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Introduction

The concept of quantum computing and quantum computers
emerged in the 1980s. Currently, there have been machines
representing one of two approaches to quantum computing
available.

The first, represented by companies such as Google,
Honeywell, IBM and Intel, are quantum computers with
quantum gate models (e.g. Hadamard gate and Toffoli
gate). Unlike many classical logic gates, quantum logic ones
are reversible.

Programming in quantum gate model of computing is still a major
challenge due to the small scale of solvable problems and the lack
of a high-level approach adequate to high-level languages in
programming of classical silicon-based computers.
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Introduction

The second approach, quantum annealing, by using effects
known as quantum fluctuations and quantum tunneling,
determines the possible best solution to the optimization
problem. D-Wave Systems Company and NEC proposing an
approach to computation that is admittedly limited to the use
of quantum annealing, but which fits perfectly with the needs
of the operations research discipline.

In this case, instead of expressing the algorithm for solving the
problem under study in terms of quantum gates, the user presents
it in terms of a quadratic programming problem (QUBO).
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Introduction

Tasks formulated for a quantum machine implementing quantum
annealing take the form of an Ising or QUBO model. The Ising
model is used in statistical mechanics and the criterion function
has the Hamiltonian form:

EIsing (s) =
N∑
i=1

hi si +
N∑
i=1

N∑
j=i+1

Ji ,jsi sj , (1)

where si , i = 1, 2, . . . ,N express spins with the values +1 and −1,
while the linear coefficients corresponding to qubit deviations are
hi , the quadratic coefficients corresponding to the coupling forces
are Ji ,j .
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Introduction

In the QUBO model, the function subject to minimization takes
the form

f (x) =
N∑
i=1

Qi ,ixi +
N∑
i=1

N∑
j=i+1

Qi ,jxixj , (2)

where Q is a upper-triangular matrix of size N ×N of real weights,
whereas x is a vector of binary variables.

QUBO is an unconstrained model. Some of the D-Wave solvers
can handle constraints natively – for them the translation of the
constraints problem to the unconstrained one is done inside the
solver. For such a model – specifically for LeapHybridCQMSampler
(Constrained Quadratic Model, CQM) – the below presented work
is dedicated.
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Introduction

The main disadvantage of calculations on real quantum
computers is its non-determinism. For optimization problems,
of course, it is possible to get sensationally good results, but
without a guarantee of the actual optimality of the result.

A method which guarantees of optimality is proposed here.

We use a D-Wave quantum machine working as a sampler
implementing quantum annealing – an approach considered a
hardware metaheuristic – to obtain upper and lower bounds of
the objective function of the problem under consideration.

The mechanism of a Branch and Bound scheme controlled by
quantum annealing is applied, which allows us to obtain very
quickly – because in constant time – the boundaries of the
considered subproblems.
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Case study – the single-machine problems

The set of tasks is given J = {1, 2, . . . , n}.
For the i ∈ J task, let us define:

pi – processing time,

di – due date, and

wi – weight of the cost function for the task’s tardiness.

Each task must be performed on the machine, the following
restrictions must be met:
(a) the machine can perform at most one task at any given time,

(b) task execution cannot be interrupted,

(c) the task execution may begin at time zero.
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Model formulation

Any solution to the considered problem can be represented by the
sequence S1,S2, . . . ,Sn of tasks starting times, with the
constraints:

Si + pi ¬ Sj ∨ Sj + pj ¬ Si , i ̸= j , i , j = 1, 2, . . . , n, (3)

Si ­ 0, i = 1, 2, . . . , n (4)

Due to regularity of the goal function of the form of sum of
tardinesses, solution S1,S2, . . . ,Sn can be represented by the order
of execution of tasks expressed by a permutation π ∈ Π of
elements of the set J , where Π is the set of all such permutations.
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Goal function

For any permutation of π ∈ Π, penalty for tasks tardinesses
(solution cost) is

F(π) =
n∑

i=1

wπ(i)Tπ(i) (5)

where Tπ(i) = max{0, Sπ(i) + pπ(i) − dπ(i)} is the tardiness (i.e.
delay) of a task π(i).

