering requests in by ascending oi:

Following this order, we schedule requests sequentially at their

earliest feasible times while respecting memory constraints.

,

Constant-CR Proof: Step 1, ALG → ALGseparate

Performance Metric:

Assumption:

si, oi are small quantities relative to M.

We denote our algorithm as ALG and the optimal schedule as OPT, with corresponding

total completion times TCT(ALG) and TCT(OPT). We establish the constant competitive

ratio through the following inequality chain:

TCT(ALG) ≤ TCT(ALGseparate) ≤ 4 · TCT(ALGgroup) ≤ 8 · TCT(ALGalign)

≤ 8 · TCT(OPTtransform) ≤ 48 · TCT(OPT).

Our algorithm ALG operates in two phases: first, it sorts all requests based on the quality

metric; then, it sequentially schedules each request at the earliest available time slot. To

establish an upper bound for TCT(ALG), we consider an alternative approach where we

reverse the second phase by handling complete batches sequentially one at a time, as

illustrated on the right. This modified scheduling scheme, which we denote as ALGseparate,

satisfy the inequality:

TCT(ALG) ≤ TCT(ALGseparate).

Sketch:
… …

……

…
…

…
…

…
…

…
…

Sketch:

Constant-CR Proof: Step 2, ALGseparate → ALGgroup

Performance Metric:

Assumption:

si, oi are small quantities relative to M.

… … …

…
…

…
…

…

…

To achieve this, we consider the following two cases.

Sketch:

Constant-CR Proof: Step 2, ALGseparate → ALGgroup

Performance Metric:

Assumption:

si, oi are small quantities relative to M.

… … …

…
…

…
…

…

…

Case 1: The request highlighted with a red circle in the sketch corresponds to this case.

Similarly,

Sketch:

Constant-CR Proof: Step 2, ALGseparate → ALGgroup

Performance Metric:

Assumption:

si, oi are small quantities relative to M.

… … …

…
…

…
…

…

…

Case 2: The request highlighted with a red circle in the sketch corresponds to this case.

We iteratively merge consecutive batches until encountering a batch that satisfies ​Case 1.

For all merged batches, we establish bounding inequalities on their makespans—with the

quality metric serving as the critical determinant:

Sketch:

Constant-CR Proof: Step 2, ALGseparate → ALGgroup

Performance Metric:

Assumption:

si, oi are small quantities relative to M.

…

…

…
…

…

…

Subsequently, we obtain

Through rigorous derivation (omitted for brievity), we prove that the modified

scheduling scheme ALGgroup satisfies the following performance guarantee:

TCT(ALGseparate) < 4 · TCT(ALGgroup).

Sketch:

Constant-CR Proof: Step 3, ALGgroup → ALGalign

Performance Metric:

Assumption:

si, oi are small quantities relative to M.

…
…

…
…

…

…
…

…
…

…So far, we have completed the first half of the

proof, which gives

TCT(ALG) ≤ TCT(ALGseparate)

≤ 4 · TCT(ALGgroup) ≤ 8 · TCT(ALGalign).

Sketch:

Constant-CR Proof: Step 4, OPT → OPTtransform

…
…

…
…

…
…

…
…

…
…

…

…

…
…

…

…

…
…

…
…

…
…

0 0 0
= = = = =

Sketch:

Constant-CR Proof: Step 4, OPT → OPTtransform

…
…

…
…

…
…

…
…

…
…

…

…

…
…

…

…

…
…

…
…

…
…

0 0 0
= = = = =

Sketch:

Constant-CR Proof: Step 4, OPT → OPTtransform

…
…

…
…

…
…

…
…

…
…

…

…

…
…

…

…

…
…

…
…

…
…

0 0 0
= = = = =

Sketch:

Constant-CR Proof: Step 4, OPT → OPTtransform

…
…

…
…

…
…

…
…

…
…

…

…

…
…

…

…

…
…

…
…

…
…

0 0 0
= = = = =

Sketch:

Constant-CR Proof: Step 4, OPT → OPTtransform

…
…

…
…

…
…

…
…

…
…

…

…

…
…

…

…

…
…

…
…

…
…

0 0 0
= = = = =

Through rigorous derivation (omitted for brievity), we prove that the modified scheduling scheme ALGgroup satisfies the following

performance guarantee:

TCT(OPTtransform) < 6 · TCT(OPT).

