Surgery Scheduling: Research and Practice

Scheduling Seminar Series June 7, 2023

Vikram Tiwari, Ph.D.

Associate Prof. Anesthesiology & Biomedical Informatics, and Biostatistics Sch. of Med; Management, Vanderbilt University Senior Director Surgical Business Analytics, Vanderbilt University Medical Center, Nashville TN, USA

MEDICAL CENTER

Vanderbilt University Medical Center

Vanderbilt Health is a growing health system, anchored by Vanderbilt University Medical Center. We are one of the largest and most prominent academic medical centers in the Southeast, with seven hospitals and more than 200 clinics across Tennessee and in neighboring states.

THE FACTS

1,709 licensed beds across seven hospitals	4 on-campus						
 Vanderbilt University Hospital Monroe Carell Jr. Children's Hospital at Vanderbilt Vanderbilt Psychiatric Hospital Vanderbilt Stallworth Rehabilitation Hospital Vanderbilt Wilson County Hospital Vanderbilt Bedford Hospital Vanderbilt Tullahoma-Harton Hospital 	ORs) + 2 ambulatory sites (11 ORs)						
Nearly 3 million patient visits*							
Over 88,000 surgical cases*	55,000+ surgical cases / vear						
75,000 hospital discharges*							
Over 161,000 emergency department visits*							
\$4.7 billion net patient services revenue**							
Nearly 40,000 employees*							
Nearly 2,000 Vanderbilt Medical Group employed physicians*							
More than 1 000 resident physicians each year*							

MEDICAL CI

VANDERBILT

Objective of this talk

- Familiarize the audience with processes around management of OR capacity, as well as surgical scheduling.
- Discuss 1 or 2 of my recently published research alongside my coauthors.
- Discuss a couple of unexplored research topics in surgery/OR scheduling.

What is an Operating Room? What is Surgery?

Ambulatory ORs vs Non-Amb. ORs

- Ambulatory Surgical Centers (ASC):
 - Outpatient surgeries (i.e., same day discharge)
 - Home \rightarrow HR/prep \rightarrow OR \rightarrow PACU/recovery \rightarrow Home
 - Smaller surgery durations, less acuity, faster recovery, shorter OR block time (typically 8-10 hours), faster turnaround time between cases
 - Could be single specialty or multi-specialty
 - Eye, GYN, Orthopedics, Urology, Dentistry, Plastics, Pediatric (Otolaryngology)

Ambulatory ORs vs Non-Amb. ORs

- Non-ambulatory ORs ("main ORs"):
 - Oriented towards inpatient surgeries but can (and often) also do Outpatient procedures
 - Home \rightarrow HR/prep \rightarrow OR \rightarrow PACU/recovery \rightarrow Home
 - Home \rightarrow HR/prep \rightarrow OR \rightarrow ICU \rightarrow Unit \rightarrow Home
 - Unit \rightarrow OR \rightarrow
 - ED \rightarrow OR \rightarrow
 - Specialized ORs, not complete flexibility w.r.t. case placement (e.g., cardiac surgery, pulmonary, vascular surgery, etc.)

Disclaimers

- My views are influenced by large level-1 trauma academic medical centers in the US
- Not-for-profit center
- There are many similarities in scheduling surgeries and capacity management of ORs with for-profit, community hospitals, govt. hospitals, etc., but also differences
- Surgery scheduling processes likely differ between countries as well

How do surgeries get scheduled?

- Electively scheduled surgery
 - Primacy care refers patient to surgical clinic or patient searches for surgeon of repute; schedules appointment; at the visit, surgeon determines if surgery needed; books surgical appointment for a future date on which surgeon will be in the OR and has unfilled capacity in his/her "block", and the time day/time also works for the patient
- Emergency surgery
 - Patient comes to the ER/ED \rightarrow OR

VANDERBILT WUNIVERSITY MEDICAL CENTER

Electively Scheduled Surgeries

- Two concepts from previous slide:
 - Surgery schedule (for a surgeon) for a future day builds up slowly, and is likely going to be fixed (i.e., the surgeon doesn't usually move the case to a different day)
 - Block time used to allocate OR capacity

Elective Schedule Builds over time

C'				Days	Out																												
ek	Dat	e	Actuals*	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1	Thu 06/	01	49	49	49	47	47	47	47	48	43	41	39	36	36	36	34	32	31	29	29	29	29	28	26	25	25	25	25	25	24	24	23
â	Fri 06/0	2	36	34	35	32	31	31	31	31	30	29	29	28	28	28	28	25	25	24	21	20	20	20	19	18	18	14	13	13	13	13	13
2	Mon 06	/05		49	48	48	48	47	45	45	45	45	45	45	46	45	44	44	44	44	43	43	41	41	40	40	40	38	37	37	36	34	34
	Tue 06/	06			57	57	57	57	54	54	52	52	52	52	51	50	49	48	46	46	46	45	45	44	41	39	39	39	37	32	31	30	29
	Wed 06	/07				41	41	41	41	38	37	37	37	37	37	36	34	31	30	29	29	29	27	25	24	24	21	21	21	20	19	18	17
	Thu 06/	08					41	41	41	40	39	37	34	34	34	34	34	32	30	30	28	28	28	26	26	25	24	24	24	24	22	22	22
	Fri 06/0	9						28	28	28	27	27	27	27	27	27	27	27	25	25	25	25	25	25	24	23	22	22	22	22	22	21	18
3	Mon 06	/12									48	48	48	48	49	50	49	49	49	49	47	45	44	43	42	42	42	41	41	37	36	35	35
	Tue 06/	13										48	48	48	47	44	43	43	43	43	43	43	42	42	40	37	37	37	36	33	31	30	30
	Wed 06	/14											44	44	44	42	41	40	38	38	38	38	38	36	36	34	34	34	34	34	33	32	31
	Thu 06/	15												40	40	40	40	38	37	37	37	37	37	37	35	34	33	33	33	33	31	31	29
	Fri 06/1	6													27	27	27	24	22	18	18	18	18	18	18	18	18	17	16	16	16	14	14
4	Mon 06	/19																37	37	37	37	37	37	36	36	36	36	35	35	35	33	33	33
	Tue 06/	20																	43	43	43	42	41	39	38	38	38	38	38	38	37	35	32
	Wed 06	/21																		35	35	35	31	31	28	27	27	27	27	26	26	25	25
	Thu 06/	22																			27	27	27	27	24	24	22	22	22	22	22	19	16
	Fri 06/2	3					_			_							_			_	_	21	21	21	20	18	18	16	16	16	16	16	15
5	Mon 06	26																							38	38	38	36	35	34	33	33	33
	Tue 06/	27																								25	25	25	24	24	22	23	23
	Wed 06	/28																									24	24	24	24	23	23	21
	Thu 06/	29																										26	26	26	25	24	24
	Fri 06/3	0					_										_				_								23	23	23	22	21
6	Mon 07	/03																														17	17