In the considered problem, the optimal order (permutation) π∗ ∈ Π
in which tasks should be determined minimizing the total cost (i.e.
sum of tardinesses weights).
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Formulation for D-Wave quantum annealer
The problems formulated to be solved by the D-Wave machine can
be in the form of quadratic programming with constraints (CQM,
Constrained Quadratic Model), in particular integer linear
programming – then it is possible to use the LeapHybridCQM
Sampler solver for solving them performing hardware quantum
annealing.
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Formulation for D-Wave quantum annealer

Goal to minimize: ∑
i

wiTi (6)

subject to constrains:

Sj − Tj + pj − dj ¬ 0 j = 1, . . . , n, (7)

− Tj ¬ 0 j = 1, . . . , n, (8)

Sk−Sj+(pj−pk)xjk+2(Sj−Sk)xjk+pk ¬ 0 j < k , j , k = 1, . . . , n,
(9)

− Sj ¬ −S0 j = 1, 2, . . . , n. (10)

We introduce integer variables Si , Ti and binary variables xi ,j ,
which equals to 1 if job i precedes job j and 0 otherwise.
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Formulation for D-Wave quantum annealer

Implementation for D-Wave quantum annealer was prepared
using dimod Python package from D-Wave Ocean Software.

From the implementation perspective following steps was
performed:
define CQM model,

define CQM variables,

add constraints,

define objective function,

call CQM solver.

13 / 49 W. Bożejko Optimal solving of scheduling problems on D-Wave...



Introduction
Problems description

Formulation for D-Wave quantum annealer
Quantum computational experiments

Formulation for D-Wave quantum annealer
Exact solution method idea
Quantum Annealing-driven Branch and Bound

Formulation for D-Wave quantum annealer

def define_cqm_model(self):
"""Define CQM model."""

self.cqm = ConstrainedQuadraticModel()

def define_variables(self):
"""Define CQM variables."""

self.s = {
i: Integer(f's{i}', lower_bound=0, upper_bound=sum(self.p))
for i in range(1, self.n + 1)}

self.t = {
i: Integer(f't{i}', lower_bound=0, upper_bound=sum(self.p) + max(self.d))
for i in range(1, self.n + 1)}

# Add binary variable which equals to 1 if job i precedes job j
self.x = {(i, j): Binary(f'x{i}_{j}')

for i in range(1, self.n + 1)
for j in range(1, self.n + 1)}
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Formulation for D-Wave quantum annealer

def add_quadratic_overlap_constraint(self):
for j in range(1, self.n + 1):
for k in range(1, self.n + 1):
if j < k:
self.cqm.add_constraint(
self.s[j] - self.s[k] +
(self.p[k] - self.p[j]) * self.x[(j, k)]
+ 2 * self.y[(j, k)] * (self.c[k] - self.s[j]) >=
self.p[k],
label=f'one_job_{j}_{k}')

def add_tardiness_constraint(self):
for i in range(1, self.n + 1):
self.cqm.add_constraint(
self.t[i] - self.s[i] >= self.p[i] - self.d[i],
label=f'tardiness_ctr{i}')
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Formulation for D-Wave quantum annealer

def add_tardiness_constraint_zero(self):
for i in range(1, self.n + 1):
self.cqm.add_constraint(
self.t[i] >= 0,
label=f'tardiness_zero_ctr{i}')

def add_makespan_constraint(self):
for i in range(1, self.n + 1):
self.cqm.add_constraint(
self.cmax - self.s[i] >= self.p[i],
label=f'makespan_ctr{i}')

def define_objective_function(self):
"""Define objective function"""

self.cqm.set_objective(
sum([self.w[i] * self.t[i] for i in range(1, self.n + 1)])
)
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Formulation for D-Wave quantum annealer

def call_cqm_solver(self, time_limit=5):
"""Calls CQM solver.

