
Min sum ordering problems with
applications to scheduling

Robbert Fokkink (Technical University of Delft)
Felix Happach (Technical University of Munich)

Lisa Hellerstein (New York University)
Thomas Lidbetter (Rutgers University)

László Végh (University of Bonn)

Wednesday June 4th 2025

Plan

• A general min sum ordering problem

• A 2-approximation for a subclass of problems:

Fokkink, R., Lidbetter, T. and Végh, L.A., 2019. On submodular
search and machine scheduling. Mathematics of Operations
Research, 44(4), pp.1431-1449.

• A 4𝛼-approximation for another subclass:

Happach, F., Hellerstein, L. and Lidbetter, T., 2022. A general
framework for approximating min sum ordering
problems. INFORMS Journal on Computing, 34(3), pp.1437-1452.

A classic scheduling problem

• There are 𝑛 jobs that must be scheduled
• The weight (importance) of job 𝑖 is 𝑤𝑖

• The processing time of job 𝑖 is 𝑝𝑖

3 hrs 7 hrs 3 hrs 2 hrs 6 hrs

Problem: In what order should the jobs be scheduled to minimize the sum of
the weighted completion times? Usually denoted 1||∑𝑤𝑖𝐶𝑖.

Solution: Perform the jobs in non-increasing order of the index 𝑤𝑖/𝑡𝑖.
(Smith, 1956)

 “Smith’s rule”

𝑤𝑖: 2/15 5/15 3/15 1/15 4/15

𝑡𝑖:

Writing in a different form

For a particular schedule, let 𝑆𝑗 = set of jobs up to and including job 𝑗. Then

Sum of weighted completion times = ∑𝑤𝑗𝐶𝑗 = ∑ 𝑔 𝑆𝑗 − 𝑔 𝑆𝑗 − {𝑗} 𝑓(𝑆𝑗),

where 𝑓 𝑆 = ∑𝑗∈𝑆 𝑝𝑗 and 𝑔 𝑆 = ∑𝑗∈𝑆 𝑤𝑗.

Note: the functions 𝑓 and 𝑔 are both non-decreasing and modular:

𝑓 𝑆 = ∑𝑗∈𝑆 𝑓(𝑗) and 𝑔 𝑆 = ∑𝑗∈𝑆 𝑔(𝑗).

• Finite set 𝑉 of cardinality 𝑛

• Non-decreasing cost function 𝑓: ℱ → ℝ, where 𝑓 ∅ = 0.

• Non-decreasing weight function 𝑔: ℱ → ℝ, where 𝑔 ∅ = 0.

• Minimize

 over chains 𝒮 ≡ (𝑆0, 𝑆1, … , 𝑆𝑛) satisfying
 ∅ = 𝑆0 ⊂ 𝑆1 ⋯ ⊂ 𝑆𝑛 = 𝑉, |𝑆𝑖| = 𝑖 for all 𝑖.

Problem definition

෍

𝑗=1

𝑛

𝑓 𝑆𝑗 𝑔 𝑆𝑗 − 𝑔 𝑆𝑗−1 ,

• Finite set 𝑉 of cardinality 𝑛

• Non-decreasing cost function 𝑓: ℱ → ℝ, where 𝑓 ∅ = 0.

• Non-decreasing weight function 𝑔: ℱ → ℝ, where 𝑔 ∅ = 0.

• Min-sum ordering problem (MSOP): minimize

 over chains 𝒮 ≡ (𝑆0, 𝑆1, … , 𝑆𝑘) satisfying
 ∅ = 𝑆0 ⊂ 𝑆1 ⋯ ⊂ 𝑆𝑘 = 𝑉.

Problem definition

෍

𝑗=1

𝑘

𝑓 𝑆𝑗 𝑔 𝑆𝑗 − 𝑔 𝑆𝑗−1 ,

A harder scheduling problem

Problem: In what order should the jobs be scheduled to minimize the sum of
the weighted completion times? (1|𝑝𝑟𝑒𝑐|∑𝑤𝑖𝐶𝑖)

Precedence constraints given by a DAG (directed acyclic graph).

= job

= precedence
 constraint

A harder scheduling problem

Problem: In what order should the jobs be scheduled to minimize the sum of the
weighted completion times? Usually denoted 1|𝑝𝑟𝑒𝑐|∑𝑤𝑖𝐶𝑖.

• Sidney (1975): an optimal schedule must begin with a closed sub-DAG 𝐺 of
jobs that maximizes 𝑤(𝐺)/𝑝(𝐺). (Version of Smith’s rule.)

• Recursing, this principle defines a Sidney decomposition of the jobs.