Education | July 2014

/S)

Predicting Case Volume from the Accumulating Elective Operating Room Schedule Facilitates Staffing Improvements 📀

Vikram Tiwari, Ph.D. 🔤 ; William R. Furman, M.D.; Warren S. Sandberg, M.D., Ph.D.

+ Author and Article Information

Anesthesiology July 2014, Vol. 121, 171–183.

https://doi.org/10.1097/ALN.000000000000287

VANDERBILI W UNIVERSIT

MEDICAL CENTER

Predicting Daily Surgical Volumes Using Probabilistic Estimates of Providers' Future Availability

© 2020 Deci

Decision Sciences Volume 53 Number 1 February 2022

Online Bin-Packing Problem

- Variant of block scheduling used in community hospitals – online bin-packing problem, as surgeries arrive one at a time
 - Bandi & Gupta (2020, M&SOM): Operating Room
 Staffing and Scheduling
 - Hospital exercises control over blocks; surgeon operates in any OR that block gets assigned to; schedules develop 2-3 days in advance; cases that don't fit the scheduled time are deferred to future days

VANDERBILT WUNIVERSITY MEDICAL CENTER

Need for Differential Scheduling / Capacity Allocation Policies

Cluster Num	Cluster Members hip	TMinus0_ 1	TMinus2_ 7	TMinus8_ 14	TMinus15 _28	TMinus29 +	Case Vol Combine d	Cluster Name
1	1	16%	46%	18%	14%	6%	162	
2	1	0%	3%	6%	46%	44%	95	
3	65	60%	19%	8%	8%	5%	7644	Exclusively Add-Ons Cluster
4	108	15%	18%	18%	25%	24%	20233	50% Prior to T-15
5	68	6%	6%	10%	19%	60%	13221	Exclusively Electives

Electively Scheduled Surgeries

- Two concepts from previous slide:
 - Surgery schedule (for a surgeon) for a future day builds up slowly, and is likely going to be fixed (i.e., the surgeon doesn't usually move the case to a different day)
 - Block time used to allocate OR capacity

Block Scheduling - Service

Rooms	Monday		Tuesday		Wednesda	у	Thursday		Friday	
RM 01	Neuro Interventional	0730 - 1530	Neuro Interventional	0730 - 1530	Neuro Interventional	0800 - 1600	Neuro Interventional	0730 - 1530	Neuro Interventional	Week 1
										0900 - 1600
										Week 2,3,4,5
										0800 - 1000
RM 02	Urology Surgery	0730 - 1730	Urology Surgery	0730 - 1730	Urology Surgery	0800 - 1800	Urology Surgery	0730 - 1730	Urology Surgery	Week 1
	orology ourgery	0/00 1/00	oroiogy surgery	0/00 1/00	orology ourgery	0000 1000	oronogy ourgery	0/00 1/00	orology ourgery	0900 - 1800
										Week 2,3,4,5
										0800 - 1800
RM 03	Neurosurgery	0730 - 1730	Neurosurgery	0730 - 1730	General Oncology Surge	ery	Thoracic	Week 1,3,5	Urology Surgery	Week 1
						0800 - 1800		0730 - 1230		0900 - 1800
								Week 2,4		<u>Week 2,3,4,5</u>
								0730 - 1730		0800 - 1800
RIVI 04	Urology Surgery	0730 - 1930	Thoracic	0730 - 1930	Urology Surgery	0800 - 1800	Thoracic	0730 - 1930	Thoracic	Week 1
										0900 - 1800
										<u>Week 2,3,4,5</u> 0800 - 1800
										0000 1000
RM 05	Cardiac	0730 - 1930	Cardiac	0730 - 1930	Cardiac	0800 - 2000	Cardiac	0730 - 1930	Cardiac	Week 1
		0700 1000	- Saraldo	0700 1000	CALCED C	0300 2000	SALAIDO	0700 1000		0900 - 2000
										Week 2,3,4,5
										0800 - 2000

Block Scheduling – Surgeon / Service

Rooms	Monday		Tuesday		Wednesday		Thursday		F	riday
ASC OR 01			<u>Week 1,2,3</u> 0700 - 1700	, MD	0700 - 1700	MD	<u>Week 1,3</u> 0700 - 1200	MD	Week 1,3 0700 - 1700 Week 4 0700 - 1200	Ophthalmology MD
ASC OR 02	Week 1,3 0700 - 1200 Week 2,4 0700 - 1200 Br 1200 - 17	MD MD DO	Week 1,3 0700 - 1200 Week 2 0730 - 1200 1200 - 170 E	, MD , MD , MD	Week 1 1200 - 1700 Week 1,3 0700 - 1200 Week 2,4 0700 - 1700 Community Otolaryng Week 3 1300 - 1700	;, MD ;, MD g <mark>ology</mark> ;, MD	Week 2 0700 - 1700 Community Otolaryn Week 3 1200 - 1700 Week 4 0700 - 1200	gology MD MD	Week 1,3 1200 - 1700 Week 2 0700 - 12 Week 4 0700 - 1700	, DO MD MD