Args:
time_limit: time limit in second

"""

sampler = LeapHybridCQMSampler(label="WiTi")

raw_sampleset = sampler.sample_cqm(self.cqm, time_limit=time_limit)
feasible_sampleset = raw_sampleset.filter(lambda d: d.is_feasible)
num_feasible = len(feasible_sampleset)
if num_feasible > 0:
best_samples = \
feasible_sampleset.truncate(min(10, num_feasible))

else:
print("Warning: Did not find feasible solution")
best_samples = raw_sampleset.truncate(10)

self.best_sample = best_samples.first.sample

self.solution = {
i: self.best_sample[self.c[i].variables[0]]
for i in range(1, self.n + 1)}

items = list(self.solution.items())
items.sort(key=lambda x: x[1])
return [0] + [i[0] for i in items]
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Formulation for D-Wave quantum annealer

def solve(n, p, w, d):

# Create an empty JSS CQM model.
model = TWTCQM(n, p, w, d)

# Define CQM model.
model.define_cqm_model()

# Define CQM variables.
model.define_variables()

# Add constraint to enforce one job only on a machine.
model.add_quadratic_overlap_constraint()

model.add_tardiness_constraint()

model.add_tardiness_constraint_zero()

model.add_makespan_constraint()

# Define objective function.
model.define_objective_function()

# Call cqm solver.
return model.call_cqm_solver()
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Formulation for D-Wave quantum annealer

if __name__ == "__main__":

# wt5_042
n = 5
p = [0, 37, 20, 4, 59, 95]
w = [0, 6, 5, 1, 9, 7]
d = [0, 68, 83, 15, 23, 76]

solve(n, p, w, d)
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D-Wave results

t1 t2 t3 t4 t5 x1 x2 x3 x4 ... y4_5 energy num_oc. ...
0 28.0 33.0 105.0 36.0 139.0 59.0 96.0 116.0 0.0 ... 1.0 1735.0 1 ...
1 28.0 33.0 200.0 36.0 135.0 59.0 96.0 211.0 0.0 ... 1.0 1802.0 1 ...
2 28.0 33.0 200.0 36.0 135.0 59.0 96.0 211.0 0.0 ... 1.0 1802.0 1 ...
3 28.0 33.0 200.0 36.0 135.0 59.0 96.0 211.0 0.0 ... 1.0 1802.0 1 ...
4 28.0 33.0 200.0 36.0 135.0 59.0 96.0 211.0 0.0 ... 1.0 1802.0 1 ...
5 28.0 33.0 200.0 36.0 135.0 59.0 96.0 211.0 0.0 ... 1.0 1802.0 1 ...
6 28.0 33.0 200.0 36.0 135.0 59.0 96.0 211.0 0.0 ... 1.0 1802.0 1 ...
7 52.0 0.0 0.0 60.0 139.0 83.0 4.0 0.0 24.0 ... 1.0 1825.0 1 ...
8 0.0 0.0 0.0 97.0 139.0 4.0 41.0 0.0 61.0 ... 1.0 1846.0 1 ...
9 0.0 37.0 0.0 77.0 139.0 4.0 100.0 0.0 41.0 ... 1.0 1851.0 1 ...
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Exact solution method idea

An exact hybrid algorithm for solving considered problem, the
construction of which is based on the (Branch and Bound
method, (B&B), is proposed here.

For determining the upper bound on a D-Wave machine, a
quadratic programming problem with constraints is
formulated, which is a natural way of formulating
computational tasks for this machine.

In contrast, for determining the lower bound, the Lagrange
relaxation method has been used. Approximation of the value
of the extremum of the Lagrange function has been calculated
on the D-Wave quantum computer.

21 / 49 W. Bożejko Optimal solving of scheduling problems on D-Wave...



Introduction
Problems description

Formulation for D-Wave quantum annealer
Quantum computational experiments

Formulation for D-Wave quantum annealer
Exact solution method idea
Quantum Annealing-driven Branch and Bound

Exact solution method idea

Rysunek: Idea of the quantum lower bound calculation.
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Total Weighted Tardiness Problem (TWTP)
The considered TWTP problem can be written in the form of an
optimization task:

min
S

n∑
i=1

wiTi (11)

s.t.

Si + pi − Sj ¬ K (1− yij), j = i + 1, . . . , n, i = 1, . . . , n, (12)

Sj + pj − Si ¬ Kyij , j = i + 1, . . . , n, i = 1, . . . , n, (13)

yij ∈ {0, 1}, j = i + 1, . . . , n, i = 1, . . . , n, (14)

Si ­ 0, i = 1, . . . , n, (15)

where K is a sufficiently large number – for instance, K =
∑n

i=1 pi .
In turn, yij is a binary variable equal to 1 if i task precedes j and 0
otherwise.
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Lagrange relaxation of the Lower Bound

