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Plan

• A general min sum ordering problem

• A 2-approximation for a subclass of problems: 

Fokkink, R., Lidbetter, T. and Végh, L.A., 2019. On submodular 
search and machine scheduling. Mathematics of Operations 
Research, 44(4), pp.1431-1449.

• A 4𝛼-approximation for another subclass:

Happach, F., Hellerstein, L. and Lidbetter, T., 2022. A general 
framework for approximating min sum ordering 
problems. INFORMS Journal on Computing, 34(3), pp.1437-1452.



A classic scheduling problem

• There are 𝑛 jobs that must be scheduled
• The weight (importance) of job 𝑖 is 𝑤𝑖

• The processing time of job 𝑖 is 𝑝𝑖

3 hrs 7 hrs 3 hrs 2 hrs 6 hrs

Problem: In what order should the jobs be scheduled to minimize the sum of 
the weighted completion times? Usually denoted 1||∑𝑤𝑖𝐶𝑖.

Solution: Perform the jobs in non-increasing order of the index 𝑤𝑖/𝑡𝑖. 
(Smith, 1956)

 “Smith’s rule”

𝑤𝑖: 2/15 5/15 3/15 1/15 4/15

𝑡𝑖:



Writing in a different form

For a particular schedule, let 𝑆𝑗 = set of jobs up to and including job 𝑗. Then

Sum of weighted completion times = ∑𝑤𝑗𝐶𝑗 = ∑ 𝑔 𝑆𝑗 − 𝑔 𝑆𝑗 − {𝑗} 𝑓(𝑆𝑗),

where  𝑓 𝑆 = ∑𝑗∈𝑆 𝑝𝑗  and  𝑔 𝑆 = ∑𝑗∈𝑆 𝑤𝑗.

Note: the functions 𝑓 and 𝑔 are both non-decreasing and modular:     

𝑓 𝑆 = ∑𝑗∈𝑆 𝑓(𝑗) and 𝑔 𝑆 = ∑𝑗∈𝑆 𝑔(𝑗).



• Finite set 𝑉 of cardinality 𝑛

• Non-decreasing cost function 𝑓: ℱ → ℝ, where 𝑓 ∅ = 0.

• Non-decreasing weight function 𝑔: ℱ → ℝ, where 𝑔 ∅ = 0.

• Minimize
     

     over chains 𝒮 ≡ (𝑆0, 𝑆1, … , 𝑆𝑛) satisfying
     ∅ = 𝑆0 ⊂ 𝑆1 ⋯ ⊂ 𝑆𝑛 = 𝑉, |𝑆𝑖| = 𝑖 for all 𝑖.

Problem definition

෍

𝑗=1

𝑛

𝑓 𝑆𝑗 𝑔 𝑆𝑗 − 𝑔 𝑆𝑗−1 ,



• Finite set 𝑉 of cardinality 𝑛

• Non-decreasing cost function 𝑓: ℱ → ℝ, where 𝑓 ∅ = 0.

• Non-decreasing weight function 𝑔: ℱ → ℝ, where 𝑔 ∅ = 0.

• Min-sum ordering problem (MSOP): minimize
     

     over chains 𝒮 ≡ (𝑆0, 𝑆1, … , 𝑆𝑘) satisfying
     ∅ = 𝑆0 ⊂ 𝑆1 ⋯ ⊂ 𝑆𝑘 = 𝑉.

Problem definition

෍

𝑗=1

𝑘

𝑓 𝑆𝑗 𝑔 𝑆𝑗 − 𝑔 𝑆𝑗−1 ,



A harder scheduling problem

Problem: In what order should the jobs be scheduled to minimize the sum of 
the weighted completion times? (1|𝑝𝑟𝑒𝑐|∑𝑤𝑖𝐶𝑖)

Precedence constraints given by a DAG (directed acyclic graph).

= job

= precedence
   constraint



A harder scheduling problem

Problem: In what order should the jobs be scheduled to minimize the sum of the 
weighted completion times?  Usually denoted 1|𝑝𝑟𝑒𝑐|∑𝑤𝑖𝐶𝑖.

• Sidney (1975): an optimal schedule must begin with a closed sub-DAG 𝐺 of 
jobs that maximizes 𝑤(𝐺)/𝑝(𝐺). (Version of Smith’s rule.)

• Recursing, this principle defines a Sidney decomposition of the jobs.