OR Capacity Management

- Hopp & Lovejoy (2014, Chapter 4): Hospital
 Operations: Principles of High Efficiency Health Care
- Strategic: How many ORs (and pre-op and post-op bays) to plan
 - Youn S, Geismar HN, Sriskandarajah C, Tiwari V. Adaptive Capacity Planning for Ambulatory Surgery Centers. *Manufacturing & Service Operations Management*. 2022 Nov;24(6):3135-57.
- Tactical: How many ORs to allocate to which surgeon/service on which days of the week; how many days in advance should capacity be released, etc.; how to measure ASC capacity util. vs. "main OR"
- Operational: <24 hours from day-of-surgery, for
 example, how to fit add-on cases?

MEDICAL CENTER

Several Excellent Review Articles

- Samudra M, Van Riet C, Demeulemeester E, Cardoen B, Vansteenkiste N, Rademakers FE. Scheduling operating rooms: achievements, challenges and pitfalls. *Journal of scheduling*. 2016 Oct;19:493-525.
- Youn S, Geismar HN, Pinedo M. Planning and scheduling in healthcare for better care coordination: Current understanding, trending topics, and future opportunities. *Production and Operations Management*. 2022 Dec;31(12):4407-23.

Actual Day of Surgery at an ASC

Example of an ASC center. 2 surgeons over 4 ORs. One surgeon did 8 short cases; other surgeon did 6 cases

Schedule at the Main OR at T-1

PRODUCTION AND OPERATIONS MANAGEMENT

PRODUCTION AND OPERATIONS MANAGEMENT

Vol. 28, No. 6, June 2019, pp. 1407–1430 ISSN 1059-1478 | EISSN 1937-5956 | 19 | 2806 | 1407

DOI 10.1111/poms.12993 © 2019 Production and Operations Management Society

Scheduling Elective Surgeries with Emergency Patients at Shared Operating Rooms

Kyung Sung Jung*

Warrington College of Business, University of Florida, Gainesville, Florida 32611, USA, ksjung@ufl.edu

Michael Pinedo

Stern School of Business, New York University, New York City, New York 10012, USA, mpinedo@stern.nyu.edu

Chelliah Sriskandarajah

Mays Business School, Texas A&M University, College Station, Texas 77843, USA, chelliah@mays.tamu.edu

Vikram Tiwari

School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA, vikram.tiwari@Vanderbilt.edu

VANDERBILT WUNIVERSITY MEDICAL CENTER

Dedicated or Flexible ORs for Emergency Surgeries?

- Dedicated OR: leave OR(s) open for unscheduled surgeries
- Flexible OR: don't leave ORs open, but just "fit" emergency cases as they come in the already scheduled ORs with elective cases
- Partially flexible ORs: mix of the above

Process

The integrating schedule from Phases 1 to 3.

MEDICAL CENTER

General Information

- Three Special ORs (namely OR1, OR2, and OR3) out of 39 ORs
 - Trauma case related to neurosurgery.
- Weekly block schedule (five days per week), 10 hours/day
- Daily schedule with **some capacities** for emergency patients.
 - Any arrival of emergency patients should be accommodated in an OR with 2 hours of its arrival.
- The surgery preparation: 30 minutes.

[Phase 1] Elective Patients

- Aggregate date from October 1, 2014 through July 31, 2015
- In total, 1121 elective patients to be scheduled
- 952 elective patients are scheduled within two months

[Phase 1] Aggregate Schedule For Elective Patients

• Three types of surgeries

– Type A (P >= 6); Type B (2 < P < 6); Type C (P <= 2)</p>

Daily Schedule Pattern

Table 5 Daily Schedule Patterns

Daily pattern	OR ₁	OR_2 or OR_3	Approximately total hour
1	Few Type C	Type A : 8.0 hours	23 hours
2	Few Type C	Type A : 7.5 hours	23 hours
3	Few Type C	Type A : 7.0 hours	23 hours
4	Few Type C	Type A : 6.5 hours	23 hours
5	Few Type C	Type A : 6.0 hours, Type C : 1.0 hours	23 hours
6	Few Type C	Type B : 5.5 hours, Type C : 1.5 hours	23 hours
7	Few Type C	Type B : 5.5 hours, Type C : 1.0 hours	23 hours
8	Few Type C	Type B : 5.0 hours, Type C : 2.0 hours	23 hours
9	Few Type C	Type B : 5.0 hours, Type C : 1.5 hours	23 hours
10	Few Type C	Type B : 5.0 hours, Type C : 1.0 hours	23 hours
11	Few Type C	Type B: 4.5 hours, Type B: 2.5 hours	23 hours
12	Few Type C	Type B : 4.5 hours, Type C : 2.0 hours	23 hours
13	Few Type C	Type B : 4.5 hours, Type C : 1.5 hours	23 hours
14	Few Type C	Type B : 4.5 hours, Type C : 1.0 hours	23 hours
15	Few Type C	Type B: 4.0 hours, Type B: 3.0 hours	23 hours
16	Few Type C	Type B : 4.0 hours, Type B : 2.5 hours	23 hours
17	Few Type C	Type B : 3.5 hours, Type B : 3.0 hours	23 hours
16 17	Few Type C Few Type C	Type B : 4.0 hours, Type B : 2.5 hours Type B : 3.5 hours, Type B : 3.0 hours	23 hour 23 hour

