Surgery Scheduling: Research and Practice

Scheduling Seminar Series June 7, 2023

Vikram Tiwari, Ph.D.
Associate Prof. Anesthesiology \& Biomedical Informatics, and Biostatistics Sch. of Med; Management, Vanderbilt University Senior Director Surgical Business Analytics, Vanderbilt University Medical Center, Nashville TN, USA

Vanderbilt University Medical Center

Vanderbilt Health is a growing health system, anchored by Vanderbilt University Medical Center. We are one of the largest and most prominent academic medical centers in the Southeast, with seven hospitals and more than 200 clinics across Tennessee and in neighboring states.

THE FACTS

1,709 licensed beds across seven hospitals

- Vanderbilt University Hospital

- Monroe Carell Jr. Children's Hospital at Vanderbilt
- Vanderbilt Psychiatric Hospital

4 on-campus surgical sites (58 ORs) +2 ambulatory sites (11 ORs)

- Vanderbilt Stallworth Rehabilitation Hospital
- Vanderbilt Wilson County Hospital
- Vanderbilt Bedford Hospital
- Vanderbilt Tullahoma-Harton Hospital

Nearly 3 million patient visits*
Over 88,000 surgical cases* \qquad 55,000+ surgical cases / year
75,000 hospital discharges*
Over 161,000 emergency department visits*
$\$ 4.7$ billion net patient services revenue**
Nearly 40,000 employees*
Nearly 2,000 Vanderbilt Medical Group employed physicians*

Objective of this talk

- Familiarize the audience with processes around management of OR capacity, as well as surgical scheduling.
- Discuss 1 or 2 of my recently published research alongside my coauthors.
- Discuss a couple of unexplored research topics in surgery/OR scheduling.

What is an Operating Room? What is Surgery?

Ambulatory ORs vs Non-Amb. ORs

- Ambulatory Surgical Centers (ASC):
- Outpatient surgeries (i.e., same day discharge)
- Home \rightarrow HR/prep \rightarrow OR \rightarrow PACU/recovery \rightarrow Home
- Smaller surgery durations, less acuity, faster recovery, shorter OR block time (typically 8-10 hours), faster turnaround time between cases
- Could be single specialty or multi-specialty
- Eye, GYN, Orthopedics, Urology, Dentistry, Plastics, Pediatric (Otolaryngology)

Ambulatory ORs vs Non-Amb. ORs

- Non-ambulatory ORs ("main ORs"):
- Oriented towards inpatient surgeries but can (and often) also do Outpatient procedures
- Home \rightarrow HR/prep \rightarrow OR \rightarrow PACU/recovery \rightarrow Home
- Home \rightarrow HR/prep \rightarrow OR \rightarrow ICU \rightarrow Unit \rightarrow Home
- Unit \rightarrow OR \rightarrow......
- ED \rightarrow OR \rightarrow
- Specialized ORs, not complete flexibility w.r.t. case placement (e.g., cardiac surgery, pulmonary, vascular surgery, etc.)

Disclaimers

- My views are influenced by large level-1 trauma academic medical centers in the US
- Not-for-profit center
- There are many similarities in scheduling surgeries and capacity management of ORs with for-profit, community hospitals, govt. hospitals, etc., but also differences
- Surgery scheduling processes likely differ between countries as well

How do surgeries get scheduled?

- Electively scheduled surgery
- Primacy care refers patient to surgical clinic or patient searches for surgeon of repute; schedules appointment; at the visit, surgeon determines if surgery needed; books surgical appointment for a future date on which surgeon will be in the OR and has unfilled capacity in his/her "block", and the time day/time also works for the patient
- Emergency surgery
- Patient comes to the ER/ED \rightarrow OR

Electively Scheduled Surgeries

- Two concepts from previous slide:
- Surgery schedule (for a surgeon) for a future day builds up slowly, and is likely going to be fixed (i.e., the surgeon doesn't usually move the case to a different day)
- Block time used to allocate OR capacity

Elective Schedule Builds over time

Education | July 2014
Predicting Case Volume from the Accumulating Elective Operating Room Schedule Facilitates Staffing Improvements ()

DECISION SCIENCES
(JOURNAL OF THE DECISION SCIENCES INSTITUTE Decision Sciences Volume 53 Number 1 February 2022
Predicting Daily Surgical Volumes Using Probabilistic Estimates of Providers' Future Availability

Online Bin-Packing Problem

- Variant of block scheduling used in community hospitals - online bin-packing problem, as surgeries arrive one at a time
- Bandi \& Gupta (2020, M\&SOM): Operating Room Staffing and Scheduling
- Hospital exercises control over blocks; surgeon operates in any OR that block gets assigned to; schedules develop 2-3 days in advance; cases that don't fit the scheduled time are deferred to future days