Constant-CR Proof: Step 5, ALG → OPTtransform

ALGalign:

OPTtransform:

…
…

…
…

…

So far, we have already obtained

TCT(ALG) ≤ TCT(ALGseparate) ≤ 4 · TCT(ALGgroup) ≤ 8 · TCT(ALGalign)

and

TCT(OPTtransform) < 6 · TCT(OPT).

So the remaining step is to establish the relationship between ALGalign and OPTtransform.

…

…

…
…

…

…

…
…

…
…

OPT:

ALGalign:

ALGseparate:

ALG:

Constant-CR Proof: summary

ALGgroup:

…
…

…
…

…
…

…
…

…

…

… …

…
…

…
…

…

OPTtransform:

…

…

…

…

…… ……
…

…

…
…

…
…

…
…

…

…… ……

In practice, how to select the list of requests that minimizes the quality metric?

Algorithm 1 - Exact Dynamic Programming:

- Optimality: Optimal.

- Complexity: O(n·M), polynomial.

- Shortcoming: Too slow for large M.

- Suggestion on n: 𝑛 ≤ 100.

Algorithm 2 - Scaled Dynamic Programming:

- Description: First discretize memory usage, and then perform dynamic programming in scaled space.

- Optimality: (1 + ε)-optimal.

- Complexity: 𝑂(𝑛𝐵/ε), polynomial.

- Suggestion on n: 𝑛 ≤ 200.

Approximation

In practice, how to select the list of requests that minimizes the quality metric?

Algorithm 3 – Local Swap Search:

- Description: Initialize a batch with ordered 𝑠𝑖 + 𝑜𝑖, then iteratively swaps requests to improve the F-metric.

- Optimality: Local-optimal. No global guarantee.

- Complexity: 𝑂(𝑛2), polynomial.

- Suggestion on n: 𝑛 ≤ 500.

Algorithm 4 – Quantile Greedy:

- Description: Sample a subset of requests and compute quantiles for 𝑠𝑖 + 𝑜𝑖 and 𝑜𝑖. Select requests below the quantile

thresholds. Fill remaining memory with requests sorted by
oi

𝑠𝑖+𝑜𝑖
.

- Optimality: No global guarantee.

- Complexity: 𝑂(𝑛), polynomial.

- Suggestion on n: 𝑛 ≥ 1000.

Approximation

Numerical Experiments

Dataset:

1. Public conversation dataset (Zheng et al. 2023). 2. Public Arxiv summarization dataset (Cohan et al. 2018).

Mix two datasets:

Numerical Simulation

Robust LLM Inference Scheduling under Output
Length Prediction

Zixi Chen (chenzixi22@stu.pku.edu.cn)

Department of Mathematics, Peking University

Yinyu Ye (yyye@stanford.edu)

Department of Management Science and Engineering, Stanford

Department of Industrial Engineering & Decision Analytics, HKUST

Zijie Zhou (jerryzhou@ust.hk)

Department of Industrial Engineering & Decision Analytics, HKUST

Motivation: Interval Prediction and Classification

• Quick ML method to classify requests into different groups with disjoint interval prediction.
• E.g. Short (1-200), Medium (201,800), Long (801,1000).

• User Input:
• Claude lets user to input the value of min/max tokens in the output when calling the API.

Model Overview
• Single computational worker with a KV cache of size 𝑴, capable of storing up to 𝑴 tokens.

• There are 𝒏 jobs (prompts), each with size 𝒔𝒊 = 𝒔 > 𝟎, known to the decision-maker.

• Let 𝒐𝒊 > 𝟎 be the realized output length of job 𝑖, which is unknown during inference.

• Predictable interval 𝒐𝒊 ∈ [𝒍, 𝒖], define 𝜶 =
𝒍

𝒖
.