Lagrange function with multipliers uij and vij , i = 1, 2, . . . , n,
j = 1, 2, . . . , n, for the considered (main) goal function of our
problem, assumes for the vector S = (S1, S2, . . . ,Sn) and the
matrix y = [yij ]n×n the following form:

L(S , y , u, v) =
n∑

i=1

wiTi +
n∑

i=1

n∑
j=i+1

uij(Si + pi − Sj − K (1− yij))+

+
n∑

i=1

n∑
j=i+1

vij(Sj + pj − Si − Kyij).
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Lagrange relaxation of the Lower Bound
By transforming this expression we obtain

L(S , y , u, v) =
n∑

i=1

Li (Si , u, v) + K
n∑

i=1

n∑
j=i+1

Qij(yij , u, v) + V (u, v),

(16)
where

Li (Si , u, v) = wiTi + αiSi ,

αi =
n∑

j=i+1

(uij − vij) +
i−1∑
j=1

(vji − uji ), Qij(yij , u, v) = (uij − vij)yij ,

V (u, v) =
n∑

i=1

pi

i−1∑
j=1

vji +
n∑

j=i+1

uij

− K
n∑

i=1

n∑
j=i+1

uij .

25 / 49 W. Bożejko Optimal solving of scheduling problems on D-Wave...



Introduction
Problems description

Formulation for D-Wave quantum annealer
Quantum computational experiments

Formulation for D-Wave quantum annealer
Exact solution method idea
Quantum Annealing-driven Branch and Bound

Lagrange relaxation of the Lower Bound

Note that if S∗ is the optimal solution to the problem under
consideration, then for any non-negative u, v ­ 0 there is

n∑
j=1

wjTj ­
n∑

j=1

wjTj +
n∑

i=1

n∑
j=i+1

uij(S
∗
i + pi − S∗j − K (1− yij))+

+
n∑

i=1

n∑
j=i+1

vij(S
∗
i + pi − S∗j − Kyij) ­ min

S
min
y

L(S , y , u, v)

since S∗ defines an feasible solution to a problem (11), for which
the tasks are disjoint. Thus, minS miny L(S , y , u, v) is a lower
bound on the value of the objective function of the original
problem.

26 / 49 W. Bożejko Optimal solving of scheduling problems on D-Wave...



Introduction
Problems description

Formulation for D-Wave quantum annealer
Quantum computational experiments

Formulation for D-Wave quantum annealer
Exact solution method idea
Quantum Annealing-driven Branch and Bound

Lagrange relaxation of the Lower Bound

Thus, while looking for a good lower bound, we need to determine
the

LB = max
u,v

min
S ,y

L(S , y , u, v) = max
u,v

(
n∑

i=1

min
0¬Si¬T −pi

Li (Si , u, v)+

+K
n∑

i=1

n∑
j=i+1

min
y

Qij(yij , u, v) + V (u, v)

 (17)

whereby maximization towards u and v can be approximate, while
towards S and y must be exact.

This task boils down to finding the minimax point on the saddle
surface.
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Lagrange relaxation of the Lower Bound
D-Wave formulation

LB = −min
u,v ,S,y

−
 n∑

i=1

Li (Si , u, v)+K
n∑

i=1

n∑
j=i+1

Qij(yij , u, v)+V (u, v)


(18)

with constraints (s.t.):

Li (Si , u, v) ¬ Li (0, u, v), i = 1, 2, . . . , n, (19)

Li (Si , u, v) ¬ Li (1, u, v), i = 1, 2, . . . , n, (20)

...

Li (Si , u, v) ¬ Li (T − pi , u, v), i = 1, 2, . . . , n, (21)
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Lagrange relaxation of the Lower Bound
D-Wave formulation cont.

and
Qij(yij , u, v) ¬ Qij(0, u, v), i , j = 1, 2, . . . , n, (22)

Qij(yij , u, v) ¬ Qij(1, u, v), i , j = 1, 2, . . . , n. (23)
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Lagrange relaxation of the Lower Bound
D-Wave formulation cont.