Need for Differential Scheduling / Capacity Allocation Policies

Cluster Num	Cluster Members hip	$\left\|\begin{array}{c} \text { TMinusO_ } \\ 1 \end{array}\right\|$	$\begin{gathered} \text { TMinus2_ } \\ 7 \end{gathered}$	$\begin{gathered} \text { TMinus8_ } \\ 14 \end{gathered}$	$\begin{gathered} \text { TMinus15 } \\ 28 \end{gathered}$	TMinus29 $+$	Case Vol Combine d	Cluster Name
1	1	16\%	46\%	18\%	14\%	6\%	162	
2	1	0\%	3\%	6\%	46\%	44\%	95	
3	65	60\%	19\%	8\%	8\%	5\%	7644	Exclusively Add-Ons Cluster
4	108	15\%	18\%	18\%	25\%	24\%	20233	50\% Prior to T-15
5	68	6\%	6\%	10\%	19\%	60\%	13221	Exclusively Electives

Electively Scheduled Surgeries

Two concepts from previous slide:

- Surgery schedule (for a surgeon) for a future day builds up slowly, and is likely going to be fixed (i.e the surgeon doesn't usually move the case to a different day)
- Block time used to allocate OR capacity

Block Scheduling - Service

Rooms	Monday		Tuesday		Wednesday		Thursday		Friday	
RM 01	Neuro Interventional	0730-1530	Neuro Interventional	0730-1530	Neuro Interventional	0800-1600	Neuro Interventional	0730-1530	Neuro Interventional	$\begin{array}{r} \text { Week 1 } \\ 0900-1600 \\ \text { Week } 2,3,4,5 \\ \hline 0800-1600 \end{array}$
RM 02	Urology Surgery	0730-1730	Urology Surgery	0730-1730	Urology Surgery	0800-1800	Urology Surgery	0730-1730	Urology Surgery	Week 1 $0900-1800$ Week $2,3,4,5$ $0800-1800$
RM 03	Neurosurgery	0730-1730	Neurosurgery	0730-1730	General Oncology Surge	0800-1800	Thoracic	$\begin{array}{r} \text { Week 1,3,5 } \\ \hline 0730-1230 \\ \text { Week } 2,4 \\ 0730-1730 \end{array}$	Urology Surgery	Week 1 $0900-1800$ Week $\mathbf{2 , 3 , 4 , 5}$ $0800-1800$
RM 04	Urology Surgery	0730-1930	Thoracic	0730-1930	Urology Surgery	0800-1800	Thoracic	0730-1930	Thoracic	Week 1 0900-1800 Week $2,3,4,5$ $0800-1800$
RM 05	Cardiac	0730-1930	Cardiac	0730-1930	Cardiac	0800-2000	Cardiac	0730-1930	Cardiac	$\begin{array}{r} \text { Week 1 } \\ \text { 0900-2000 } \\ \text { Week } 2,3,4,5 \\ \hline 0800-2000 \end{array}$

MEDICAL CENTER

Block Scheduling - Surgeon / Service

ASC OR 01		
ASC OR 02	Week 1,3	
	0700-1200 Week 2,4	MD
	0700-1200 Br.	MD
	1200-17	
		DO

Tuesday		Wednesday		Thursday	
$\frac{\text { Week 1,2,3 }}{0700-1700}$, MD	0700-170n	MD	$\frac{\text { Week 1,3 }}{0700-1200}$	MD
Week 1,3		Week 1		Week 2	
0700-1200 Week 2	, MD	$1200-1700$ Week 1, 3		$\begin{array}{r} 0700-1700 \\ C c \end{array}$	
$\begin{aligned} & 0730-1200 \\ & 1200-170^{-} \end{aligned}$, MD	0700-1200 Week 2,4	$\therefore M D$	Week 3 $1200-1700$	MD
E	, MD	0700-1700	gology	$\frac{\text { Week } 4}{0700-1200}$	MD
		Week 3 1300-1700	i, MD		

Friday

OR Capacity Management

- Hopp \& Lovejoy (2014, Chapter 4): Hospital Operations: Principles of High Efficiency Health Care
- Strategic: How many ORs (and pre-op and post-op bays) to plan
- Youn S, Geismar HN, Sriskandarajah C, Tiwari V. Adaptive Capacity Planning for Ambulatory Surgery Centers. Manufacturing \& Service Operations Management. 2022 Nov;24(6):3135-57.
- Tactical: How many ORs to allocate to which surgeon/service on which days of the week; how many days in advance should capacity be released, etc.; how to measure ASC capacity util. vs. "main OR"
- Operational: <24 hours from day-of-surgery, for example, how to fit add-on cases?

Several Excellent Review Articles

- Samudra M, Van Riet C, Demeulemeester E, Cardoen B, Vansteenkiste N, Rademakers FE. Scheduling operating rooms: achievements, challenges and pitfalls. Journal of scheduling. 2016 Oct;19:493-525.
- Youn S, Geismar HN, Pinedo M. Planning and scheduling in healthcare for better care coordination: Current understanding, trending topics, and future opportunities. Production and Operations Management. 2022 Dec;31(12):4407-23.