• If the precedence constraints are tree-like, this means the problem can 
be solved in polynomial time (Sidney, 1975)

𝑤𝑒𝑖𝑔ℎ𝑡

𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒
  is maximal



A harder scheduling problem
• Later…the problem is shown to be NP-hard problem. Many 2-approximations 

(schedules whose objective is within a factor 2 of that of the optimal schedule):

• Ambühl & Mastrolilli (2009)
• Chudak & Hochbaum (1999)
• Chekuri & Motwani (1999)
• Hall, Schulz, Shmoys, Wein (1997)
• Margot, Queyranne & Wang (2003)
• Pisaruk (2003)
• Schulz (1996)

• In particular, Chekuri & Motwani (1999) and (independently) Margot, 
Queyranne & Wang (2003) showed that any schedule consistent with a Sidney 
decomposition is a 2-approximation.

• Virtually all known 2-approximations are consistent with a Sidney 
decomposition (Correa & Schulz, 2005)



Writing in a different form

Want to state the problem in the form: minimize over all orderings the sum

෍

𝑗

𝑓 𝑆𝑗 𝑔 𝑆𝑗 − 𝑔 𝑆𝑗−1 .

This time, take 𝑓(𝑆) = time to process all jobs in precedence closure of 𝑆,

  𝑔(𝑆) = weight of all jobs in 𝑆.

𝑆
Precedence closure of 𝑆

The optimal ordering must respect the 
precedence constraints.



Writing in a different form

Want to state the problem in the form: minimize over all orderings the sum

෍

𝑗

𝑓 𝑆𝑗 𝑔 𝑆𝑗 − 𝑔 𝑆𝑗−1 .

This time, take 𝑓(𝑆) = time to process all jobs in precedence closure of 𝑆,

  𝑔(𝑆) = weight of all jobs in 𝑆.

The function 𝑔 is still modular, but 𝑓 is submodular (“decreasing marginal 
costs”):

𝑓 𝐴 ∪ {𝑗} − 𝑓 𝐴  ≤ 𝑓 𝐴′ ∪ 𝑗 − 𝑓 𝐴′  for 𝑗 ∉ 𝐴 ⊃ 𝐴′
⟺ 𝑓 𝐴 ∪ 𝐵 + 𝑓(𝐴 ∩ 𝐵) ≤ 𝑓 𝐴 + 𝑓 𝐵  for all 𝐴, 𝐵



Submodularity

𝑓 𝐴 ∪ 𝑗 − 𝑓(𝐴)

𝑓 𝐴′ ∪ 𝑗 − 𝑓(𝐴′)

≤
𝑗

𝐴

𝐴′



A new scheduling problem

• Now instead of jobs having weights, every subset 𝐴 of jobs has a 
weight 𝑤𝐴.  (Weights could be equal to 0 for most subsets.)

• We wish to minimize the weighted sum of the completion times 𝐶𝐴 of 
the subsets of jobs = ∑𝑤𝐴𝐶𝐴.  Denote this 1|𝑝𝑟𝑒𝑐|∑𝑤𝐴𝐶𝐴.

• Equivalently, objects are hidden in a subset 𝐴 of boxes with probability 
𝑝𝐴 and we wish to minimize the expected time to find all of them.

• Let 𝑔(𝐴) = sum of weights of all subsets of 𝐴 and let 𝑓 be as before. 
Then objective is to find an ordering to minimize

෍

𝑗

𝑓 𝑆𝑗 𝑔 𝑆𝑗 − 𝑔 𝑆𝑗−1 .

• Then 𝑔 is supermodular (“increasing marginal benefit”):
𝑔 𝐴 ∪ {𝑗} − 𝑔 𝐴  ≤ 𝑔 𝐴′ ∪ 𝑗 − 𝑔 𝐴′  for 𝑗 ∉ 𝐴 ⊃ 𝐴′



A more general problem

MSOP with 𝑓 submodular, 𝑔 supermodular: minimize

෍

𝑖=1

𝑘

𝑓 𝑆𝑖 𝑔 𝑆𝑖 − 𝑔 𝑆𝑖−1 .

Theorem (Pisaruk, 1992): Any solution consistent with a “Sidney 
decomposition” for this problem is a 2-approximation (and a Sidney 
decomposition can be found in polynomial time).



Proof idea

𝑔

𝑓

𝑐 𝑆 = ෍

𝑖=1

𝑘

𝑓 𝑆𝑖 𝑔 𝑆𝑖 − 𝑔 𝑆𝑖−1 .

(𝑓(𝑆1), 𝑔(𝑆1))

(𝑓(𝑆2), 𝑔(𝑆2))

(𝑓(𝑆3), 𝑔(𝑆3))

(𝑓(𝑆0), 𝑔(𝑆0))

(𝑓(𝑆𝑘), 𝑔(𝑆𝑘))



Proof idea

𝑔

𝑓

𝑐′ 𝑆 =
1

2
෍

𝑖=1

𝑘

(𝑓 𝑆𝑖−1 + 𝑓 𝑆𝑖 ) 𝑔 𝑆𝑖 − 𝑔 𝑆𝑖−1 .