• If the precedence constraints are tree-like, this means the problem can
be solved in polynomial time (Sidney, 1975)

𝑤𝑒𝑖𝑔ℎ𝑡

𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒
 is maximal

A harder scheduling problem
• Later…the problem is shown to be NP-hard problem. Many 2-approximations

(schedules whose objective is within a factor 2 of that of the optimal schedule):

• Ambühl & Mastrolilli (2009)
• Chudak & Hochbaum (1999)
• Chekuri & Motwani (1999)
• Hall, Schulz, Shmoys, Wein (1997)
• Margot, Queyranne & Wang (2003)
• Pisaruk (2003)
• Schulz (1996)

• In particular, Chekuri & Motwani (1999) and (independently) Margot,
Queyranne & Wang (2003) showed that any schedule consistent with a Sidney
decomposition is a 2-approximation.

• Virtually all known 2-approximations are consistent with a Sidney
decomposition (Correa & Schulz, 2005)

Writing in a different form

Want to state the problem in the form: minimize over all orderings the sum

෍

𝑗

𝑓 𝑆𝑗 𝑔 𝑆𝑗 − 𝑔 𝑆𝑗−1 .

This time, take 𝑓(𝑆) = time to process all jobs in precedence closure of 𝑆,

 𝑔(𝑆) = weight of all jobs in 𝑆.

𝑆
Precedence closure of 𝑆

The optimal ordering must respect the
precedence constraints.

Writing in a different form

Want to state the problem in the form: minimize over all orderings the sum

෍

𝑗

𝑓 𝑆𝑗 𝑔 𝑆𝑗 − 𝑔 𝑆𝑗−1 .

This time, take 𝑓(𝑆) = time to process all jobs in precedence closure of 𝑆,

 𝑔(𝑆) = weight of all jobs in 𝑆.

The function 𝑔 is still modular, but 𝑓 is submodular (“decreasing marginal
costs”):

𝑓 𝐴 ∪ {𝑗} − 𝑓 𝐴 ≤ 𝑓 𝐴′ ∪ 𝑗 − 𝑓 𝐴′ for 𝑗 ∉ 𝐴 ⊃ 𝐴′
⟺ 𝑓 𝐴 ∪ 𝐵 + 𝑓(𝐴 ∩ 𝐵) ≤ 𝑓 𝐴 + 𝑓 𝐵 for all 𝐴, 𝐵

Submodularity

𝑓 𝐴 ∪ 𝑗 − 𝑓(𝐴)

𝑓 𝐴′ ∪ 𝑗 − 𝑓(𝐴′)

≤
𝑗

𝐴

𝐴′

A new scheduling problem

• Now instead of jobs having weights, every subset 𝐴 of jobs has a
weight 𝑤𝐴. (Weights could be equal to 0 for most subsets.)

• We wish to minimize the weighted sum of the completion times 𝐶𝐴 of
the subsets of jobs = ∑𝑤𝐴𝐶𝐴. Denote this 1|𝑝𝑟𝑒𝑐|∑𝑤𝐴𝐶𝐴.

• Equivalently, objects are hidden in a subset 𝐴 of boxes with probability
𝑝𝐴 and we wish to minimize the expected time to find all of them.

• Let 𝑔(𝐴) = sum of weights of all subsets of 𝐴 and let 𝑓 be as before.
Then objective is to find an ordering to minimize

෍

𝑗

𝑓 𝑆𝑗 𝑔 𝑆𝑗 − 𝑔 𝑆𝑗−1 .

• Then 𝑔 is supermodular (“increasing marginal benefit”):
𝑔 𝐴 ∪ {𝑗} − 𝑔 𝐴 ≤ 𝑔 𝐴′ ∪ 𝑗 − 𝑔 𝐴′ for 𝑗 ∉ 𝐴 ⊃ 𝐴′

A more general problem

MSOP with 𝑓 submodular, 𝑔 supermodular: minimize

෍

𝑖=1

𝑘

𝑓 𝑆𝑖 𝑔 𝑆𝑖 − 𝑔 𝑆𝑖−1 .

Theorem (Pisaruk, 1992): Any solution consistent with a “Sidney
decomposition” for this problem is a 2-approximation (and a Sidney
decomposition can be found in polynomial time).

Proof idea

𝑔

𝑓

𝑐 𝑆 = ෍

𝑖=1

𝑘

𝑓 𝑆𝑖 𝑔 𝑆𝑖 − 𝑔 𝑆𝑖−1 .

(𝑓(𝑆1), 𝑔(𝑆1))

(𝑓(𝑆2), 𝑔(𝑆2))

(𝑓(𝑆3), 𝑔(𝑆3))

(𝑓(𝑆0), 𝑔(𝑆0))

(𝑓(𝑆𝑘), 𝑔(𝑆𝑘))

Proof idea

𝑔

𝑓

𝑐′ 𝑆 =
1

2
෍

𝑖=1

𝑘

(𝑓 𝑆𝑖−1 + 𝑓 𝑆𝑖) 𝑔 𝑆𝑖 − 𝑔 𝑆𝑖−1 .