• We assume all jobs share the same prediction interval [𝒍, 𝒖].

𝒔𝒊 = 𝒔 = 𝟐
𝒐𝒊 = 𝟏, 𝟏, 𝟐, 𝟑

𝒍 = 𝟏, 𝒖 = 𝟒, 𝜶 =
𝟏

𝟒

𝑴 = 𝟔

Batch Processing and Memory Constraint

• Jobs processed in batches; each batch takes 1 time unit.

• 𝒂𝒊
𝒕 : number of tokens generated for job 𝒊 at time 𝒕. A job is complete when 𝒂𝒊

𝒕 = 𝒐𝒊.

• 𝑺𝒕 : processing requests. Memory used at time 𝒕 :

෍

𝒊∈𝑺𝒕

(𝒔 + 𝒂𝒊
𝒕) ≤ 𝑴

• Output lengths are uncertain ⟹ hard to ensure feasibility under non-preemptive policies.

• To handle memory overflow risk, we allow job cancellation. Cancelled jobs lose progress and restart
from zero tokens.

Evaluation Metric: Total End-to-End Latency

• Denote 𝒐 = (𝑜1,···, 𝑜𝑛) with 𝑜1 ≤ ···≤ 𝑜𝑛.

• Let 𝐼𝑡 be the set of jobs with final start time 𝑡.

• Latency for job 𝑖 ∈ 𝐼𝑡: 𝐿𝑖 = 𝑡 + 𝑜𝑖.

• Total latency:

𝑇𝐸𝐿 𝒐; 𝜋 = ෍

𝑖

𝐿𝑖 = ෍

𝑡=0

𝑇

𝑡 · |𝐼𝑡| + ෍

𝑖=1

𝑛

𝑜𝑖

Hindsight Benchmark (H-SF)
• Assumptions:
 1. All output lengths 𝑜𝑖 are known in advance.
 2. Follows [Jaillet et al.(2025)] with memory-aware batching and no cancellations.
• Memory Constraint: 𝑈 is the newly added set, 𝑆𝑡 denotes the set of jobs already in progress at time 𝑡, and 𝑝𝑖

is the last start time of job 𝑖.

෍

𝑖 ∈𝑆𝑡

𝑠 + 𝑡′ − 𝑝𝑖 𝕀𝑜𝑖≥𝑡′−𝑝𝑖
+ ෍

𝑖∈𝑈

𝑠 + 𝑡′ − 𝑡 𝕀𝑜𝑖≥𝑡′− 𝑡 ≤ 𝑀, ∀𝑡′ ∈ 𝑡, 𝑡max 𝑈

• Strategy:
 1. Choose shortest first (SF).
 2. Pack as many jobs as possible without violating constraint.

𝒔𝒊 = 𝒔 = 𝟐
𝒐𝒊 = 𝟏, 𝟏, 𝟐, 𝟑

𝑇𝐸𝐿(𝒐; H−SF) = 1 + 1 + 3 + 6 = 11

0t 1 2 3 4 5 6

𝑴 = 𝟔

Competitive Ratio
• Definition (Competitive Ratio):

 Let 𝒐 = (𝑜1,···, 𝑜𝑛) ∈ [𝒍, 𝒖]𝒏 be the true output lengths. For any policy 𝜋:

𝐶𝑅 𝜋 : = sup
𝒐∈[𝒍,𝒖]𝒏

𝔼[𝑇𝐸𝐿(𝒐; 𝜋)]

𝑇𝐸𝐿(𝒐; H−SF)

• Measures worst-case ratio to optimal.

• Smaller 𝐶𝑅 𝜋 means better performance under uncertainty.

Naive Benchmark Algorithm: 𝑨𝒎𝒂𝒙

• Key Idea: Assume worst-case output length 𝒐𝒊 = 𝒖 for all jobs.

• Algorithm Outline:
 At each time 𝒕, randomly pick the largest subset 𝑼 ⊂ 𝑹𝒕 s.t. constraint is met using 𝒐𝒊 = 𝒖.

