Efficient and Robust LLM Inference Scheduling
Optimization

Presenter: Zijie Zhou (jerryzhou@ust.hk)
Department of Industrial Engineering & Decision Analytics, HKUST

Global Scheduling Seminar https://schedulingseminar.com/

What is Large Language Model (LLM)?

Large, general-purpose language models that can be
pre-trained and then fine-tuned for specific purposes

GitHub
y Copilot

. ChatGPT

What is LLM Inference?

Input: Prompt Output: Tokens (each small
box)

What colc;r is the Large Language The
sky’ - Model (LLM)

sky
is

Each output token generated gets fed in as input blue

Research Background

A core metric for evaluating large language model (LLM) efficiency is the Total Completion Time (TCT)—the sum of each request's
completion time (from a unified start at t=0). Unlike makespan (total duration to finish all requests), TCT penalizes individual request
delays, making it critical for user-facing latency.

This metric hinges on three factors:

- Request characteristics: Prompt size and output length are predetermined by user inputs.

- Processing Speed: Accelerating execution risks degrading output quality—an unacceptable tradeoff for reliable LLMs.

- Scheduling Algorithms: This is the only adjustable lever to minimize TCT by reordering requests without hardware changes or
accuracy loss.

Therefore, our goal is to design a scheduling algorithm that dynamically optimize TCT by prioritizing requests based on prompt-output

patterns and system constraints.

Example: 1 2 3 4
/T [[—

TCT,=1-4+2-3+3-2+4-1=20

>— Same makespan, but different total completion time.

4 3 2 1
I [—

TCT,=4-4+3-3+2-2+1-1=30

LLM Inference for One Request

Request r;:

- Prompt (size s; = 7): What is the weather like today?

- Response (length o, = 4): It is sunny.

- Initiating time: p;

Input (size = 7):
What is the weather like today?

Output (Iength = 0):

Memory usage =7

Remarks:

- Each output token generated get fed in as input
- At time t, memory usage =s; +t - p;

Input (size = 8):

It

Output (length = 1):
1s

Memory usage =9

What is the weather like today?

Input (size = 10):

What is the weather like today?
It is sunny

Output (length = 1):

Memory usage = 11

o

0 o

Request 1
initiates
at pi

It

Input (size = 7):
What is the weather like today?

Output (length = 1):

Memory usage = 8

?

v

o

Input (size = 9):

What is the weather like today?

It is

Output (length = 1):
sunny

Memory usage = 10

Memory
released
at p; + o;

LLM Inference for Multiple Requests

Request r; -- Prompt size s; -- Response length o, -- Initiating time p;,

t=0 t=t*
S5 —> St § ——> §;F Performance Metric:
) | [o, PP
S; — > p,to SI‘ — > pto, Let ALG denote our algorithm and OPT denote the

optimal schedule. Given any list of requests Z, let
TCTz(A) denote the total completion time of schedule A:

TCTz(A) =) _(pi(A) + o)),

S ——mMmm > S2+

P
83 S3+
where p;{A) denotes the starting time to process r; under

P3 Pt schedule A. The optimal schedule is defined as
03
84 84t OPT = arg min TCTZ(A).
P L I A

4
p PsT
0: ! The competitive ratio is given by
S S5+ TCT{ALG
s NP CR(ALG) = sup z() :
P4 Pst Oy T TCTI{UPT]

D
D

Memory constraints:
At any time t*, the total memory usage
must not exceed the memory limit M.

Literature Review

(Jaillet et al. 2025) first suggests a model which captures the KV cache memory constraint in LLM inference, and designs an efficient

scheduling algorithm based on “Shortest-Job-First”. However, there are two key assumptions:

1. All input sizes are homogeneous.

2. All output length are perfectly predictable.

Under assumption 1, “Shortest-Job-First” makes sense because:

- Shorter output jobs process faster (need fewer batches to process).

- Shorter output jobs need smaller amount of memory, which inproves the concurrency at the beginning.

LLM Serving Optimization with Variable Prefill and
Decode Lengths

Meixuan Wang (wangmx22(@mails.tsinghua.edu.cn)
Department of Computer Science and Technology, Tsinghua University
Yinyu Ye (yyye@stanford.edu)

Departmemt of Management Science and Engineering, Stanford
Department of Industrial Engineering & Decision Analytics, HKUST
Zijie Zhou (jerryzhou@ust.hk)

Department of Industrial Engineering & Decision Analytics, HKUST

NP-Hard Statements

THEOREM 1. Minimizing the makespan is NP-hard.

Proof of Theorem 1 We prove NP-hardness via a reduction from the Partition problem. Con-
sider the following Partition Problem: Given a multiset of integers X = {z1,...,z,} summing to
2T, does there exist a partition of X into two subsets 51,5, such that Ei&Sl T; = zi&& x; =17

We construct the following reduction:

e For each integer z;, create a request i with s; =2; and 0, =1

e Set memory capacity M =T.