Actual Day of Surgery at an ASC

Example of an ASC center. 2 surgeons over 4 ORs. One surgeon did 8 short cases; other surgeon did 6 cases

Schedule at the Main OR at T-1

Scheduling Elective Surgeries with Emergency Patients at Shared Operating Rooms

Kyung Sung Jung*
Warrington College of Business, University of Florida, Gainesville, Florida 32611, USA, ksjung@ufl.edu
Michael Pinedo
Stern School of Business, New York University, New York City, New York 10012, USA, mpinedo@stern.nyu.edu
Chelliah Sriskandarajah
Mays Business School, Texas A\&M University, College Station, Texas 77843, USA, chelliah@mays.tamu.edu

Vikram Tiwari
School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA, vikram.tiwari@Vanderbilt.edu

Dedicated or Flexible ORs for Emergency Surgeries?

- Dedicated OR: leave OR(s) open for unscheduled surgeries
- Flexible OR: don't leave ORs open, but just "fit" emergency cases as they come in the already scheduled ORs with elective cases
- Partially flexible ORs: mix of the above

Process

- The integrating schedule from Phases 1 to 3.

General Information

- Three Special ORs (namely OR1, OR2, and OR3) out of 39 ORs
- Trauma case related to neurosurgery.
- Weekly block schedule (five days per week), 10 hours/day
- Daily schedule with some capacities for emergency patients.
- Any arrival of emergency patients should be accommodated in an OR with 2 hours of its arrival.
- The surgery preparation: 30 minutes.

[Phase 1] Elective Patients

- Aggregate date from October 1, 2014 through July 31, 2015
- In total, 1121 elective patients to be scheduled
- 952 elective patients are scheduled within two months

[Phase 1] Aggregate Schedule For Elective Patients

- Three types of surgeries
- Type A ($\mathrm{P}>=6$); Type $\mathrm{B}(2<\mathrm{P}<6)$; Type C $(\mathrm{P}<=2)$
- Daily Schedule Pattern

Table 5 Daily Schedule Patterns

Daily pattern	$O R_{1}$	$O R_{2}$ or $O R_{3}$	Approximately total hour
1	Few Type C	Type A : 8.0 hours	23 hours
2	Few Type C	Type A : 7.5 hours	23 hours
3	Few Type C	Type A : 7.0 hours	23 hours
4	Few Type C	Type A : 6.5 hours	23 hours
5	Few Type C	Type A : 6.0 hours, Type C : 1.0 hours	23 hours
6	Few Type C	Type B : 5.5 hours, Type C : 1.5 hours	23 hours
7	Few Type C	Type B : 5.5 hours, Type C : 1.0 hours	23 hours
8	Few Type C	Type B : 5.0 hours, Type C : 2.0 hours	23 hours
9	Few Type C	Type B : 5.0 hours, Type C : 1.5 hours	23 hours
10	Few Type C	Type B : 5.0 hours, Type C : 1.0 hours	23 hours
11	Few Type C	Type B : 4.5 hours, Type B : 2.5 hours	23 hours
12	Few Type C	Type B : 4.5 hours, Type C : 2.0 hours	23 hours
13	Few Type C	Type B : 4.5 hours, Type C : 1.5 hours	23 hours
14	Few Type C	Type B : 4.5 hours, Type C : 1.0 hours	23 hours
15	Few Type C	Type B : 4.0 hours, Type B : 3.0 hours	23 hours
16	Few Type C	Type B : 4.0 hours, Type B : 2.5 hours	23 hours
17	Few Type C	Type B : 3.5 hours, Type B : 3.0 hours	23 hours

[Phase 1] Aggregate Schedule For Elective Patients

- Elective surgery request arrives
- Scheduler looks at the partial schedule of that day
- If including it conforms to one of patterns, then allocate the
surgery

	Daily Pattern	OR_{1}	OR_{2} or OR_{3}	Approximately Total hours
	1	Few Type C	Type A: 8.0 hour	22 hours
	2	Few Type C	Type A : 7.5 hour	22 hours
	3	Few Type C	Type A : 7.0 hour	22 hours
	4	Few Type C	Type A : 6.5 hour	22 hours
	5	Few Type C	Type A : 6.0 hour, Type C : 1.0 hour	22 hours
	6	Few Type C	Type B : 5.5 hour, Type C : 1.5 hour	22 hours
	7	Few Type C	Type B : 5.5 hour, Type C : 1.0 hour	22 hours
	8	Few Type C	Type B : 5.0 hour, Type C : 2.0 hour	22 hours
	9	Few Type C	Type B : 5.0 hour, Type C : 1.5 hour	22 hours
	10	Few Type C	Type B : 5.0 hour, Type C : 1.0 hour	22 hours
	11	Few Type C	Type B : 4.5 hour, Type B : 2.5 hour	22 hours
	12	Few Type C	Type B : 4.5 hour, Type C : 2.0 hour	22 hours
vanderbilit	13	Few Tvoe C	Tvoe B : 4.5 hour. Tvie C : 1.5 hour	22 hours

[Phase 1] Aggregate Schedule For Elective Patients

- Elective surgery request arrives
- Scheduler looks at the partial schedule of that day
- If including it conforms to one of patterns, then allocate the surgery
- Otherwise, the scheduler will work with patients and assign the surgery to another day that is convenient to the patient.
- Phase 1 ensures that appropriate workload is assigned to the 3 ORs and that a proper mix of short, medium and long surgery durations is selected.