From definition a tardiness Ti = max{0,Si + pi − di}, but we must
not use maximum as a constraint on D-Wave quantum annealer,
so:
Algorithm 1: Adding S minimalization constraints to QUBO
model

1 for i = 1, 2, . . . , n do
2 for t = 0, 1, 2, . . . ,T − pi do
3 if (t + pi − di > 0) then
4 Add constraint Li (Si , u, v) ¬ wi · (t + pi − di ) + αj · t
5 else
6 Add constraint Li (Si , u, v) ¬ wi · 0+ αi · t

30 / 49 W. Bożejko Optimal solving of scheduling problems on D-Wave...



Introduction
Problems description

Formulation for D-Wave quantum annealer
Quantum computational experiments

Formulation for D-Wave quantum annealer
Exact solution method idea
Quantum Annealing-driven Branch and Bound

Hybrid QPU-CPU Quantum Annealing-driven B&B
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Total weighted tardiness problem
Weighted number of tardy jobs minimization

Quantum computational experiments
Computer experiments have been conducted in D-Wave Leap
environment on hybrid constrained quadratic model
version1p solver executed on a North America quantum annealer.

Case Study. An instance of n = 7 has been generated for an
experiment for checking usefulness of the proposed methodology.

i 1 2 3 4 5 6 7
pi 3 82 26 5 3 81 81
di 0 24 133 47 120 87 119
wi 1 10 2 1 9 10 9

Tabela: An instance wt7 070 of n = 7 size.

Remark: for n = 7 the QUBO model generates 1.13 · 1049
solutions, however 7!=5040 only.
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Total weighted tardiness problem
Weighted number of tardy jobs minimization

iter. π πLocalUB LocalUB∗ LocalLB∗ h
1 [7, 2, 3, 4, 5, 6, 1] [4, 5, 6, 2, 3, 7, 1] 3330 842.38 1
2 [1, 7, 3, 4, 5, 6, 2] [1, 4, 6, 5, 3, 7, 2] 3313 2550.31 1
3 [1, 2, 7, 4, 5, 6, 3] [1, 2, 5, 6, 4, 7, 3] 3080 866.95 1
4 [1, 2, 3, 7, 5, 6, 4] [1, 2, 5, 7, 3, 6, 4] 3311 797.68 1
5 [1, 2, 3, 4, 7, 6, 5] [1, 4, 6, 2, 7, 3, 5] 4429 2032.25 1
6 [1, 2, 3, 4, 5, 7, 6] [4, 2, 5, 7, 3, 1, 6] 3366 2516.18 1
7 [1, 2, 3, 4, 5, 6, 7] [1, 6, 5, 2, 3, 4, 7] 3188 2029.32 1
8 [6, 2, 7, 4, 5, 1, 3] [5, 4, 6, 2, 7, 1, 3] 3238 1087.37 2
9 [1, 6, 7, 4, 5, 2, 3] [4, 1, 6, 5, 7, 2, 3] 3120 2602.27 2
10 [1, 2, 6, 4, 5, 7, 3] [1, 4, 2, 5, 6, 7, 3] 3053 2110.99 2
11 [1, 2, 7, 6, 5, 4, 3] [1, 6, 5, 2, 7, 4, 3] 3136 1093.57 2
12 [1, 2, 7, 4, 6, 5, 3] [4, 6, 1, 2, 7, 5, 3] 4267 2092.99 2
13 [1, 2, 7, 4, 5, 6, 3] [5, 1, 2, 7, 4, 6, 3] 3199 2562.63 2
14 [5, 2, 6, 4, 1, 7, 3] [2, 4, 5, 6, 1, 7, 3] 3154 2275.44 3
15 [1, 5, 6, 4, 2, 7, 3] [1, 4, 6, 5, 2, 7, 3] 3043 3019.60 3
∗ results of quantum annealing on D-Wave machine in time 8ms
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Summary for 1||∑wiTi

The case considers the NP-hard single machine tasks
scheduling problem with the criterion of minimizing the
weighted sum of tardiness.

An exact quantum annealing-driven branch and bound
QAB&B algorithm has been proposed. Currently, the
possibilities of quantum annealers (they are only produced by
D-Wave company) allow us for optimal solving instances of
the size n ¬ 10 in time of minutes.
The proposed methodology allows for optimal solving of
similar problems (eg. TSP), waiting for the increase of
computational possibilities of quantum computers.
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Single machine weighted number of tardy jobs scheduling
Let Cπ(i) =

∑i
j=1 pπ(i) be the moment of completion of the task

π(i) (in the optimal solution the schedule is shifted to the left).
We define the objective function

F(π) =
n∑

i=1

wπ(i)Uπ(i) (24)

Where

Uπ(i) =

{
0 if Cπ(i) ¬ dπ(i),
1 if Cπ(i) > dπ(i),

is the unit delay (binary tardiness) of task π(i).