We show that the Partition instance has a solution if and only if the constructed instance admits
a schedule with makespan 2.

Case 1: Partition Ezists. Given subsets S;,S; each summing to T, the schedule:

e Batch 1: Process all requests in S; (memory usage = T')

e Batch 2: Process all requests in S, (memory usage = T')
completes all requests in makespan 2.

Case 2: No Partition Erxists. Any valid schedule must use at least 3 batches because:

e No single batch can process all requests (total memory 27" > M)

¢ Any two-batch solution would require both batches to have memory exactly T, which would

constitute a valid partition

Thus, the makespan is at least 3. The makespan equals 2 if and only if the Partition instance has

a solution, proving NP-hardness of makespan minimization. [

THEOREM 2. Minimizing the total completion time is NP-hard.

Proof of Theorem 2 We prove this via a reduction from the 3-Partition problem, which is
known to be strongly NP-hard. Consider the following 3-Partition Problem: Given a multiset of
integers X = {z,,..., s, } summing to mT, where each z; satisfies 7'/4 < z; < T'/2, the problem
asks whether X can be partitioned into m disjoint subsets 5i,...,S,, such that the sum of each
subset equals T.

Then, we construct the following reduction: Given an instance of 3-Partition, we construct an
instance as follows:

e For each integer x;, create a request ¢ with s; =x; and 0, = 1.

e Set the memory capacity M =T

We show that the 3-Partition instance has a solution if and only if the constructed instance has
a schedule with total completion time TCT = m’;—’li

Case 1: 3-Partition Exists. Suppose X can be partitioned into m subsets 5i,...,S., each
summing to I". Then, consider the schedule which processes batch k& with all requests in Si.. The
schedule is feasible since the memory usage of each batch is M. Moreover, as each batch processes

exactly 3 requests (due to 7'/4 < x; <T/2), the total completion time is:

m

TCT:E%= w
=1

Case 2: No 3-Partition Ezists. If no such partition exists, then at least one batch must process
fewer than 3 requests (since no subset of 2 requests sums to < T, given z; > T'/4). This forces the
schedule to use at least m + 1 batches. Compared to the schedule in case 1, there is at least one
job having to be swapped from one of the batch 1 to batch m to the batch m + 1, and the total
completion time in this case is strictly greater than w

Since the minimal total completion time is m';il if and only if the 3-Partition instance has a

solution, the problem of minimizing total completion time is NP-hard. [

Baseline Algorithms

First-Come-First-Serve (FCFS): Performance Metric:

The competitive ratio is given by

TCTz(ALG)
R(ALG) = .
CR(ALG) = s 71 OPT)

- Processes requests in arrival order.

Shortest-First (SF):
- Prioritizes requests with the smallest response length (o,) first.

- Is a special case of FCFS when shorter requests arrive earlier.

Observations:
- When prompt size (s;) are the same, SF is a very good algorithm.
- However, when prompt size (s;) 1s variable, neither FCFS nor SF

achieves a constant competitive ratio (CR).

Intuition:
- Requests with a very large prompt size (0;), despite having a small
response length (s.), drastically limit the amount of requests processed

Example: (Memory limit = M)

Type S; 0; Amount
1 MO - 1 1 M
2 1 2 M3

early, significantly increasing the total completion time (TCT).

Under SF, type 1 requests are prioritized:
X/VM 3Y/M

TCTz(SF) = \/_Zz+£+—23.

Consider A that prioritizes type 2 requests:
3Y/M X/VM

TCT;(A 2M23+—+\/_Z¢.

Compare the two algorithms:

TCTz(SF) = sM"°+3M"* + M?>

TCTz(A) o %M1'5+3M1'25—|—6M1-5
2

> — M.
— 13

Quality Metric

Inspired by the shortcomings of Shortest-First (SF) , we
introduce a novel quality metric to determine request
prioritization. For any list of requests Y,

ET’;‘EX 04

PO =

where a smaller value indicates higher priority.

This metric jointly optimizes low average response lengths and
high batch throughput. Unlike SF—which prioritizes requests
with small s; regardless of o,—our metric deprioritizes requests
with small s; but excessively large o;, thus preventing inefficient

early-stage scheduling.

Example: (Memory limit = M)

Consider a simple scenario with two batches, where requests are
homogeneous within each batch but heterogeneous across
batches. We want to determine which batch to prioritize to

minimize the total completion time (TCT).

Batch S 0; Amount Metric
1 Sy 0, n, 0,/n,
2 S5 0, n, 0,/n,

If we prioritize batch 1 over batch 2, the TCT is o,n,+0,n,+o,n,.
Conversely, if we prioritize batch 2 over batch 1, the TCT
becomes o,n;+o0,n,+o,n,. Comparing the metrics, if o,/n; < o,/n,,
then o,n, < o,n,, so batch 1 should be prioritized. Otherwise,
batch 2 should be prioritized. Therefore, this decision rule aligns

perfectly with our quality metric’s selection criteria.