[Phase 1] Given weekly aggregate schedule

- Longest Processing Time First Rule (LPT).
- Sort the surgeries in descending order
- Assign the longest processing surgery that is not assigned to the day which has the minimum flow time first.

[Phase 1] Given weekly aggregate schedule

- Longest Processing Time First Rule (LPT).
- Example: 31 elective surgeries in week 3

Surgery Time (hour)	Week $j=3$	
1		7
1.5		7
2		2
2.5		1
3		
3.5		
4		
4.5		
5		2
5.5		0
6		1
6.5		0
7		1
7.5		0
Total Number of Surgeries		31
Total Surgery hours		84.5
Total preparation hours		15.5

[Phase 1] Given weekly aggregate schedule

- Longest Processing Time First Rule (LPT).
- Sort the surgeries in descending order
- Assign the longest processing surgery that is not assigned to the day which has the minimum flow time first.
- There are 31 elective surgeries with three rooms in week 3

[Phase 2] Daily Schedule

- "n" electives cases in "m" ORs
- MIP model - Proved that it is Strongly NP-Hard, even when $\mathrm{m}=2$
- [Need] The Overlap time of surgeries: no more than 2 hours
- Heuristic
- Consider the six surgeries to be scheduled.

[Phase 2] Daily Schedule with Heuristics

- LPT(m-k)-SPT(k) Rule, where k=1.

Heuristic H_{D} (The LPT(m-1)-SPT(1) Rule)
Begin
\mathbf{S} is an ordered set of n surgeries arranged according to LPT ${ }^{\prime}$, i.e., $p_{1} \geq p_{2} \geq \ldots \geq p_{n}$.
Schedule last job in S on $O R_{1}$ and remove last job from S .
While $(\mathbf{S} \neq \emptyset)$ do
Step 1: Find the earliest available OR in $\left\{O R_{1}, O R_{2}, \ldots, O R_{m}\right\}$.
Step 2: If earliest available OR is $O R_{1}$, schedule last job in S on $O R_{1}$ and remove last job from S . Otherwise, schedule first job in S on earliest available OR among $\left\{O R_{2}, O R_{3}, \ldots, O R_{m}\right\}$ and remove first job from \mathbf{S}.

End(while)
Output: A feasible schedule for surgeries in S.
End

[Phase 2] Daily Schedule with Heuristics

- LPT(m-k)-SPT(k) Rule, where $\mathrm{k}=1$.
- SPT machine: OR1

Daily Pattern	OR $_{1}$	OR $_{2}$ or OR $_{3}$	Approximately Total hours
	1	Few Type C	Type A: 8.0 hour

[Phase 2] Intuition behind the LPT(m-k)-SPT(k) rule

The motivation behind the LPT $(m-1)-\mathrm{SPT}(1)$ heuristic is based on the following. There are two objectives: the first one is a balancing of the loads assigned to the m ORs (in order to minimize overtime). The second one is the minimization of the maximum time in between two successive BIMs. Applying LPT to $m-1$ ORs has as goal the minimization of the first objective. However, if LPT would have been applied to all m ORs, then in the beginning of the process all ORs would have to deal with long surgery durations and the times in between successive BIMs (e.g., the time till the first BIM) may at times be too long. In order to remedy this, we apply SPT to one of the ORs. If an emergency then arrives at some time in the beginning of the process, the amount of time till the next BIM should be relatively short (and it would most likely occur in the OR that had been assigned

[Phase 2] Daily Schedule with MIP Model

- Mixed Integer Program for minimizing the overall cost.
- [Need] The Overlap time of surgeries: no more than 2 hours

OR1	2	1.5	3		
OR2	7.5				
OR3	4.5			1.5	

[Phase 3] Arrival Pattern for Emergency Patients

- The emergency patients who arrive during operating hours
(i.e., 7 am to 5 pm), since they have priority over elective patients.
- The emergency surgery arrivals fits a Poisson distribution under 5% significant level.
- On average 6.17 emergency patients per month randomly arrive.

[Phase 3] Rescheduling process

- The (Revised) Online LPT(m-k)-SPT(k) Rule
- The Online MIP Model

[Phase 3] Rescheduling process: Online LPT(m-k)-SPT(k) Rule

Heuristic H_{O} (The Online LPT(m-1)-SPT(1) Rule)
Begin
Input: \mathbf{S} is an ordered set of n elective surgeries (including surgery times) and
E is an ordered set of emergency patients (including surgery times and arrival times) sorted by arrival times.

Run heuristic H_{D} on S .
Output: A feasible schedule for surgeries in \mathbf{S}.