𝑐 𝑆 ≤ 2𝑐′ 𝑆 for any 𝑆

Solution of problem of minimizing 𝒄’

𝑔

𝑓
Pisaruk showed this upper envelope defines a chain.
Note: the sets on the upper envelope define a Sidney decomposition.

Finding the upper envelope

𝑔

𝑓

maximize 𝑔(𝐴) − 𝑓(𝐴)

(𝑓 𝐴 , 𝑔 𝐴)

Our approach (Fokkink, L., & Végh, 2019)

Theorem: For 𝐴 ⊂ 𝑁, let 𝑔(𝐴)/𝑓(𝐴) be the density of 𝐴. If 𝐴 has maximum
density then any optimal search starts by searching the elements of 𝐴 in
some order.

Idea of proof: Using “switching argument” to show that any optimal search is
just as good as one that starts with a subset of cells with maximum density.

𝐴1

𝐴2

𝐴𝑚

𝐵1

𝐵2

𝐵𝑚

Maximum density
subset

Our approach (Fokkink, L., & Végh, 2019)

Theorem: For 𝐴 ⊂ 𝑁, let 𝑔(𝐴)/𝑓(𝐴) be the density of 𝐴. If 𝐴 has maximum
density then any optimal search starts by searching the elements of 𝐴 in
some order.

Idea of proof: Using “switching argument” to show that any optimal search is
just as good as one that starts with a subset of cells with maximum density.

𝐴1

𝐴2

𝐴𝑚

𝐵1

𝐵2

𝐵𝑚

Maximum density
subset

• A max. density
subset can be found
in polynomial time.

• Using this principle
we get a Sidney
decomposition.

𝑔

𝑓

Maximum
 density
subset

• 2-approximation for 1|𝑝𝑟𝑒𝑐|∑𝑤𝐴𝐶𝐴.

• Instead of minimizing weighted sum of completions times, we could take
some function ℎ of completion times, i.e. 1|𝑝𝑟𝑒𝑐|∑𝑤𝐴ℎ(𝐶𝐴).

• If ℎ is concave, the cost function 𝑓 is still submodular, so we get a
2-approximation.

• Note: Schulz and Verschae (2016) get a 2-approximation for the problem
1|𝑝𝑟𝑒𝑐|∑𝑤𝑗ℎ(𝐶𝑗) in a different way, using the Sidney decomposition for the

problem 1 𝑝𝑟𝑒𝑐 ∑𝑤𝑗𝐶𝑗.

Implications for scheduling

Functions of low curvature

Definition: The total curvature of a set function 𝑓 on 𝑁 is

𝑘 = 1 − min
i∈𝑁

𝑓 𝑁 − 𝑓(𝑁\{𝑖})

𝑓(𝑖)

If 𝑓 is submodular, 𝑘 is in [0,1].
Let 𝑔⋕ be the dual function of 𝑔, given by 𝑔⋕ 𝐴 = 𝑔 𝑁 − 𝑔(ҧ𝐴). It is
submodular if 𝑔 is supermodular.
Let 𝑘𝑓 be the total curvature of 𝑓 and let 𝑘𝑔 be the total curvature of 𝑔⋕.

Theorem: Let 𝜃 = (1 − 𝑘𝑓)(1 − 𝑘𝑔). Our algorithm for the submodular

search problem has approximation ratio
2

1+𝛿
 where

𝛿 = min 𝜃,
2𝜃 max{1 − 𝑘𝑓 , 1 − 𝑘𝑔}

1 + 𝜃
.

• Consider the problem 1||∑𝑤𝑗ℎ(𝐶𝑗) with ℎ concave.

• 𝑘𝑔 = 0 and

1 − 𝑘𝑓 = min
i∈𝑁

𝑓 𝑁 − 𝑓(𝑁 − {𝑖})

𝑓 𝑖
≥ inf

𝑥∈ 0,1

1 − ℎ 1 − 𝑥

ℎ 𝑥
=

ℎ′(1)

ℎ′ 0

• So approximation ratio is
2

1+𝜃
≤

2

1+
ℎ′(1)

ℎ′ 0

.

• Eg. If ℎ 𝑥 = log 1 + 𝑎𝑥 , 𝑎 > 0 then
ℎ′(1)

ℎ′ 0
=

1

1+𝑎
 and the approximation ratio

is 1 +
𝑎

2+𝑎
.