Our Algorithm

Based on the quality metric Sketch:
1 n,+1
F(X) = M 2 n+2 l
|2 s R E— |
we sort requests by iteratively selecting from the unsorted poolthe | | = [¢ | ...
n;+n,

sublist X that minimizes F(X) while respecting memory

constraints, then ordering requests in X’ by ascending o;:

Input: Z, Output: 7'
T] | l
while 7 do |

X ¢ argminycz(F(X), —|X]) subject to M(X,p; +0;) < M,Vr, € X I—

Sort X in ascending order of o, .

T+ T+X,I+IT-X | hiiier diieee deeee
end while [

Following this order, we schedule requests sequentially at their
n,+n,

earliest feasible times while respecting memory constraints. |

Constant-CR Proof: Step 1, ALG —» ALG

separate

We denote our algorithm as ALG and the optimal schedule as OPT, with corresponding
total completion times TCT(ALG) and TCT(OPT). We establish the constant competitive

ratio through the following inequality chain:

TCT(ALG) < TCT(ALG g uraee) < 4 - TCT(ALG
<8 - TCT(OPT

aroup) < 8 - TCT(ALG
) < 48 - TCT(OPT).

align)

transform

Our algorithm ALG operates in two phases: first, it sorts all requests based on the quality
metric; then, it sequentially schedules each request at the earliest available time slot. To
establish an upper bound for TCT(ALG), we consider an alternative approach where we
reverse the second phase by handling complete batches sequentially one at a time, as
illustrated on the right. This modified scheduling scheme, which we denote as ALGg,,pa¢e

satisfy the inequality:

TCT(ALG) < TCT(ALG

separate)'

Performance Metric:

The competitive ratio is given by

o TCTz(ALG)
CR(ALG) = S\;}) TCT,(OPT)"

Assumption:
s;, 0; are small quantities relative to M.

Sketch:
]] —
]] —
— |
:I
.:I
| —
|:I
. /]

Constant-CR Proof: Step 2, ALG — ALG

separate group

Let the requests in &), ordered by increasing response length, be denoted as Performance Metric:
Tht1,15Th41,25 -« « s Tkt 1,n, s Where ng =|X;|. Since M — oo and s;,0; = €(M), ny — oo. The competitive ratio is given by

We aggregate the batches { X} }, generated by Algorithm 1, into larger groups {JV,,} constructed CR(ALG) = sup TCTz(ALG)
o / ~ P TCTL(OPT)

V=& +1+X, 410+ +X, .
Assumption:
where b,, =>_"" a;, a; denotes the number of batches in V;, and A; + Ay + - -- + A, represents

i=1 s;, 0; are small quantities relative to M.

the merged batch formed by processing all requests from A, A,,...,.A, concurrently. Each), is

designed so that X}, , + [rs,,+1,1] exceeds memory M. Specifically, for any A&, and 7y, 411, there Sketch:

exists a time ' ' '

t" € {pi+oi|ri € X, + 1o, 4+1,1]}

such that
M (X, + [ro,,41.1],7) > M.
When this condition holds, we say &), nearly saturates memory M, which implies \l/
— | |
Z (si+0;) > M —e(M). —— —
T',,;exbm .
E—

To achieve this, we consider the following two cases.

Constant-CR Proof: Step 2, ALG — ALG

separate group

Case 1: The request highlighted with a red circle in the sketch corresponds to this case. Performance Metric:

Assume A}, A5, -+, &), have already been grouped. For the consecutive batches &..; and A}, The competitive ratio is given by

we consider two cases. First, if CR(ALG) = sup TCTz(ALG) .
2np1+1
Okg4+21 > ——5 ° Ok+1,55
Mkt1

=1 Assumption:

then X1 + [Tki21] exceeds memory, because otherwise, 7.42: should have been included in s, 0; are small quantities relative to M.

Xy1o to either reduce F(X}.2) or increase |AX} 2| while maintaining the same value of F(X;2).

This, however, contradicts the selection criterion of Algorithm 1. Therefore, X} ; nearly saturates Sketch:
memory M and can consequently be treated as an independent group. ! ! (=)
]]]

E—] |

E— E—

-

]
]

Constant-CR Proof: step 2, ALG — ALG

separate group

Case 2: The request highlighted with a red circle in the sketch corresponds to this case.

Alternatively, if

MNg41
2np +1
Og421 > — 5 —° Ok+1,j5

then Xj41 + [ri+2,1] does not necessarily exceed the memory limit M.

We iteratively merge consecutive batches until encountering a batch that satisfies Case 1.