• Guarantees feasibility (no memory overflow).

𝒔𝒊 = 𝒔 = 𝟐
𝒐𝒊 = 𝟏, 𝟏, 𝟐, 𝟑

𝒍 = 𝟏, 𝒖 = 𝟒, 𝜶 =
𝟏

𝟒
𝑇𝐸𝐿(𝒐; H−SJDF) = 1 + 1 + 3 + 6 = 11
𝑇𝐸𝐿(𝒐; 𝑨𝒎𝒂𝒙) = 2 + 3 + 6 + 7 = 18

𝑴 = 𝟔

0t 1 2 3 4 5 6 7

Competitive Ratio of 𝑨𝒎𝒂𝒙
• Theorem:
 The competitive ratio of 𝑨𝒎𝒂𝒙 satisfies:

𝛼−1 1 + 𝛼−1/2

2
≤ 𝐶𝑅 𝑨𝒎𝒂𝒙 ≤

𝛼−1 1 + 𝛼−1

2
+ 𝑂(

1

𝑀
)

• Overestimation causes under-utilization.
• Lower 𝜶 =

𝒍

𝒖
 → higher inefficiency.

• The lower bound can be easily checked by giving 𝑁𝑙 jobs with 𝒐𝒊 = 𝒍 and 𝑁𝑢 jobs with 𝒐𝒊 = 𝒖, where
𝑁𝑙

𝑁𝑢
= 𝜶−𝟏/𝟐.

• For the upper bound, we introduce a Memory-Preserving Proof Technique.

• Motivation for a Robust Algorithm
• Can we design an algorithm that works well under both good and poor predictions?

Introducing 𝑨𝒎𝒊𝒏 : Key Design Principles

• Key Idea: Use the lower bound ℓ to estimate memory demand more optimistically. Dynamically
refine this bound: set ෥𝒐𝒊 = ℓ, then increase ෥𝒐𝒊 as output is generated.

• Algorithm Outline:
1.Batch formation: Greedily add requests in order of increasing ෥𝒐𝒊.
2.Overflow resolution: Delete requests with smallest ෥𝒐𝒊 if memory overflows.

• Robustness arises from being cautious about restarting expensive jobs (with large ෥𝒐𝒊).

𝒔𝒊 = 𝒔 = 𝟐
𝒐𝒊 = 𝟏, 𝟏, 𝟐, 𝟑

𝒍 = 𝟏, 𝒖 = 𝟒, 𝜶 =
𝟏

𝟒

𝑇𝐸𝐿(𝒐; H−SF) = 1 + 1 + 3 + 6 = 11
𝑇𝐸𝐿(𝒐; 𝑨𝒎𝒊𝒏) = 2 + 3 + 3 + 6 = 14

𝑴 = 𝟔

0t 1 2 3 4 5 6

Asymptotic Optimality

• Theorem: For any online policy 𝜋 without access to true output lengths,

𝐶𝑅 𝜋 ≥ 𝐶𝑅(𝑨𝒎𝒊𝒏)

as 𝑀 → ∞.

• 𝑨𝒎𝒊𝒏 is asymptotically optimal among policies with limited output knowledge. No policy can
uniformly outperform it.

Theoretical Guarantee: Robust Competitive Ratio

• Theorem: The competitive ratio of 𝑨𝒎𝒊𝒏 equals to the following Rayleigh Quotient:

𝐶𝑅 𝑨𝒎𝒊𝒏 = max
𝒙>0

𝒙𝑇𝐴𝑢𝒙

𝒙𝑇𝐵𝑢𝒙
+ 𝑂(

1

𝑀
).

• 𝐴𝑢 = 𝑎𝑖𝑗 𝑢∗𝑢
, 𝑎𝑖𝑗 =

min 𝑖,𝑗 2

𝑖𝑗
(

1

2
𝑖 + 𝑗 2 − min 𝑖, 𝑗 2).

• 𝐵𝑢 = 𝑏𝑖𝑗 𝑢∗𝑢
, 𝑏𝑖𝑗 = min 𝑖, 𝑗 2.