[Phase 1] Aggregate Schedule For Elective Patients

- Elective surgery request arrives
- Scheduler looks at the partial schedule of that day
- If including it conforms to one of patterns, then allocate the

surgery

Daily Pattern	OR_1	OR_2 or OR_3	Approximately Total hours
1	Few Type C	Type A: 8.0 hour	22 hours
2	Few Type C	Type $A: 7.5$ hour	22 hours
3	Few Type C	Type $A: 7.0$ hour	22 hours
4	Few Type C	Type A : 6.5 hour	22 hours
5	Few Type C	Type A : 6.0 hour, Type C : 1.0 hour	22 hours
6	Few Type C	Type $B: 5.5$ hour, Type $C: 1.5$ hour	22 hours
7	Few Type C	Type $B: 5.5$ hour, Type $C: 1.0$ hour	22 hours
8	Few Type C	Type $B: 5.0$ hour, Type $C: 2.0$ hour	22 hours
9	Few Type C	Type $B: 5.0$ hour, Type $C: 1.5$ hour	22 hours
10	Few Type C	Type $B: 5.0$ hour, Type $C: 1.0$ hour	22 hours
11	Few Type C	Type B : 4.5 hour, Type B : 2.5 hour	22 hours
12	Few Type C	Type B : 4.5 hour, Type C : 2.0 hour	22 hours
	Few Type C	Type B : 4.5 hour. Type C : 1.5 hour	22 hours

VANDERBILT

MEDICAL CENTER

[Phase 1] Aggregate Schedule For Elective Patients

- Elective surgery request arrives
- Scheduler looks at the partial schedule of that day
- If including it conforms to one of patterns, then allocate the surgery
- Otherwise, the scheduler will work with patients and assign the surgery to another day that is convenient to the patient.
- Phase 1 ensures that appropriate workload is assigned to the 3 ORs and that a proper mix of short, medium and long surgery durations is selected.

[Phase 1] Given weekly aggregate schedule

- Longest Processing Time First Rule (LPT).
 - Sort the surgeries in descending order
 - Assign the longest processing surgery that is not assigned to the day which has the minimum flow time first.

[Phase 1] Given weekly aggregate schedule

- Longest Processing Time First Rule (LPT).
 - Example: 31 elective surgeries in week 3

Surgery Time (hour)	Week $j = 3$				
1	7				
1.5	7				
2	2				
2.5					
3	2				
3.5	9				
4	5				
4.5	1				
5	2				
5.5	0				
6	1				
6.5	0				
7	1				
7.5	0				
Total Number of Surgeries	31				
Total Surgery hours	ery hours 84.5				
Total preparation hours	15.5				

VANDERBILT Preparation (Cleaning)

[Phase 1] Given weekly aggregate schedule

- Longest Processing Time First Rule (LPT).
 - Sort the surgeries in descending order
 - Assign the longest processing surgery that is not assigned to the day which has the minimum flow time first.
- There are 31 elective surgeries with three rooms in week 3

VANDERBILT VUNIVERSITY MEDICAL CENTER

[Phase 2] Daily Schedule

- "n" electives cases in "m" ORs
- MIP model Proved that it is Strongly NP-Hard, even when m=2
- [Need] The Overlap time of surgeries: **no more than 2 hours**
- Heuristic
- Consider the six surgeries to be scheduled.

[Phase 2] Daily Schedule with Heuristics

LPT(m-k)-SPT(k) Rule, where k=1.

```
Heuristic H_D (The LPT(m-1)-SPT(1) Rule)
```

Begin

S is an ordered set of *n* surgeries **arranged according to LPT** ', i.e., $p_1 \ge p_2 \ge \ldots \ge p_n$. Schedule last job in **S** on OR_1 and remove last job from **S**.

While $(\mathbf{S} \neq \emptyset)$ do

- Step 1: Find the earliest available OR in $\{OR_1, OR_2, \ldots, OR_m\}$.
- Step 2: If earliest available OR is OR₁, schedule last job in S on OR₁ and remove last job from S. Otherwise, schedule first job in S on earliest available OR among {OR₂, OR₃, ..., OR_m} and remove first job from S. End(while)

Output: A feasible schedule for surgeries in S.

End

VANDERBILT VUNIVERSITY MEDICAL CENTER

[Phase 2] Daily Schedule with Heuristics

- LPT(m-k)-SPT(k) Rule, where k=1.
- SPT machine: OR1

VANDERBILT

MEDIC

Daily Pattern	OR_1	OR_2 or OR_3	Approximately Total hours
1	Few Type C	Type A: 8.0 hour	22 hours
2	Few Type C	Type A : 7.5 hour	22 hours
3	Few Type C	Type $A: 7.0$ hour	22 hours
4	Few Type C	Type $A: 6.5$ hour	22 hours
	Daily Pattern 1 2 3 4	Daily PatternOR11Few Type C2Few Type C3Few Type C4Few Type C	Daily PatternOR1OR2 or OR31Few Type CType A: 8.0 hour2Few Type CType A : 7.5 hour3Few Type CType A : 7.0 hour4Few Type CType A : 6.5 hour

[Phase 2] Intuition behind the LPT(m-k)-SPT(k) rule

The motivation behind the LPT(m - 1)-SPT(1)heuristic is based on the following. There are two objectives: the first one is a balancing of the loads assigned to the m ORs (in order to minimize overtime). The second one is the minimization of the maximum time in between two successive BIMs. Applying LPT to m - 1 ORs has as goal the minimization of the first objective. However, if LPT would have been applied to all *m* ORs, then in the beginning of the process all ORs would have to deal with long surgery durations and the times in between successive BIMs (e.g., the time till the first BIM) may at times be too long. In order to remedy this, we apply SPT to one of the ORs. If an emergency then arrives at some time in the beginning of the process, the amount of time till the next BIM should be relatively short (and it would most likely occur in the OR that had been assigned the surgeries with short durations).

VANDERBILT VUNIVEF MEDICAL CENTER

[Phase 2] Daily Schedule with MIP Model

- Mixed Integer Program for minimizing the overall cost.
- [Need] The Overlap time of surgeries: no more than 2 hours

[Phase 3] Arrival Pattern for Emergency Patients

 The emergency patients who arrive during operating hours (i.e., 7 am to 5 pm), since they have priority over elective patients.