For all merged batches, we establish bounding inequalities on their makespans—with the

quality metric serving as the critical determinant:

k42 qk+3
2% Okga Doien Ok+3l

Oktamg.y > Ok43inpys = —
Mhk+2 Qrt2 , k43
Tk+1 Nk+2)
> (24 Qr+2 \ Dot Orga > (2_|_ Qk+3)) Dot Okt2s
i1 Nk+1 MNg42 NEy2
2 k42 i
4r+2 Mg — np+1 Jrk+3 Ej:l Ok+2,j
>|2+ : “Okt1,n > 2+ .
2 2 k41 -
Tt N1 — Nyl Mk+2 Qr+2
1 q Mpt1 .
k+3 k42 i—1 Ok+1,
> 2 "Ok+1np g =12+ |2+ = ,
N2 Te41 Nkt
= Ok41,n441- =2 Ok41,my -

Similarly,

a.—iJ

1\
Ok+i,ﬂk+i S E . ok+“:"k+g-

Performance Metric:

The competitive ratio is given by

B TCTz(ALG)
CR(ALG) = 51;1) TCT, (OPT)

Assumption:
s;, 0; are small quantities relative to M.

Sketch:

e =

] |]]

Constant-CR Proof: Step 2, ALG,,,.... = ALG,,
Subsequently, we obtain Performance Metric:
The competitive ratio is given by

2‘1: a 1 L%] ()

Ok+1’,nk+i S (5) ' ok+a,nk+a - TCTI ALG
Py P CR(ALG) = sn;p TCT, (OPT)

1— (1) Lozt
2
s2 I Oktami, Assumption:

s;, 0; are small quantities relative to M.

<4 Ok+a Nkta
Sketch:
Following this procedure, we begin by forming the first batch group as Y, =&, + X, +--- + A&, . : : : |
Once Y, is constructed, we proceed to form the next group as | | |
< |
Vmi1 =1+ gt + X,
By this approach, we effectively combine {X}} to form larger groups {V..}. \l,
Through rigorous derivation (omitted for brievity), we prove that the modified — ' '
scheduling scheme ALGy,,,, satisfies the following performance guarantee:
—
|
TCT(ALGgeparate) <4 - TCT(ALGy,qp)- . I

Constant-CR Proof: Step 3,ALG,. . — ALG

group align
We now focus on the terminal batches {A&;, }. For further analysis, we replace each request’s Performance Metric:
original response length in &} with the batch’s average response length: The competitive ratio is given by
_ Z?:bT Op,, i
Obyy = — - TCTz(ALG
Mom CR(ALG) = sup TOT (OPT) .
Let ALG.jign denote the new schedule after this replacement.| As proved before, z 1 ()
5y > 1 (14)
0 — 0 n . 0
b = g omonem Assumption:
Given any list of requests Z, by inequality (14), we derive s;, 0; are small quantities relative to M.
=] oo o0 N
TCTz(ALG,ign) = Z (Obm : Z ﬂk) + Z Z O i
m=1 k=bpm+1 k=1 i=1 SkEtCh.
. — —
o0 1 [s e [s’e] T
2 Z (E . obmanbm . Z ﬂk) + ZZO;C__,‘ ::l —
m=1 k=bm+1 k=1 i=1 . .
— . ces
1 oo oo oo Mg 1
23 (3 (e 3)+ 3550) |
m=1 k=bm+1 k=1 i=1 M
1
=5 - TCT7z(ALGr0up)- (15) \1/
—
So far, we have completed the first half of the - . . .
Additionally, since 0x+1,,,, € Aks1, it follows that . .
proof, which gives Z‘E::#“olk)gi > T2 oug, I— ’ e
TCT(ALG) < TCT(ALG, o)) 1 :
':rl Okt > ni“ — Mkt f O+ =5 Ok (5) ’
Mps+1 T 20, g A HlmkeLs
<4- TCT(ALGgmup) <8 TCT(ALGa“gn). ’

Constant-CR Proof: Step 4, OPT — OPT

transform

Sketch: t1 — 3(51 tl t, + 362 t —_3(51 th -I—_362
0 01 09 0 o1 304 301 + 309 301 + 609 0 30, 301 + 669
: i ! 5 | E—— :
] R — : | P : ! — !
| i — | i — : — :
| I S—— ! % : | I
! [| ! E— :
; =| | ; — | | — |
! — ! — : — :
Joo ! J ! L I
In the following paragraphs, we aim to transform the optimal schedule OPT through an iterative | Subsequently, for g > 2, let
process that groups requests into groups {Z,} with controlled memory utilization. For g =1, let 9-1
0, =max{p; +o;|r; € A,} — ZJ_,,-,
i=1

51 = max{pl +0; IT'J, S Al},
where A; consists of requests initiating at time 0, and

21:{T¢61|p1‘+0.£§51}.

where A, consists of requests initiating but not completing by time J,_;, and

g—1 g
Zg:{ri EIl Zéj <p;+0; SZ&;}'
=1 j=1

Constant-CR Proof: Step 4, OPT — OPT

transform

Sketch: t1 — 30 3]

0 01 0o 0 o1 304 301 + 309

i:l ! i:|

| 5 5

| I — — !