I
Suppose first emergency in \mathbf{E} arrives at time t_{1} with surgery time p_{e}. I
Input: A subset of surgeries $\left(\mathbf{S}_{\mathbf{b}}\right)$, which includes (i) those ongoing at time t_{1} and
(ii) those already completed before time t_{1}, are fixed.
Step 1: Find the earliest available OR (its completion is denoted by t_{2}).
Schedule first emergency surgery in \mathbf{E} and remove this surgery from \mathbf{E}.
Step 2: Set $\mathbf{S}=\mathbf{S}-\mathbf{S}_{\mathbf{b}}$ and apply heuristic $\mathbf{H}_{\mathbf{D}}$ to the remaining surgeries in \mathbf{S}. I

Output: A feasible schedule for surgeries in \mathbf{S} as well as \mathbf{E}.

End

[Phase 3] Rescheduling process

- The Online LPT(m-k)-SPT(k) Rule
- SPT machine: OR1

[Phase 3] Rescheduling process

- The Online LPT(m-k)-SPT(k) Rule
- SPT machine: OR1

OR1	$\mathbf{1 . 5}$	2.5	1.5	2
OR2		7.5		
OR3		2.5	3	

[Phase 3] Rescheduling process

- The Revised Online LPT(m-k)-SPT(k) Rule
- SPT machine: OR1 \rightarrow OR3

[Phase 3] Rescheduling process

- The Online MIP Model

OR1	2		2.5	1.5	3
OR2		7.5			
OR3		4.5		1.5	

[^0]
Contribution of this research

Jung, Pinedo, Sriskandarajah, and Tiwari: Scheduling Elective Surgeries at Shared ORs
Production and Operations Management 28(6), pp. 1407-1430, © 2019 Production and Operations Management Society
Table 1 Classification of Papers Related to Our Study in Terms of Type and Level of Decisions

SCAP	SCSP, Single OR	SCSP, Multi-ORs		$\sim-$ Emergency patients		- 7
		Deterministic	Stochastic	Shared OR	DEOR	Rescheduling
Marcon et al. (2003), Hans et al. (2008), and Fei et al. (2009)	Weiss (1990), Wang (1993), Denton and Gupta (2003), Denton et al. (2007), Gupta (2007), and Guda et al. (2016)	Blake and Donald (2002), Velasquez and Melo (2005), Jebali et al. (2006), Pham and Klinkert (2008), Cardoen et al. (2010b), Riise and Burke (2011), Marques et al. (2012); Vijayakumar et al. (2013), and Zhao and Li (2014)	Denton et al. (2010) and Batun et al. (2011)	Gerchak et al. (1996), Lamiri et al. (2008a), Pham and Klinkert (2008), and Zonderland et al. (2010)	Bhattacharyya et al. (2006), Wullink et al. (2007), Li and Stein (2008), and Ferrand et al. (2014)	$\begin{aligned} & \text { Gul et al. (2011), } \\ & \text { Van Essen et al. } \\ & \text { (2012), Erdem } \\ & \text { et al. (2012), Gul } \\ & \text { et al. (2015) } \end{aligned}$
Our paper		Our paper				

SCAP: surgical case assignment problem; SCSP: surgical case sequencing problem vanderbilt \bar{Z} university

MEDICAL CENTER

Conclusion

- The integrating schedule from Phase 1 to 3.

Phase 1	Phase 2	Phase 3
Daily/Weekly Aggregate Schedule - Number of Patients (Best Combination)	Daily Schedule (Elective Patients) - Heuristics - Model MIP	Rescheduling (Elective \& Emergency) - Heuristic Online - Model MIP Online

Rescheduling process with Stochastic Surgery Duration

Potential Future Research Themes

Flip-Room Schedules

Flip-Room Scheduling Components

	Subsequent Case			
\mid		Wheels In (2)	Anesthesia Ready (3)	Incision (4)
Prior Case	Last Procedure Closing (1)			
	Incision Closed (5)			
	Wheels Out (6)			

Flip-Room Surgeons Scheduling Pattern

MEDIAN TIME (MINUTES)

Prior Case \longrightarrow	Last Procedure Closing			Incsion End			Out of OR			Case Volume
Subsequent Case \longrightarrow	In OR	Anes. Ready	Incision Beg.	In OR	Anes. R	Incision Beg.	In OR	Anes. Ready	Incision Beg.	
	d]	15	- 11	-27	-16	3	-33	-22	-2	10
	8	21	32	-15	-10	-8	-21	-14	14	10
	d	$\square 5$	21	-13	-7	-8	-16	-9	5	47
	7	17	29	-6	2	17	-13	-7	12	10
	12	24	46	-19	-7	16	-22	-10	11	23
	10	18	27	-1	9	16	-3	4 -	13	16
	-18	-4	17	-32	-26	-10	-34	-29	-13	44
	-14	-1	15	-27	-23	-10	-25	-27	-15	59
	15	22	25	-3	8	34	-7	1	26	18
	$3]$	11	22	0	8	17	-6		14	18
	-1	$\square 9$	19	-2	8	18	-9	0	11	14
	-10	-2	25	-23	-15	13	-27	-20	7	52
	9	21	35	-18	-9	$\square 9$	-20	-12	7	9
	d	10	28	-15	-9	10	-18	-12	5	37
	$2]$	$\checkmark 9$	24	-7	-4	12	-7	-2	11	11

A negative number implies that the subsequent case's event occurred before the prior case's event.