- The emergency surgery arrivals fits a Poisson distribution under 5% significant level.
 - On average 6.17 emergency patients per month randomly arrive.

- The (Revised) Online LPT(m-k)-SPT(k) Rule
- The Online MIP Model

[Phase 3] Rescheduling process: Online LPT(m-k)-SPT(k) Rule

Heuristic H₀ (The Online LPT(m-1)-SPT(1) Rule)

Begin

Input: S is an ordered set of n elective surgeries (including surgery times) and E is an ordered set of emergency patients (including surgery times and arrival times) sorted by arrival times. Run heuristic H_D on S. Output: A feasible schedule for surgeries in S. While $(\mathbf{E} \neq \emptyset)$ do Suppose first emergency in **E** arrives at time t_1 with surgery time p_e . Input: A subset of surgeries (S_b) , which includes (i) those ongoing at time t_1 and (ii) those already completed before time t_1 , are fixed. **Step 1:** Find the earliest available OR (its completion is denoted by t_2). Schedule first emergency surgery in **E** and remove this surgery from **E**. Step 2: Set $S = S - S_b$ and apply heuristic H_D to the remaining surgeries in S. End(while)

Output: A feasible schedule for surgeries in S as well as E.

VANDERE MEDICAL CENTER

- The Online LPT(m-k)-SPT(k) Rule
- SPT machine: OR1

VANDERBILT VUNIVERSITY MEDICAL CENTER

- The Online LPT(m-k)-SPT(k) Rule
- SPT machine: OR1

VANDERBILT VUNIVERSITY MEDICAL CENTER

- The Revised Online LPT(m-k)-SPT(k) Rule
- SPT machine: OR1 → OR3

• The Online MIP Model

Contribution of this research

Jung, Pinedo, Sriskandarajah, and Tiwari: Scheduling Elective Surgeries at Shared ORs Production and Operations Management 28(6), pp. 1407–1430, © 2019 Production and Operations Management Society

1409

Table 1 Classification of Papers Related to Our Study in Terms of Type and Level of Decisions

		SCSP, Mult	i-ORs	Emerge	ency patients	
SCAP	SCSP, Single OR	Deterministic	Stochastic	Shared OR	DEOR	Rescheduling
Marcon et al. (2003), Hans et al. (2008), and Fei et al. (2009)	Weiss (1990), Wang (1993), Denton and Gupta (2003), Denton et al. (2007), Gupta (2007), and Guda et al. (2016)	Blake and Donald (2002), Velasquez and Melo (2005), Jebali et al. (2006), Pham and Klinkert (2008), Cardoen et al. (2010b), Riise and Burke (2011), Marques et al. (2012); Vijayakumar et al. (2013), and Zhao and Li (2014)	Denton et al. (2010) and Batun et al. (2011)	Gerchak et al. (1996), Lamiri et al. (2008a), Pham and Klinkert (2008), and Zonderland et al. (2010)	Bhattacharyya et al. (2006), Wullink et al. (2007), Li and Stein (2008), and Ferrand et al. (2014)	Gul et al. (2011), Van Essen et al. (2012), Erdem et al. (2012), Gul et al. (2015)
Our paper		Our paper	Our paper	Our paper	Our paper	Our paper

SCAP: surgical case assignment problem; SCSP: surgical case sequencing problem VANDERBILT VUNIVERSITY MEDICAL CENTER

Conclusion

• The integrating schedule from Phase 1 to 3.

Rescheduling process with Stochastic Surgery Duration

Potential Future Research Themes

Flip-Room Schedules

		0700		0800	ı .	0900	1000	1100		1200	1300	1400	1	1500	1600	1700	
RM 01	•••		121	L Ort	hc 121	L opedic	RI RI	IGHT SUPRASCAP	Orthopedic	Orthopedic	Orthopedic	Orthopedic	Orthopedic	Orthopedic	Orthopedic	Orthopedic	
RM 02	•••		Orthopedic	12	R	R	IGHT T <mark>10pedic</mark>	Orti	LEFT PERONEAL	AN thopedic	Orthopedic	Orthopedic	Orthopedic	Orthopedic	Orthopedic	Orthopedic	
RM 03	•••		Orthopedic	₩ 8	ARTH	ROPLASTY TOTAL	SHOULDER	ic	Orthopedic	Orthopedic	Orthopedic	Orthopedic	Orthopedic	Orthopedic	Orthopedic		
RM 04			<mark>₩</mark>	ME	opedic	Orthopedic	Orthopedic	Orthopedic	Orthopedic	Orthopedic	Orthopedic	Orthopedic	Orthopedic	Orthopedic	Orthopedic		
E 01										12 L	<mark>№ ¤ [</mark> M	IE					
E 02								₩ 8	; ME	<mark>₩</mark> ₩ ;	ART						
E 03			N 🛛 🔤	MEN	ISCECTOMY												

Flip-Room Scheduling Components

÷

	Subsequent Case									
		Wheels In	Anesthesia	Incision						
		(2)	Ready (3)	(4)						
Prior Case	Last									
	Procedure									
	Closing (1)									
	Incision									
	Closed (5)									
	Wheels Out									
	(6)									