! [! %‘?
| =| || —

tl —_3(51 tl -I—_3(52
0 30, 301 + 609
T I R e
i:\ I : :
| S I
1R I I I
| [I 1
| | I I
= I I
: |.:| | |
. R I I
 E— I I
1 | |
| | | :| :
i I I :] I
1 | | .
| I A W
1 |
| 1 :
| I I :
I I [
: I I | E—

1

for Z, as

where this transformation scales the original temporal partitioning by a factor of 6.

The transformation starts with delay Z,’s execution by 5 Zf;ll 0; time units for any g > 2, while

preserving the internal timings of all requests in the group. We define the adjusted cutting time

Constant-CR Proof: Step 4, OPT — OPT

transform

Sketch: t1 — 34 3] t1 + 309 b — 301 t + 36

0 01 09 0 o1 304 301 + 309 301 + 609 0 30, 301 + 669
| E—— ! | ! | E— I I :
s | 1 : 1 I I [!
| | i : i I I I i
| = = - = L e
1 : ' ! : ! ! | I I l :
: — > — L —> !:I ! : :
| ! ! ; , ——
[— — ! %‘? : L — | :
| : : | : : : I I : I |
e o o e
: = ! : — ! : L , :
| : | | E | | Lo i |
— ! [! I I —

Next, we partition each batch Z, into smaller batches {W, } through the following decomposition:
Zy = de—l“'l + de_J_+2 + i +de,

where d, = Z?:l ¢; counts the cumulative batches up to group g, with ¢; denoting the number
of batches in Z;. The decomposition process constructs {de_ﬁk};?: , as follows: we first sort all

requests in Z, by their original initiation times.

Then for each subsequent batch, we select the maximal number of remaining requests with the
earliest initiation times while respecting the memory constraint M, and iterate this process until all
requests in Z, are assigned to batches. This way, all the batches except W, must nearly saturate
memory M. Now, we replace each request’s original response length in W, with the batch’s average

response length:
Z n

i=1 Oy K3
U

op =

Constant-CR Proof: Step 4, OPT — OPT

transform

Sketch: t1 — 34 3] th + 309 b — 301 t + 36

0 01 09 0 o1 304 301 + 309 301 + 609 0 30, 301 + 669
| E—— ! | ! | E— I I :
1 ! 1 ! 1 I I I I [
= : | : | | Lo i
| = = - = L e
1 : ' ! : ! ! | I I l :
: — > — D> !:I ! : :
| ! ! ; , ——
[— — ! %‘? : L — | :
' : : ! : ! : I | : | :
e o L e
: = ! : — ! : L , :
| : | | E | | Lo i |
— ! [! ' I —

Let OPTianstorm denote the total completion time after this transformation. From inequality

(2), we can derive a lower bound on the average memory utilization efficiency 7, for any batch in
W Wy, }:

erew,l 8i +zr,-ew,l(3i+0i) > M —E(M)
2-M 2-M

1
> =3 (17)

Since the original time window for processing Z, is less than §,_, +4,, then by inequality (17),
Wi, 141, Wa,_ 42, ,Wa, 1 can complete within 2(d,_, 4 d,) unit time for any g. Additionally, as
the response length of any request in Z, is less than 4, , 4+ d,, W,, can complete within 6, , 44,

unit time. Therefore, {Wy, _, 4« };2, can complete within [t, —38,_1,t, +38,).

Constant-CR Proof: Step 4, OPT — OPT

transform

Sketch: t1 — 301 t1 t1 + 30, b — 301 t + 36
0 01 09 0 o1 304 301 + 309 301 + 609 0 30, 301 + 669
I— | I— I I I
1 I I I I
= I I I
- | =3 — | I
: 1 : | | |
I— —_ —/ —_ I:I 1 :
S , ——
. | | . |
L — |
— |:| 1 1 .
: I 1 .
— — I I —

Through rigorous derivation (omitted for brievity), we prove that the modified scheduling scheme ALG satisfies the following

group
performance guarantee:

TCT(OPT)< 6 - TCT(OPT).

transform

Constant-CR Proof: Step 5,ALG — OPT

transform

So far, we have already obtained

TCT(ALG) < TCT(ALGparate) =4 - TCT(ALGy,,,,) <8 - TCT(ALG,;,,)
and
TCT(OPT,,.nstorm) < 6 - TCT(OPT).
So the remaining step is to establish the relationship between ALG g, and OPT . ,p50rme

For fixed makespan, minimizing total completion time requires maximizing throughput in the
earliest possible time intervals. Formally, our throughput metric