• Eg. If ℎ 𝑥 = 1 − exp −𝑟𝑥 , 𝑟 > 0 then
ℎ′ 1

ℎ′ 0
= 𝑒−𝑟, and the approximation

ratio is
2

1+𝑒−𝑟 .

Implications for scheduling

MSOP for supermodular 𝒇

Previous work:

• 𝑓 supermodular and 𝑔 the cardinality function: 4-approximation in Iwata,
Tetali and Tripathi (2012)

• 𝑓 supermodular and 𝑔 modular: 4-approximation in Streeter and Golovin
(2008)

Proofs inspired by 4-approximation for min-sum set cover in Feige, Lovász and
Tetali (2004).

Definition: An 𝛼-approximate Sidney decomposition is one such that at each
step, the next element of the decomposition is chosen to approximate the
density problem within a factor 𝛼.

Theorem: Suppose 𝑓 is subadditive. Then for any 𝛼, an 𝛼-approximate Sidney
decomposition is a 4𝛼-approximation for an optimal chain for MSOP.

Main theorem (Happach, Hellerstein & L., 2022)

𝑓 𝑆 ∪ 𝑇 ≤ 𝑓 𝑆 + 𝑓(𝑇) for disjoint 𝑆, 𝑇

• Let 𝑆0, 𝑆1, … , 𝑆𝑘 be a greedy chain
• Let 𝑇0, 𝑇1, … , 𝑇ℓ be an optimal chain
• Rewrite objective function for greedy chain as

෍

𝑖=1

𝑘

𝜑𝑖 𝑔 𝑆𝑖 − 𝑔 𝑆𝑖−1 ,

 where 𝜑𝑖 = 𝑔 𝑉 − 𝑔 𝑆𝑖−1
𝑓 𝑆𝑖 −𝑓(𝑆𝑖−1)

𝑔 𝑆𝑖 −𝑔(𝑆𝑖−1)

• Draw a histogram for the optimal chain in the
“usual way”

• Scale the red histogram by a factor of ½ in the
horizontal and vertical directions and show
that it fits into the blue histogram

Idea of proof of main theorem (𝜶 = 𝟏)

• Let 𝑆0, 𝑆1, … , 𝑆𝑘 be a greedy chain
• Let 𝑇0, 𝑇1, … , 𝑇ℓ be an optimal chain
• Rewrite objective function for greedy chain as

෍

𝑖=1

𝑘

𝜑𝑖 𝑔 𝑆𝑖 − 𝑔 𝑆𝑖−1 ,

 where 𝜑𝑖 = 𝑔 𝑉 − 𝑔 𝑆𝑖−1
𝑓 𝑆𝑖 −𝑓(𝑆𝑖−1)

𝑔 𝑆𝑖 −𝑔(𝑆𝑖−1)

• Draw a histogram for the optimal chain in the
“usual way”

• Scale the red histogram by a factor of ½ in the
horizontal and vertical directions and show
that it fits into the blue histogram

Idea of proof of main theorem (𝜶 = 𝟏)

1. 4-approximation for 𝑓 supermodular and 𝑔 cardinality
function in Iwata, Tetali and Tripathi (2012)

2. 4-approximation for 𝑓 supermodular and 𝑔 modular in
Streeter and Golovin (2008)

3. 8-approximation for expanding search problem in Hermans,
Leus and Matuschke (2021)

4. 4-approximation for bipartite OR-scheduling in Happach and
Schulz (2020)

Known applications

• Jobs correspond to nodes of DAG
• A job can only be completed when at least one of its predecessors has been

completed

Theorem: There is a polynomial time 4-approximation algorithm for the
problem of minimizing the sum of weighted completion times of a set of jobs
that must be scheduled to respect some OR-precedence constraints in the
form of an inforest (or, more generally, a multitree).

New application: OR-scheduling

an inforest a multitree

• More work needed on the “density problem”
• Could a 4-approximation be found for Generalized Min-Sum

Set Cover? Best known approximation is 4.642
(Bansal, Batra, Farhadi, Tetali, 2021)

Future work

	Slide 1
	Slide 2
	Slide 3
	Slide 4: Writing in a different form
	Slide 5
	Slide 6
	Slide 7: A harder scheduling problem
	Slide 8: A harder scheduling problem
	Slide 9: A harder scheduling problem
	Slide 10: Writing in a different form
	Slide 11: Writing in a different form
	Slide 12: Submodularity
	Slide 13: A new scheduling problem
	Slide 14: A more general problem
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Our approach (Fokkink, L., & Végh, 2019)
	Slide 20: Our approach (Fokkink, L., & Végh, 2019)
	Slide 21
	Slide 22: Implications for scheduling
	Slide 23: Functions of low curvature
	Slide 24: Implications for scheduling
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