• Proposition: The Rayleigh quotient is uniformly bounded by 𝑂 log 𝑢 = 𝑂 log α−1 .

• When 𝛼 = 1, 𝐶𝑅 𝑨𝒎𝒊𝒏 = 1, optimal under perfect prediction.

• When 𝛼 → 0, 𝐶𝑅 𝑨𝒎𝒊𝒏 increases in a log scale.

Scheduling under Disjoint Interval Predictions

• We further relax the assumption that the prediction intervals [𝒍, 𝒖] of each 𝒐𝒊 are the same.

• we now generalize the model to allow 𝒎 disjoint prediction intervals 𝒍𝟏, 𝒖𝟏 , 𝒍𝟐, 𝒖𝟐 , … , 𝒍𝒎, 𝒖𝒎 , where
𝒖𝒊 < 𝒍𝒊+𝟏 for all 𝒊 ∈ [𝒎 − 𝟏].

• 𝑨𝒎𝒊𝒏 is modified to initialize ෥𝒐𝒊 = 𝒍𝒋 if it belongs to the 𝒋th interval. It continues to prioritize shorter requests
while maintaining its robustness and adaptive batching strategy.

• Theorem: The competitive ratio of 𝑨𝒎𝒊𝒏 is bounded by:

𝐶𝑅(𝑨𝒎𝒊𝒏) ≤ 𝑂 log α−1 + 𝑂(
1

𝑀
).

Moreover, for any online policy 𝜋 without access to true output lengths,

𝐶𝑅 𝜋 ≥ 𝐶𝑅(𝑨𝒎𝒊𝒏)
as 𝑀 → ∞.

Numerical Experiments

• Dataset Overview.
• 2,000 conversations (Zheng et al. 2023)

• The input sizes range from 1 to 468 tokens, with a mean of 41, median of 11, and variance of 4,961.
• The output lengths range from 1 to 883 tokens, with a mean of 85, median of 43, and variance of 9,702

Rough Prediction

• Each request has a coarse prediction interval of
[1, 1000].

• Representing minimal information about the
output length.

• 𝑨𝒎𝒂𝒙 : poor memory utilization.
• 𝑨𝒎𝒊𝒏 : achieves average latency nearly identical

to the benchmark.

Non-Overlapping Classification

• We assign each request’s prediction interval to
one of the fixed buckets: [1, 100], [101, 200], . . . ,
[901, 1000].

• Simulating a multi-class classification model with
non-overlapping intervals.

• 𝑨𝒎𝒂𝒙 : achieves a substantial improvement over
its performance in Experiment 1.

• 𝑨𝒎𝒊𝒏 : closely approaches that of the benchmark.

Overlapping Interval Prediction

• Each request 𝒊 is assigned a prediction interval of
the form [𝟏 − 𝒙 𝒐𝒊, 𝟏 + 𝒙 𝒐𝒊], where 𝒙 ∈
𝟎. 𝟏, 𝟎. 𝟗𝟓, 𝟎. 𝟗𝟗 .

• Larger values of x correspond to more precise
predictions.

• 𝒙 = 𝟎. 𝟏, indicating highly accurate predictions,
both Amax and Amin perform well

• 𝒙 = 𝟎. 𝟗𝟓 or 𝒙 = 𝟎. 𝟗𝟗 , the performance of 𝑨𝒎𝒂𝒙
deteriorates significantly. 𝑨𝒎𝒊𝒏 continues to
maintain low average latency even under highly
uncertain predictions.

Thank you!

Contact email: jerryzhou@ust.hk

mailto:jerryzhou@ust.hk
mailto:jerryzhou@ust.hk

	Slide 1: Efficient and Robust LLM Inference Scheduling Optimization
	Slide 2: What is Large Language Model (LLM)?
	Slide 3: What is LLM Inference?
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: LLM Serving Optimization with Variable Prefill and Decode Lengths
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Robust LLM Inference Scheduling under Output Length Prediction
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