T
(X)) = —,

k
which measures requests completed per unit time in batch A}, is exactly the reciprocal of our
quality metric F(A%). This establishes a direct correspondence between our optimization objective
and scheduling efficiency.
Inheriting our algorithm’s design, ALG,,,,, explicitly optimizes for this early throughput maxi-
mization by minimizing F'(&}). For any batch &}, given fixed prior batches &1, ..., X1, ALGutign

minimizes F(X}), and thus maximizes ®(X}). Additionally, each group },, in ALG,;;,, achieves

an average memory utilization efficiency of 5, > %, while each period [ty,ty_l] in OPT,,..ctorm
obtains an average memory utilization efficiency of ny ¢ . ,] < é. This implies that the makespan
of ALG, g, is strictly less than that of OPT\,,,st00m. This makespan advantage, combined with the

early throughput maximization, guarantees that given any list of requests Z,

TCTI (ALGalign) <_: TCTI {OPTLrarlsfarlll) . { 1 g)

ALG

align .

OPT

transform

—
I

I-1 }{

il

summary

Constant-CR Proof

III

< 48.

TCT;(ALG)
TCT(OPT)

=sup
T

S 8 * TCTI(OPTLrunsfurln) S 48. TCTI(OPT)I
CR(ALG)

Combining inequality (19) with inequalities (1), (13), (15), and (18), we obtain the comprehensive
TCTz(ALG) < TCTz(ALG;cparate) < 4 TCTz(ALG0up) < 8- TCT7(ALG ,)

which implies

W
oWl
-
g
=
=
<5}
=
—
[=]
-
2
z
b=
g
.z
&b
=
=
-
o
=
=
2
2

mo

SO |

OPTtransfor

separate®

ALG

Approximation

In practice, how to select the list of requests that minimizes the quality metric?

N

Input: Z, Output: 7'
Algorithm 1 - Exact Dynamic Programming: T
- Optimality: Optimal. while 7 do
- Complexity: O(n-M), polynomial. X « argminycz(F(X), —|X]|) subject to M(X,p; +0;) < M,Vr; € X
- Shortcoming: Too slow for large M. Sort X in ascending order of o;
- Suggestion on n: n < 100. T+T+XI<I-X
end while

Algorithm 2 - Scaled Dynamic Programming:

- Description: First discretize memory usage, and then perform dynamic programming in scaled space.
- Optimality: (1 + €)-optimal.

- Complexity: O(nB/¢), polynomial.

- Suggestion on n: n < 200.

Approximation

In practice, how to select the list of requests that minimizes the quality metric?

Algorithm 3 — Local Swap Search:

- Description: Initialize a batch with ordered s; + o;, then iteratively swaps requests to improve the F-metric.
- Optimality: Local-optimal. No global guarantee.

- Complexity: 0(n?), polynomial.

- Suggestion on n: n < 500.

Algorithm 4 — Quantile Greedy:

- Description: Sample a subset of requests and compute quantiles for s; + o0; and o;. Select requests below the quantile

Oj

thresholds. Fill remaining memory with requests sorted by

Si+0i.
- Optimality: No global guarantee.
- Complexity: O(n), polynomial.

- Suggestion on n: n = 1000.

Frequency

Numerical Experiments

Dataset:
1. Public conversation dataset (Zheng et al. 2023).

1000

800

=2
(=1
=3

S
(=1
=]

200

Distribution of Input Tokens Count

(=== Mean: 41.84 |
=== Median: 12.00

0 100 200 300 400
Number of tokens

Mix two datasets:

Frequency

|

Distribution of Output Tokens Count

"] 200

1400

1200

1000

«©
(=1
(=}

@
(=]
o

'
[=]
o

n
(=1
o

=== Mean: 85.35
—==-Median: 43.00
oy
c
[}
=3
o
e
w
400 600 800
Number of tokens
Distribution of Input Tokens Count
--= Mean: 542.75

--=- Median: 18.00

1000 1500 2000 2500

Number of tokens

3000 3500 4000

160

140

120

100

80

60

40

20

2. Public Arxiv summarization dataset (Cohan et al. 2018).

e e s e ey s SR

0

500

500

Distribution of Input Tokens Count

-== Mean: 2546.39
-==Median: 2667.50

1000 1500 2000 2500 3000 3500 4000
Number of tokens

Distribution of Output Tokens Count

[==="Mean: 127.50
=== Median: 72.00

1000 1500 2000 2500 3000 3500

Number of tokens

]
—
1
1

Distribution of Output Tokens Count

1000

[===" Mean: 296.08
--- Median: 161.00

—_,—— Te——

1500 2000 2500 3000 3500
Number of tokens

Numerical Simulation

Averaged Latency vs Number of Requests

600 -
—e— FCFS

MC-SF
291 —=— Sorted-F(Quantile)
—&— Sorted-F(Swap)