The problem under consideration is to determine the optimal
permutation π∗ ∈ Π minimizing the cost of F(π∗). In Graham’s
notation, it is denoted by 1||

∑
wiUi and is NP-hard.
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Transformation to 1||max
∑
wi(1− Ui)

A problem 1||min
∑

wiUi can be formulated equivalently as the
problem of maximizing the weighted number of tasks executed on
time 1||max

∑
wi (1− Ui ):

max
t∑

i=1

wixi (25)

with constraints:

p1x1 ¬ d1,
p1x1 + p2x2 ¬ d2,
p1x1 + p2x2 + p3x3 ¬ d3,

...
p1x1 + p2x2 + . . . + ptxt ¬ dt ,

(26)

xi ∈ {0, 1}, i = 1, 2, . . . , t.
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D-Wave quantum machine formulation

The Lagrange function with the real multipliers u = (u1, u2, . . . , ut)
takes the following form for binary x = (x1, x2, . . . , xt):

L(x , u) =
t∑

i=1

wixi + u1(p1x1 − d1) + u2(p1x1 + p2x2 − d2)+

. . .+ ut(p1x1 + p2x2 + . . .+ ptxt − dt) =

= x1(w1+u1p1+u2p1+. . .+utp1)+x2(w2+u2p2+u3p2+. . .+utp2)+

. . .+ xt(wt + utpt)−
t∑

i=1

uidi =
t∑

i=1

xi

wi + pi

t∑
j=i

uj

− t∑
i=1

uidi .
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D-Wave quantum machine formulation

Let

Li (xi , u) = xi

wi + pi

t∑
j=i

uj

 ,
therefore

L(x , u) =
t∑

i=1

Li (xi , u)−
t∑

i=1

uidi︸ ︷︷ ︸
independent of x

and the maximization of L(x , u) with respect to individual variables
xi , for fixed values of ui , can be performed independently.
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D-Wave quantum machine formulation

Note that for any ui ¬ 0, i = 1, 2, . . . , t and the optimal x∗ being a
solution to the objective function problem (25) the inequality holds

t∑
i=1

wix
∗
i ¬ min

u
L(x∗, u) ¬ min

u
max
x

L(x∗, u) =

= min
u

(
t∑

i=1

max
x

Li (xi , u)

)
−

t∑
i=1

uidi
def
= UBon−time . (27)
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D-Wave quantum machine formulation

To calculate the upper bound of the Lagrange function UBon−time

on a D-Wave computer, we find the values of the u vector using
quantum annealing by solving the following CQM problem:

UBon−time
def
= min

u,x

(
t∑

i=1

Li (xi , u)

)
−

t∑
i=1

uidi , (28)

with constraints
Li (xi , u) ­ Li (0, u),

and
Li (xi , u) ­ Li (1, u),

for each i = 1, 2, . . . , t (the constraints are 2t in total).
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Computational experiments on a quantum machine

The calculations were performed in the D-Wave Leap environment
using the hybrid constrained quadratic model version1p
solver and run on a machine installed in North America.

The calculation time for the considered example with n = 10 on
CPU+QPU was 50s, including the QPU time of 0.15s
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Exact algorithm driven by quantum annealing
Case study

i 1 2 3 4 5 6 7 8 9 10
pi 25 81 71 87 64 82 7 76 95 31
di 254 286 209 292 232 302 245 196 254 252
wi 5 6 2 9 4 7 4 1 8 2

Tabela: Test instance wt10 011 of problem size n = 10.