Extending the Shared-ORs Research

Future Scenario (Pooled ORs)

Extreme case when an OR must always be available for an emergency case

MEDICAL CENTER

Perioperative bed capacity planning guided by theory of constraints

Publisher: IEEE

```
Cite This 园 PDF
```

https://pubsonline.informs.org/journal/msom

Adaptive Capacity Planning for Ambulatory Surgery Centers

Seokjun Youn, ${ }^{\text {a,* }}$ H. Neil Geismar, ${ }^{\text {b }}$ Chelliah Sriskandarajah, ${ }^{\text {b }}$ Vikram Tiwari ${ }^{\text {c,d,e,t }}$
${ }^{\text {a }}$ Department of Management Information Systems, Eller College of Management, The University of Arizona, Tucson, Arizona 85721;
${ }^{\mathrm{b}}$ Department of Information and Operations Management, Mays Business School, Texas A\&M University, College Station, Texas 77843;
${ }^{\text {c }}$ Department of Anesthesiology, Schools of Medicine, Vanderbilt University, Nashville, Tennessee 37212; ${ }^{\text {d }}$ Department of Biomedical Informatics, Schools of Medicine, Vanderbilt University, Nashville, Tennessee 37212; ${ }^{\mathbf{e}}$ Department of Biostatistics, Schools of Medicine, Vanderbilt University, Nashville, Tennessee 37212; ${ }^{\text {t }}$ Department of Management, Owen Graduate School of Management, Vanderbilt University, Nashville, Tennessee 37212
* Corresponding author

Current State

Future State

Current and proposed patient flow in the perioperative arena comprised on 11 ORs

The issue - capacity management

Simulation

- Deterministic approaches insufficient, need stochastic (probabilistic) methods
- Computer simulation of patient flows
- However, how detailed should be the simulation logic to model capacity needs?
- Incorporate service/surgeon block schedules?
- Incorporate elective case booking pattern?
- Incorporate staffing and shift schedules?
- Back to the basics "Operations Mgmt 101"

Constrained Scheduling / Bottleneck Scheduling / Weakest Link

Herbie: The slowest hiker

Herbie at the back of the line, a half mile behind the lead hiker

Herbie at the front of the line, huffing and puffing away with everyone behind him

Herbie's load lightened and shared, the whole troop makes good time

Herbie = OR

Make other stages of the periop match the rate of flow of the OR

[^1] The Goal by Eliyahu Goldratt

Simulation Model*

How many patients at what different times of the day will be in the pre/post op stage, if we fully load the system (that is, keep all the 11 ORs fully occupied throughout the entire day)?

Pre Op Times Distribution

In Room Times Distribution

Post Op Times Distribution

Simulation Output - focus on Preop

Current:
23 HR-14 Obs = 9 HR beds enough to start 11 ORs

Recommendation:

1) $11-15 \mathrm{HR}$ beds needed to start 11 ORs = 23 HR - 12 to 8 Obs
2) 15 HRbeds sufficient, don't need 22!
3) Rest of the day bet. 6 to 12 HR beds are needed.

Simulation Output - focus on Postop

Current: 12 PACU
Recommendation:

1) 12 PACU sufficient, but move late stage recovery patients to HR
2) Timely discharge of overnight Obs patients; target before 11 am .

5th \& 95th percentile of number of patients in Pre/Post-Op at different times of the day: simulation output w/ 8 cases per 11 ORs

Outcomes \& Decisions

- Deterministic analysis (based on averages):
- 12 pre/post-op beds sufficient
- Current policy of holding 14 overnight Obs patient in preop will be fine even in the future
- Stochastic analysis (from simulation models):
- Pre \& post-op bed capacity sufficient, if, a max. of 9 overnight Obs patients in pre-op, and late-stage post-op patients moved to pre-op beds later in the day, and Obs patients discharged in a timely manner earlier in the day vacating pre-op beds
- Non-intuitive interesting insight:
- higher OR case volume $=$ more pre/post-op beds; it just

Adaptive Capacity Planning For Ambulatory Surgery Centers

Seokjun Youn¹ (syoun@email.arizona.edu)
Neil Geismar², Chelliah Sriskandarajah²,
Vikram Tiwari ${ }^{3}$

${ }^{1}$ University of Arizona, ${ }^{2}$ Texas A\&M University, ${ }^{3}$ Vanderbilt University Medical Center

Background: Patient Flow at ASCs

RQ1. How do we allocate bed capacity for an ASC that comprises multiple stages of patient flow?

- Sequential stages with multiple beds in each stage:

Hybrid Flow Shop (HFS) (Pinedo 2015)

Literature \& Research Objective

- Hybrid Flow Shop
- Gicquel et al. (2012)
- Liu and Karimi (2008)
- Thornton and Hunsucker (2004)
- ...

Focus on scheduling with FIXED capacity in manufacturing context.
\square Simulation in ASC Settings

- Tiwari and Sandberg (2016)
- Price et al. (2011)
- White et al. (2011)
- Marcon et al. (2003)

Provide relative performance without optimality information.