VANDERBIL

MEDICAL CENTER

Flip-Room Surgeons Scheduling Pattern

MEDIAN TIME (MINUTES)										
Prior Case	Las	t Procedure Cl	osing		Incsion End			Case		
Subsequent Case	In OR	Anes. Ready	Incision Beg.	In OR	Anes. Ready	Incision Beg.	In OR	Anes. Ready	Incision Beg.	Volume
	6	15	11	-27	-16	3	-33	-22	-2	10
	8	21	32	-15	-10	8	-21	-14	4	10
	d	5	21	-13	-7	8	-16	-9	5	47
	7	17	29	-6	2	17	-13	-7	12	10
	12	24	46	-19	-7	16	-22	-10	11	23
	10	18	27	-1	9	16	-3	4	13	16
	-18	-4	17	-32	-26	-10	-34	-29	-13	44
	-14	-1	15	-27	-23	-10	-25	-27	-15	59
	1 <mark>5</mark>	22	25	-3	8	34	-7	1	26	18
	3	11	22	0	8	17	-6	3	14	18
	-1	9	19	-2	8	18	-9	0	11	14
	-10	-2	25	-23	-15	1 3	-27	-20	7	52
	9	21	35	-18	-9	9	-20	-12	7	9
	d	10	28	-15	-9	10	-18	-12	5	37
	2	9	24	-7	-4	12	-7	-2	11	11
	Anegative	number implies	that the subse	quent case's	event occurred	hefore the prio	r case's even	+		

A negative number implies that the subsequent case's event occurred before the prior case's event.

Extending the Shared-ORs Research

Earlier Scenario		j
	Current Scenario	
Elective/Pre-scheduled 7:30 am		
GYN 1 Random 2~4 cases per OR		
GYN Stochastic surgery durations	GYN 2	
GYN 3		
· · · · · · · · · · · · · · · · · · ·		
C/S Random 1~3		
scheduled c/s cases per OR per day		
C/S A Random 1~2		
. 2		
Scheduled + Unscheduled		
24 hours Stochastic c/s durations		

Extreme case when an OR must always be available for an emergency case

VANDERBILT WUNIVERSITY MEDICAL CENTER

Perioperative bed capacity planning guided by theory of constraints

Publisher: IEEE

🔓 PDF

Vikram Tiwari; Warren S. Sandberg All Authors

Cite This

MANUFACTURING & SERVICE OPERATIONS MANAGEMENT

Vol. 24, No. 6, November–December 2022, pp. 3135–3157 ISSN 1523-4614 (print), ISSN 1526-5498 (online)

Adaptive Capacity Planning for Ambulatory Surgery Centers

Seokjun Youn,^{a,*} H. Neil Geismar,^b Chelliah Sriskandarajah,^b Vikram Tiwari^{c,d,e,f}

^aDepartment of Management Information Systems, Eller College of Management, The University of Arizona, Tucson, Arizona 85721; ^bDepartment of Information and Operations Management, Mays Business School, Texas A&M University, College Station, Texas 77843; ^cDepartment of Anesthesiology, Schools of Medicine, Vanderbilt University, Nashville, Tennessee 37212; ^dDepartment of Biomedical Informatics, Schools of Medicine, Vanderbilt University, Nashville, Tennessee 37212; ^eDepartment of Biostatistics, Schools of Medicine, Vanderbilt University, Nashville, Tennessee 37212; ^fDepartment of Management, Owen Graduate School of Management, Vanderbilt University, Nashville, Tennessee 37212; ^fDepartment of Management, Owen Graduate School of Management, Vanderbilt University, Nashville, Tennessee 37212; ^fDepartment of Management, Owen Graduate School of Management, Vanderbilt

* Corresponding author

Current State

Future State

VANDERBILT VUNIVERSITY MEDICAL CENTER

Current and proposed patient flow in the perioperative arena comprised on 11 ORs

The issue – capacity management

Simulation

- Deterministic approaches insufficient, need stochastic (probabilistic) methods
 - Computer simulation of patient flows
- However, how detailed should be the simulation logic to model capacity needs?
 - Incorporate service/surgeon block schedules?
 - Incorporate elective case booking pattern?
 - Incorporate staffing and shift schedules?
- Back to the basics "Operations Mgmt 101"

Constrained Scheduling / Bottleneck Scheduling / Weakest Link

Herbie: The slowest hiker

Herbie at the back of the line, a half mile behind the lead hiker

Herbie at the front of the line, huffing and puffing away with everyone behind him

Herbie's load lightened and shared, the whole troop makes good time

(c) 2010 MBAPDQ, LLC. *The Goal* by Eliyahu Goldratt

Herbie = OR

Make other stages of the periop match the rate of flow of the OR

Simulation Model*

How many patients at what different times of the day will be in the pre/post op stage, if we fully load the system (that is, keep all the 11 ORs fully occupied throughout the entire day)?

^{*@}Risk for Excel, Palisade Corporation

Simulation Output – focus on Preop

Current: 23 HR - 14 Obs = 9 HR beds enough to start 11 ORs

Recommendation:

- 11-15 HR beds needed to start 11 ORs = 23 HR - <u>12 to</u> <u>8 Obs</u>
- 2) 15 HRbeds sufficient, don't need 22!
- Rest of the day bet. 6 to 12 HR beds are needed.

5th & 95th percentile of number of patients in Pre/Post-Op at different times of the day: simulation output w/ 8 cases per 11 ORs

Simulation Output – focus on Postop

Current: 12 PACU

Recommendation:

- 12 PACU sufficient, but move late stage recovery patients to HR
- Timely discharge of overnight Obs patients; target before 11 am.

5th & 95th percentile of number of patients in Pre/Post-Op at different times of the day: simulation output w/ 8 cases per 11 ORs

Outcomes & Decisions

- Deterministic analysis (based on averages):
 - 12 pre/post-op beds sufficient
 - Current policy of holding 14 overnight Obs patient in preop will be fine even in the future
- Stochastic analysis (from simulation models):
 - Pre & post-op bed capacity sufficient, if, a max. of 9 overnight Obs patients in pre-op, and late-stage post-op patients moved to pre-op beds later in the day, and Obs patients discharged in a timely manner earlier in the day vacating pre-op beds
- Non-intuitive interesting insight:
 - higher OR case volume ≠ more pre/post-op beds; it just
 means a longer day

MEDICAL CENTER

Adaptive Capacity Planning For Ambulatory Surgery Centers

Seokjun Youn¹ (<u>syoun@email.arizona.edu</u>) Neil Geismar², Chelliah Sriskandarajah², Vikram Tiwari³

¹University of Arizona, ²Texas A&M University, ³Vanderbilt University Medical Center

Background: Patient Flow at ASCs

Literature & Research Objective

□ Hybrid Flow Shop

- Gicquel et al. (2012)
- Liu and Karimi (2008)
- Thornton and Hunsucker (2004)
- ...