One of the optimal solutions:

π∗ = (7, 1, 9, 4, 6, 8, 3, 5, 10, 2),

F (π∗) = 15.
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Exact algorithm driven by quantum annealing
Case study

poziom t LocalLB LocalUB F (π) F (π∗)

1 1 17,55 18 29 18
1 2 14,62 15 30 15
1 3 14,41 26 26 15
1 4 17,08 15 33 15
1 5 14,41 15 26 15
1 6 16,07 15 26 15
1 7 17,89 15 26 15
1 8 14,41 15 26 15
1 9 15,56 15 26 15

Tabela: QAdB&B algorithm work
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Computational experiments in D-Wave Leap environment

Tabela: Results of computational experiments

QAdB&B SMB&B
instance LBπ UBπ QPU [ms] gap LB UB CPU [ms]
wt40 011 32.07 (33) 34 15.29 2.94 33.49 (34) 137 366
wt40 012 35.71 (36) 39 15.34 7.69 36.83 (37) 114 328
wt40 013 46.90 (47) 50 15.35 6.00 47.54 (48) 166 331
wt40 014 34.17 (35) 36 15.28 2.78 34.41 (35) 130 324
wt40 015 48.72 (49) 51 15.33 3.92 47.49 (48) 149 324
wt40 016 99.93 (100) 105 15.32 4.76 99.24 (100) 167 324
wt40 017 100.68 (101) 103 15.34 1.94 100.09 (101) 168 324
wt40 018 101.69 (102) 103 15.34 0.97 102.18 (103) 174 329
wt40 019 96.67 (97) 99 15.33 2.02 97.12 (98) 170 326
wt40 020 87.08 (88) 89 15.33 1.12 86.90 (87) 201 326
average 15.32 3.41 330

Results of QAdB&B have been compared to classic B&B run on
silicon-based CPU (SMB&B) with LB obtained by Powell
continouous optimization of u in Lagrange function.
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Computational experiments in D-Wave Leap environment

Tabela: Results of computational experiments

QAdB&B SMB&B
instance LBπ UBπ QPU [ms] gap LB UB CPU [ms]
wt50 011 55.46 (56) 59 15.33 5.08 56.97 (57) 160 593
wt50 012 43.01 (44) 46 15.20 4.35 44.97 (45) 177 593
wt50 013 62.73 (63) 65 15.33 3.08 60.48 (61) 181 583
wt50 014 70.20 (71) 75 15.34 5.33 72.13 (73) 174 619
wt50 015 54.29 (55) 57 15.27 3.51 56.63 (57) 132 599
wt50 016 107.21 (108) 110 15.33 1.82 107.21 (108) 249 592
wt50 017 88.03 (89) 91 15.33 2.20 87.54 (88) 221 598
wt50 018 107.36 (108) 109 15.33 0.92 106.90 (107) 247 584
wt50 019 110.25 (111) 112 15.35 0.89 111.13 (112) 228 589
wt50 020 89.93 (90) 93 15.34 3.23 90.39 (91) 185 758
average 15.31 3.04 610
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Computational experiments in D-Wave Leap environment

Tabela: Results of computational experiments

QAdB&B SMB&B
instance LBπ UBπ QPU [ms] gap LB UB CPU [ms]
wt100 011 119.14 (120) 127 15.29 5.51 121.81 (122) 186 4193
wt100 012 145.48 (146) 154 15.34 5.19 150.42 (151) 189 4189
wt100 013 115.46 (116) 125 15.35 7.20 122.86 (123) 171 4098
wt100 014 106.62 (107) 116 15.35 7.76 112.14 (113) 148 4165
wt100 015 124.57 (125) 134 15.30 6.72 128.54 (129) 188 4209
wt100 016 233.25 (234) 237 15.36 1.27 234.23 (235) 317 4169
wt100 017 191.64 (192) 195 15.36 1.54 189.72 (190) 260 4367
wt100 018 273.63 (274) 278 15.33 1.44 269.09 (270) 330 4119
wt100 019 245.48 (246) 249 15.28 1.20 246.65 (247) 348 4157
wt100 020 224.57 (225) 227 15.36 0.88 219.14 (220) 303 4298
average 15.33 3.87 4196
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Summary for 1||∑wiUi

We considered the NP-hard problem of scheduling tasks on
one machine with the criterion of minimizing the weighted
number of tardy jobs.

We are able to compute optimal (exact) solutions for n ¬ 100.
Currently, quantum annealing capabilities allow for optimal
resolution of n ¬ 1000 instances in a few seconds, but with no
guarantee of optimality.

The implementation of the algorithm was implemented in
Python and tested in the D-Wave Leap environment as a
hybrid method run alternately on the CPU and QPU.
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