This study provides an Adaptive Capacity Planning tool,

- Informed by patient flow data using optimization models combined with data analytics (" bottom-to-top"),
- rather than regarding as a strategic decision (" top-to-bottom").

Sequence of ASC Capacity Planning

ASC Patient Flow Data Analysis

- Classify patient groups
- Obtain daily patient demand over weekdays

Adaptive ASC Capacity Planning	
UBon \#OR \& \#PACU	- Algorithm FFP1
\#PACU	
	- HFS formulation: Problem MILP1
Optimal	- LBs of MILP1
\#OR \&	- Optimal ORs and PACUs: Algorithm
\#PACU	AdaptiveASC - Heuristic for MII PI. Heuristic BasckwardASC
\checkmark	
Optimal \#HR	- Minimum Cost Flow

$\sqrt{\square}$
Computational Study and Implications

Model of Study: Settings

- Objective

- Minimize a ASC's total cost of utilizing capacity over a planning horizon.
- Trade-off: overtime cost and capacity construction cost of ASC resources.

Assumptions

- Beds at a given stage are identical.
- ASC patients are elective.
- ASC manager assigns patients.
- Unit costs for the ASC resources:
- Amortized OR Construction > Amortized PACU Construction > OR Overtime > PACU Overtime
- Patient demand is exogenously determined by ASCs
- In deterministic models
- later relaxed in computational study

Model of Study: Constraints

HFS Formulation: Problem MILP1

Problem MILP1:

Structural Properties of MILP1

\square Strong NP-Completeness of MILP1.

- Desirable to develop an efficient and effective heuristic.

Theorem 1. The decision problem corresponding to MILP1 is strongly NP-complete, even when $R_{1} \geq 1$ and $R_{2} \geq 2$.

E Equivalence to a model with idle time costs.

- Focus on a model with a simpler objective function.

Theorem 3. MILP1 is equivalent to $\widehat{M I L P}_{1}$ (where $\widehat{M I L P}_{1}$ includes cost of idle time incurred in ORs and PACUs) whe $C_{1}^{o}>C_{2}^{o}>0, C_{1}^{o}>C_{1}^{d}>C_{2}^{d}>0$, and $\frac{C_{1}^{o}}{C_{1}^{d}}=\frac{C_{2}^{o}}{C_{2}^{d}}$, where C_{s}^{d} denotes unit cost of bed idle time in stage $s, s=1,2$.

Optimal ORs and PACUs: Algorithm AdaptiveASC

- Main Idea:
-Under the trade-off between capacity construction cost and overtime cost,
-Iteratively evaluates capacity to find the most Algorithm 2 AdaptiveASC
1: Input: $I^{w}:$ a set of patients in weekday $w, \forall w \in \mathcal{W}=\{1, \cdots, 5\}$
2: Step 0: $R_{s}=R_{s}^{U B}=R_{s}^{\text {temp }}=0, \forall s \in \mathcal{S}=\{1,2\}, \Pi^{\prime}=\infty$.
3: Step 1: Solve Algorithm $F F P 1 \forall w \in \mathcal{W}$.
4: Return: $R_{1}=R_{1}^{U B} \leftarrow \max _{w \in \mathcal{W}}\left\{\Lambda^{w}\right\}, R_{2}=R_{2}^{U B} \leftarrow \max _{w \in \mathcal{W}}\left\{\Lambda^{w}\right\}+\max _{w \in \mathcal{W}}\left\{n_{o}^{w}\right\}$ where Λ^{w} is the number of bins from Algorithm FFP1 and n_{o}^{w} is the number of overnight-stay patients in weekday $w . \Pi^{\prime \prime}(r)=\infty, \forall r \in$ $\left\{1, \cdots, R_{1}^{U B}\right\}$
5: Step 2: Solve MILP1 $\forall w \in \mathcal{W}$ with R_{1} and R_{2}.
6: Return: $\Pi^{w *}:=$ the optimal objective value of MILP1 in weekday $w \in \mathcal{W} . \Pi:=\sum_{w \in \mathcal{W}} \Pi^{w *}$.
7: if $\Pi<\Pi^{\prime}$ then Store the current best solution: $\Pi^{\prime} \leftarrow \Pi, R_{1}^{\text {temp }} \leftarrow R_{1}, R_{2}^{\text {temp }} \leftarrow R_{2}$.
if $R_{2}>1$ then Reduce the number of PACU by one: $R_{2} \leftarrow R_{2}-1$. Go to Step 2 . else

Store the current best solution: $\Pi^{\prime \prime}\left(R_{1}\right) \leftarrow \Pi, \Pi^{\prime} \leftarrow \infty, R_{1}^{\text {temp }} \leftarrow R_{1}, R_{2}^{\text {temp }} \leftarrow R_{2}$ if $R_{1}>1$ then Reduce the number of OR by one: $R_{1} \leftarrow R_{1}-1, R_{2} \leftarrow R_{2}^{U B}$. Go to Step 2 . else Go to Output. end if
end if
end if
Output: $\Pi^{*}:=\operatorname{argmin}_{R_{1}} \Pi^{\prime \prime}\left(R_{1}\right) ; R_{1}^{*}$ and R_{2}^{*} corresponding to Π^{*}. cost-efficient combination of the numbers of OR and PACU.
-Thereby, overcome the fixed capacity in HFS formulation. VANDERBILT UNIVERSITY

Optimal ORs and PACUs: Algorithm AdaptiveASC

- Illustrative example over enumerative combinations of OR \& PACU
-Algorithm AdaptiveASC derives optimal ORs and PACUs.