Focus on scheduling **with FIXED capacity** in manufacturing context.

□ Simulation in ASC Settings

- Tiwari and Sandberg (2016)
- Price et al. (2011)
- White et al. (2011)
- Marcon et al. (2003)

Provide **relative performance** without optimality information.

□ This study provides an Adaptive Capacity Planning tool,

- Informed by patient flow data using optimization models combined with data analytics ("bottom-to-top"),
- rather than regarding as a strategic decision ("top-to-bottom").

Sequence of ASC Capacity Planning

Model of Study: Settings

□ Objective

- Minimize a ASC's total cost of utilizing capacity over a planning horizon.
- Trade-off: overtime cost and capacity construction cost of ASC resources.

Assumptions

- Beds at a given stage are identical.
- ASC patients are elective.
- ASC manager assigns patients.
- Unit costs for the ASC resources:
 - Amortized OR Construction > Amortized PACU Construction
 - > OR Overtime > PACU Overtime
- Patient demand is exogenously determined by ASCs
 - In deterministic models
 - later relaxed in computational study

Model of Study: Constraints

No-wait constraint between stages

VANDERBILT WUNIVERSITY MEDICAL CENTER

HFS Formulation: Problem MILP1

Structural Properties of MILP1

□ Strong NP-Completeness of *MILP1*.

Desirable to develop an efficient and effective heuristic.

Theorem 1. The decision problem corresponding to MILP1 is strongly NP-complete, even when $R_1 \ge 1$ and $R_2 \ge 2$.

□ Equivalence to a model with idle time costs.

Focus on a model with a simpler objective function.

Theorem 3. MILP1 is equivalent to \widehat{MILP}_1 (where \widehat{MILP}_1 includes cost of idle time incurred in ORs and PACUs) when $C_1^o > C_2^o > 0$, $C_1^o > C_1^d > C_2^d > 0$, and $\frac{C_1^o}{C_1^d} = \frac{C_2^o}{C_2^d}$, where C_s^d denotes unit cost of bed idle time in stage s, s = 1, 2.

$$\min_{\substack{x_{isr}^t, y_{isr}^t, z_s^t, f_{is} \\ \textbf{Idletime Cost}}} \underbrace{\sum_{s \in \mathcal{S}} \sum_{r \in \mathcal{R}_s} \left[C_s^d (T - \sum_{t=0}^{T-1} \sum_{i \in \mathcal{I}} y_{isr}^t) \right]}_{\textbf{Idletime Cost}} + \underbrace{\sum_{s \in \mathcal{S}} \sum_{r \in \mathcal{R}_s} C_s^o h_{sr}}_{\textbf{Overtime Cost}} + \underbrace{\sum_{s \in \mathcal{S}} C_s^e R_s}_{\textbf{Amortized Capacity Construction Cost}}$$

Optimal ORs and PACUs: Algorithm AdaptiveASC

Main Idea:

- –Under the trade-off between capacity construction cost and overtime cost,
- –Iteratively evaluates capacity to find the most cost-efficient combination of the numbers of OR and PACU.
- -Thereby, overcome the fixed capacity in HFS formulation.

Algorithm 2 AdaptiveASC

- 1: Input: I^w : a set of patients in weekday $w, \forall w \in \mathcal{W} = \{1, \dots, 5\}.$
- 2: Step 0: $R_s = R_s^{UB} = R_s^{\text{temp}} = 0, \forall s \in S = \{1, 2\}, \Pi' = \infty.$
- 3: Step 1: Solve Algorithm *FFP1* $\forall w \in W$.
- 4: Return: $R_1 = R_1^{UB} \leftarrow \max_{w \in \mathcal{W}} \{\Lambda^w\}, R_2 = R_2^{UB} \leftarrow \max_{w \in \mathcal{W}} \{\Lambda^w\} + \max_{w \in \mathcal{W}} \{n_o^w\}$ where Λ^w is the number of bins from Algorithm *FFP1* and n_o^w is the number of overnight-stay patients in weekday w. $\Pi''(r) = \infty, \forall r \in \{1, \cdots, R_1^{UB}\}$
- 5: Step 2: Solve *MILP1* $\forall w \in W$ with R_1 and R_2 .
- 6: Return: $\Pi^{w*} :=$ the optimal objective value of *MILP1* in weekday $w \in \mathcal{W}$. $\Pi := \sum_{w \in \mathcal{W}} \Pi^{w*}$.
- 7: if $\Pi < \Pi'$ then Store the current best solution: $\Pi' \leftarrow \Pi$, $R_1^{\text{temp}} \leftarrow R_1$, $R_2^{\text{temp}} \leftarrow R_2$.
- 8: if $R_2 > 1$ then Reduce the number of PACU by one: $R_2 \leftarrow R_2 1$. Go to Step 2.
- 9: else 10: S
 - Store the current best solution: $\Pi''(R_1) \leftarrow \Pi$, $\Pi' \leftarrow \infty$, $R_1^{\text{temp}} \leftarrow R_1$, $R_2^{\text{temp}} \leftarrow R_2$.
- 11: if $R_1 > 1$ then Reduce the number of OR by one: $R_1 \leftarrow R_1 1$, $R_2 \leftarrow R_2^{UB}$. Go to Step 2.
- else Go to Output.
- 13: end if
- 14: end if
- 15: end if
- 16: Output: $\Pi^* := \operatorname{argmin}_{R_1} \Pi''(R_1)$; R_1^* and R_2^* corresponding to Π^* .