Sorted-LP
—— LP-swap

-3
o
o

Averaged Latency

100 A

e

*

250 560 750 10b0 1250 15b0 1750 20b0
Number of Requests

Robust LLLM Inference Scheduling under Output
Length Prediction

Zixi Chen (chenzixi22@stu.pku.edu.cn)
Department of Mathematics, Peking University
Yinyu Ye (yyye@stanford.edu)

Department of Management Science and Engineering, Stanford
Department of Industrial Engineering & Decision Analytics, HKUST
Zijie Zhou (jerryzhou@ust.hk)

Department of Industrial Engineering & Decision Analytics, HKUST

Motivation: Interval Prediction and Classification

 Quick ML method to classify requests into different groups with disjoint interval prediction.
 E.g.Short(1-200), Medium (201,800), Long (801,1000).

* User Input:
 Claude lets user to input the value of min/max tokens in the output when calling the API.

Model Overview

Single computational worker with a KV cache of size M, capable of storing up to M tokens.

There are n jobs (prompts), each with size s; = s > 0, known to the decision-maker.

Let o; > 0 be the realized output length of job i, which is unknown during inference.

Predictable interval 0; € [I, u], define a@ =

We assume all jobs share the same prediction interval [, u].

Batch Processing and Memory Constraint

Jobs processed in batches; each batch takes 1 time unit.
. af : number of tokens generated for job i attime t. A job is complete when af = 0;.

« S!:processing requests. Memory used attime t:

Z(s+af) <M

iest
* QOutput lengths are uncertain = hard to ensure feasibility under non-preemptive policies.

* To handle memory overflow risk, we allow job cancellation. Cancelled jobs lose progress and restart
from zero tokens.

Evaluation Metric: Total End-to-End Latency

 Denoteo = (04,1,0,) Withog << 0,,.
* Let/; bethe setof jobs with final start time t.
 Latencyforjobi €l;: L; = t + o;.

 Total latency:
T n
t=

TEL(O;T[)=zLi= t|1t|+ zoi

i 0 i=1

Hindsight Benchmark (H-SF)

* Assumptions:
1. All output lengths o; are known in advance.
2. Follows [Jaillet et al.(2025)] with memory-aware batching and no cancellations.
« Memory Constraint: U is the newly added set, St denotes the set of jobs already in progress at time t, and p;

is the last start time of job i.

Z (s +t' = pdlyspr—p, + Z(s +t' =)l <M, vt' € [t, tpax(U)]
i est =i
 Strategy:
1. Choose shortest first (SF).
2. Pack as many jobs as possible without violating constraint.

0;=1,1,2,3

TEL(0;H-SF)=1+1+3+6=11

Competitive Ratio
* Definition (Competitive Ratio):
Leto = (04,*+,0,) € [, u]™ be the true output lengths. For any policy m:

E[TEL(0;)]
CR(m):= su
() ocltae TEL(0; H—SF)

 Measures worst-case ratio to optimal.

* Smaller CR(m) means better performance under uncertainty.

Naive Benchmark Algorithm: A4,

* Key ldea: Assume worst-case output length o; = u for all jobs.

e Algorithm Outline:
At each time t, randomly pick the largest subset U C R; s.t. constraintis metusing 0; = u.

 Guarantees feasibility (no memory overflow).

Ss;=8=2 M=6
0;=1,1,2,3

l=1,u=4 _1

=1,u= ,a—4

TEL(0;H-S]JDF) =1+ 1+3 + 6 =11
TEL(0;Apgy) =2 +3+ 647 =18

Competitive Ratioof A4,,,,,

Theorem:
The competitive ratio of A,,,,, Satisfies:

a (14 a™1/?) a '(1+a 1)

e (Qverestimation causes under-utilization.

* Lowera = ée higher inefficiency.

* The lower bound can be easily checked by giving N; jobs with 0; = l and N,, jobs with 0; = u, where

* Forthe upper bound, we introduce a Memory-Preserving Proof Technique.

* Motivation for a Robust Algorithm
« Canwe design an algorithm that works well under both good and poor predictions?

Introducing A,,,;,, : Key Design Principles

 Key ldea: Use the lower bound £ to estimate memory demand more optimistically. Dynamically
refine this bound: set 0; = £, then increase 0; as output is generated.

* Algorithm Outline:
1.Batch formation: Greedily add requests in order of increasing 0;.

2.0verflow resolution: Delete requests with smallest 0; if memory overflows.

* Robustness arises from being cautious about restarting expensive jobs (with large 0;).

Ss;=8s=2 M=6
0;=11,23
1
_ l=1,u=4‘,a=Z
TEL(0;H-SF)=1+4+1+3+6=11

TEL(0; Appin) =2+ 3+ 3+ 6 =14

Asymptotic Optimality

« Theorem: For any online policy m without access to true output lengths,
CR(m) = CR(Anin)
asM - oo,

A.in 1S @asymptotically optimal among policies with limited output knowledge. No policy can
uniformly outperform it.