Capacity Construction Cost

Concluding Remarks

[Theoretical Implications

- Joint capacity planning and scheduling decisions can be applied to a generic multi-stage ASC to improve the overall system efficiency.
- Relaxed the fixed capacity assumption of traditional HFS problems.
- Combining optimization model with data analytics can effectively deal with uncertain patientmix and their durations.
- Managerial Implications
- Practitioners can quantify the impact of changes in patient demand and various ASC business parameters on their capacity decisions.
- Renovation or new construction.
- Patient classification tools facilitate the applicability of the proposed capacity planning approach in practice.

Thank you!

Surgery Scheduling: Research and Practice

Scheduling of surgeries is a complex process that involves simultaneous scheduling of not only several resources (staff, room, equipment, supplies, instruments), but also building flexibility in capacity-reservation policies to accommodate most types of patient classes. In the case of trauma centers this complexity increases even more due to the need for dynamic rescheduling of elective surgeries as emergency surgeries arrive randomly. In practice, these issues are tackled every day in a 'non-optimal / heuristic' way. Recent research in this area has shown the potential of implementing modified priority rules. In contrast to trauma centers, ambulatory surgery centers only perform elective surgeries and have a lower cost structure. Their profitability is therefore dependent upon efficient use of capacity. Recent research has modeled these as Hybrid Flow Shops and solved the capacity planning problem using easy to implement heuristics. This talk will also discuss some new avenues of operating room scheduling that have not yet been researched by academics.

Computational Experiments

- Weekly Average Expected cost vs Total weekly load of elective surgery

Computational Experiments

- Weekly Average Expected cost vs Total weekly load of elective surgery

OR1	1.5	1.5	2.5	2	
OR2	7.5				
OR3		4.5		3	

Computational Experiments

- Weekly Average Expected cost vs Total weekly load of elective surgery

Computational Experiments

- Weekly Average Expected cost vs Total weekly load of elective surgery

Computational Experiments

- Performance comparisons of Heuristics and MIP with respect to Lower Bound, LB.
- Lower Bound, LB: a function of surgery times only.

Rescheduling process with Stochastic Surgery Duration

- Elective patients with Stochastic Surgery Times
- Stochastic Heuristic
- Based on Heuristic Online,
- Update the surgery times for each elective patient.
- Add the emergency patients.

Rescheduling process with Stochastic Surgery Duration

Begin

Input: A feasible schedule for surgeries in \mathbf{S} from output generated by \mathbf{H}_{D} using mean surgery times. \mathbf{E} is an ordered set of emergency patients sorted by arrival times. Initialization Step: Set current time $t=0$.

Set subset of elective surgeries already performed or still being performed at time $t \mathbf{S}_{\mathbf{b}}=\emptyset$. Set count of elective and emergency patients $N=0$.
Set count of emergency patients $N_{e}=0$.

Output: A feasible schedule for surgeries in \mathbf{E} and \mathbf{S} with the realized surgery times.

Rescheduling process with Stochastic Surgery Duration

- Actual processing time of Surgery 6 is " 2.5 "

medical center

Rescheduling process with Stochastic Surgery Duration

- Actual processing time of Surgery 6 is " 2.5 "
- At time 1.5, Surgery 6 is not completed.

MEDICAL CENTER

Rescheduling process with Stochastic Surgery Duration

- Actual processing time of Surgery 6 is " 2.5 "
- At time 1.5, Surgery 6 is not completed.

vanderbilt $\begin{aligned} & \text { university } \\ & \text { Input }\end{aligned}$

Rescheduling process with Stochastic Surgery Duration

- Actual processing time of Surgery 6 is " 2.5 "
- At time 1.5, Surgery 6 is not completed.

Rescheduling process with Stochastic Surgery Duration

- Actual processing time of Surgery 6 is " 2.5 "
- At time 1.5, Surgery 6 is not completed.

OR1	2.5	2.5	1.5	2
OR2	7.5			
	OR3	4.5		3

[^2]
Table 2 The Position of Our Paper in Terms of Literatures Related to Scheduling and Rescheduling Procedures with Emergency Patients (Re-Sch.:

 Re-Scheduling; DP: Dynamic Programming; Shared BIM ORs: Shared ORs with BIM Constraints)| Reference | Shared | OR | DEOR | Re-Sch. | Objective function | Optimization Approached |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[^0]: Day 1×20

[^1]: (c) 2010 MBAPDQ, LLC.

[^2]: Day 1×20