MEDICAL CENTER

Optimal ORs and PACUs: Algorithm AdaptiveASC

- Illustrative example over enumerative combinations of OR & PACU
 - -Algorithm *AdaptiveASC* derives optimal ORs and PACUs.

Concluding Remarks

D Theoretical Implications

- Joint capacity planning and scheduling decisions can be applied to a generic multi-stage ASC to improve the overall system efficiency.
 - Relaxed the fixed capacity assumption of traditional HFS problems.
- Combining optimization model with data analytics can effectively deal with uncertain patientmix and their durations.

Managerial Implications

- Practitioners can quantify the impact of changes in patient demand and various ASC business parameters on their capacity decisions.
 - Renovation or new construction.
- Patient classification tools facilitate the applicability of the proposed capacity planning approach in practice.

Thank you!

Surgery Scheduling: Research and Practice

Scheduling of surgeries is a complex process that involves simultaneous scheduling of not only several resources (staff, room, equipment, supplies, instruments), but also building flexibility in capacity-reservation policies to accommodate most types of patient classes. In the case of trauma centers this complexity increases even more due to the need for dynamic rescheduling of elective surgeries as emergency surgeries arrive randomly. In practice, these issues are tackled every day in a 'non-optimal / heuristic' way. Recent research in this area has shown the potential of implementing modified priority rules. In contrast to trauma centers, ambulatory surgery centers only perform elective surgeries and have a lower cost structure. Their profitability is therefore dependent upon efficient use of capacity. Recent research has modeled these as Hybrid Flow Shops and solved the capacity planning problem using easy to implement heuristics. This talk will also discuss some new avenues of operating room scheduling that have not yet been researched by academics.

 Weekly Average Expected cost vs Total weekly load of elective surgery

 Weekly Average Expected cost vs Total weekly load of elective surgery

	OR1	1.5	1.5	2.5	2	
	OR2					
71.53	OR3		4.5		3	

 Weekly Average Expected cost vs Total weekly load of elective surgery

 Weekly Average Expected cost vs Total weekly load of elective surgery

	OR1	1.5	1.5	2.5		2	
	OR2		3				
13/32	OR3		4.5		3	3	

- Performance comparisons of Heuristics and MIP with respect to Lower Bound, LB.
 - Lower Bound, LB: a function of surgery times only.

- Elective patients with Stochastic Surgery Times
 - Stochastic Heuristic
 - Based on Heuristic Online,
 - Update the surgery times for each elective patient.
 - Add the emergency patients.

Begin

VANDERBILT End

• Actual processing time of Surgery 6 is "2.5"

- Actual processing time of Surgery 6 is "2.5"
- At time 1.5, Surgery 6 is not completed.

- Actual processing time of Surgery 6 is "2.5"
- At time 1.5, Surgery 6 is not completed.

- Actual processing time of Surgery 6 is "2.5"
- At time 1.5, Surgery 6 is not completed.

- Actual processing time of Surgery 6 is "2.5"
- At time 1.5, Surgery 6 is not completed.

	Shared					
Reference	OR	DEOR	Re-Sch.	Objective function	Optimization Approached	Other Remark
Gerchak et al. (1996)	Х			Profit maximization w.r.t. overtime and surgery cancellation	Stochastic DP Model	No decision of the sequence and starting time of surgeries
Lamiri et al. (2008a)	Х			Cost minimization w.r.t. overtime and regular time for elective surgeries	Heuristics with MIP	No BIM constraint; complexity status
Pham and Klinkert (2008)	Х			Minimization; makespan and sum of starting times	MIP	Job shop scheduling problem; Max. waiting time constraint
Zonderland et al. (2010)	Х			Cost minimization w.r.t. OR idle, overtime & surgery cancellation	Stochastic DP Model	No BIM Constraint; semi- emergency surgeries
Bhattacharyya et al. (2006)	Х	Х		Performance comparison between using DEORs and shared OR	Simulation Study	DEOR outperforms
Wullink et al. (2007)	Х	х		Performance comparison between using DEOR and shared BIM OR	Simulation Study	Closing DEOR
Li and Stein (2008)		Х		Performance measures w.r.t. overtime; waiting time for elective and emergency patients	Simulation Study	Beneficial to elective patient because of the reduced disruption of elective patients
Ferrand et al. (2014)	Х	Х		Performance comparison between using DEOR and shared BIM OR	Simulation Study	Using partial Flexible OR outperforms
Van Veen-Berkx et al. (2016)	Х	Х		Performance comparison between using DEOR and shared BIM OR	Simulation Study	Using DEOR outperforms
Gul et al. (2011)			Х	Performance comparison among several heuristics w.r.t. patient waiting time and overtime	Simulation Study	No Emergency surgeries; No BIN constraint; uncertain surgery times
Erdem et al. (2012)	Х		Х	Cost minimization w.r.t. overtime, delay/early starting of surgery and declining emergency surgeries.	MIP	No BIM constraint; decline option
Van Essen et al. (2012)	Х		Х	Minimization; maximum interval between two consecutive BIM	Heuristics	Complexity status
Gul et al. (2015)			Х	Cost minimization w.r.t. surgery waiting/cancellation and overtime	Stochastic MIP; Heuristics	No BIM constraint; uncertain elective surgery demand
Our Paper	Х	Х	Х	Cost minimization w.r.t. OR operating time, idle time and overtime	MIP; Heuristics	BIM constraint; deterministic and stochastic surgery time

 Table 2
 The Position of Our Paper in Terms of Literatures Related to Scheduling and Rescheduling Procedures with Emergency Patients (Re-Sch.: Re-Scheduling; DP: Dynamic Programming; Shared BIM ORs: Shared ORs with BIM Constraints)

MEDICAL (

VANDERBILT