Theoretical Guarantee: Robust Competitive Ratio

Theorem: The competitive ratio of 4,,;,, equals to the following Rayleigh Quotient:

CR(A B xTAyx 0 1
Amin) = 028 7z + O
. _ min(i,j)? 1 ,. .2 N2
+ Ay =(ay),, a5 = o G+)7 —min(, j)%).

* B, = (bij)u*u, b;; = min(i, j)?.

- Proposition: The Rayleigh quotient is uniformly bounded by 0 (logu) = 0(log(a™1)).

« Whena = 1, CR(A,,;n) = 1, optimal under perfect prediction.

« Whena — 0, CR(A,,;n) increases in a log scale.

Scheduling under Disjoint Interval Predictions

We further relax the assumption that the prediction intervals [[, u] of each o0; are the same.

* we now generalize the model to allow m disjoint prediction intervals [, u4], [I, u3], ..., [l U], Where
u; <lj,qforalli € [m—1].

* Apnin is modified to initialize 0; = [; if it belongs to the jth interval. It continues to prioritize shorter requests
while maintaining its robustness and adaptive batching strategy.

* Theorem: The competitive ratio of 4,,;,, is bounded by:

CR(Amin) < O(log(a™)) + 0.

Moreover, for any online policy m without access to true output lengths,

CR(m) = CR(Apin)
asM — oo.

Numerical Experiments

« Dataset Overview.
2,000 conversations (Zheng et al. 2023)

* Theinput sizes range from 1 to 468 tokens, with a mean of 41, median of 11, and variance of 4,961.
* The output lengths range from 1 to 883 tokens, with a mean of 85, median of 43, and variance of 9,702

Distribution of Input Words Count Distribution of Output Words Count
12001 --- Mean: 41.29 E i --- Mean: 85.48
--- Median: 11.00 i --- Median: 43.00
] 1
1000 - : :
(] 1
I 1
.
I 1
800 4 1
> 1 1
(9})]
{ ot iy 1
(O] I 1
g— 600 : :
2 Do
L I A
I 1
200 —
1 1
1 1
1 1
1
) THW—'—W—M‘
I [
I
I I
I I
0 " r . T ; - :
0 100 200 300 400 0 200 400 600 800

Number of words Number of words

Rough Prediction

* Eachrequest has a coarse prediction interval of
[1,1000].

* Representing minimal information about the
output length.

* A,ax : POOr memory utilization.
* A,,in : achieves average latency nearly identical
to the benchmark.

300 1

= N N
w o wu
o o o

Averaged Latency

=
o
o

50 A

Averaged Latency vs Number of Requests

—_——

- —

Amin
Amax
Benchmark (SF)

250

500 750 1000 1250

Number of Requests

1500

1750

2000

Non-Overlapping Classification

Averaged Latency vs Number of Requests

160 A

* We assign each request’s prediction interval to —e— Amin
one of the fixed buckets: [1, 100], [101, 200], ..., o AR
—=— Benchmark (SF)
[901, 1000].

=
N
o

=
o
o

* Simulating a multi-class classification model with
non-overlapping intervals.

[ee]
o
L

Averaged Latency

* A,,qx : achieves a substantial improvement over
its performance in Experiment 1.
 A,,in: closely approaches that of the benchmark.

N
o

N
o
1

250 500 750 1000 1250 1500 1750 2000
Number of Requests

Overlapping Interval Prediction

 Eachrequestiis assigned a prediction interval of
the form [(1 — x)o;, (1 + x)0;], where x €
{0.1,0.95,0.99}.

* Largervalues of x correspond to more precise
predictions.

« x = 0.1, indicating highly accurate predictions,
both Amax and Amin perform well

* x=0.950rx =0.99, the performance of 4,4«
deteriorates significantly. 4,,;,, continues to
maintain low average latency even under highly
uncertain predictions.

120 A

[y
o
o

Averaged Latency

20 A

Averaged Latency vs Number of Requests

(=2}
o
!

S
o
L

—e— Amin(CL=0.9)

Amax(CL=0.9)

—=— Benchmark (SF)
1 —a— Amin(CL=0.05)
—— Amax(CL=0.05)
| —— Amin(CL=0.01)
Amax(CL=0.01)

2éo 560 750 10b0 1250 15b0 17%0 ZObO
Number of Requests

Thank you!

Contact email: jerryzhou@ust.hk

mailto:jerryzhou@ust.hk
mailto:jerryzhou@ust.hk

	Slide 1: Efficient and Robust LLM Inference Scheduling Optimization
	Slide 2: What is Large Language Model (LLM)?
	Slide 3: What is LLM Inference?
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: LLM Serving Optimization with Variable Prefill and Decode Lengths
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Robust LLM Inference Scheduling under Output Length Prediction
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