𝑐 𝑆 ≤ 2𝑐′ 𝑆  for any 𝑆



Solution of problem of minimizing 𝒄’

𝑔

𝑓
Pisaruk showed this upper envelope defines a chain. 
Note: the sets on the upper envelope define a Sidney decomposition.



Finding the upper envelope

𝑔

𝑓

maximize 𝑔(𝐴) − 𝑓(𝐴)

(𝑓 𝐴 , 𝑔 𝐴 )



Our approach (Fokkink, L., & Végh, 2019)

Theorem: For 𝐴 ⊂ 𝑁, let 𝑔(𝐴)/𝑓(𝐴) be the density of 𝐴. If 𝐴 has maximum 
density then any optimal search starts by searching the elements of 𝐴 in 
some order.

Idea of proof: Using “switching argument” to show that any optimal search is 
just as good as one that starts with a subset of cells with maximum density.

𝐴1

𝐴2

𝐴𝑚

𝐵1

𝐵2

𝐵𝑚

Maximum density 
subset



Our approach (Fokkink, L., & Végh, 2019)

Theorem: For 𝐴 ⊂ 𝑁, let 𝑔(𝐴)/𝑓(𝐴) be the density of 𝐴. If 𝐴 has maximum 
density then any optimal search starts by searching the elements of 𝐴 in 
some order.

Idea of proof: Using “switching argument” to show that any optimal search is 
just as good as one that starts with a subset of cells with maximum density.

𝐴1

𝐴2

𝐴𝑚

𝐵1

𝐵2

𝐵𝑚

Maximum density 
subset

• A max. density 
subset can be found 
in polynomial time.

• Using this principle 
we get a Sidney 
decomposition.



𝑔

𝑓

Maximum
 density 
subset



• 2-approximation for 1|𝑝𝑟𝑒𝑐|∑𝑤𝐴𝐶𝐴.

• Instead of minimizing weighted sum of completions times, we could take 
some function ℎ of completion times, i.e. 1|𝑝𝑟𝑒𝑐|∑𝑤𝐴ℎ(𝐶𝐴).

• If ℎ is concave, the cost function 𝑓 is still submodular, so we get a                           
2-approximation.

• Note: Schulz and Verschae (2016) get a 2-approximation for the problem 
1|𝑝𝑟𝑒𝑐|∑𝑤𝑗ℎ(𝐶𝑗) in a different way, using the Sidney decomposition for the 

problem 1 𝑝𝑟𝑒𝑐 ∑𝑤𝑗𝐶𝑗. 

Implications for scheduling



Functions of low curvature

Definition: The total curvature of a set function 𝑓 on 𝑁 is

𝑘 = 1 − min
i∈𝑁

𝑓 𝑁 − 𝑓(𝑁\{𝑖})

𝑓( 𝑖 )

If 𝑓 is submodular, 𝑘 is in [0,1].
Let 𝑔⋕ be the dual function of 𝑔, given by 𝑔⋕ 𝐴 = 𝑔 𝑁 − 𝑔( ҧ𝐴). It is 
submodular if 𝑔 is supermodular.
Let 𝑘𝑓  be the total curvature of 𝑓 and let 𝑘𝑔 be the total curvature of 𝑔⋕.

Theorem: Let 𝜃 = (1 − 𝑘𝑓)(1 − 𝑘𝑔). Our algorithm for the submodular 

search problem has approximation ratio 
2

1+𝛿
 where

𝛿 = min 𝜃,
2𝜃 max{1 − 𝑘𝑓 , 1 − 𝑘𝑔}

1 + 𝜃
.



• Consider the problem 1||∑𝑤𝑗ℎ(𝐶𝑗) with ℎ concave. 

• 𝑘𝑔 = 0 and 

1 − 𝑘𝑓 = min
i∈𝑁

𝑓 𝑁 − 𝑓(𝑁 − {𝑖})

𝑓 𝑖
≥ inf

𝑥∈ 0,1

1 − ℎ 1 − 𝑥

ℎ 𝑥
=

ℎ′(1)

ℎ′ 0

• So approximation ratio is 
2

1+𝜃
≤

2

1+
ℎ′(1)

ℎ′ 0

.

• Eg. If ℎ 𝑥 = log 1 + 𝑎𝑥 , 𝑎 > 0 then 
ℎ′(1)

ℎ′ 0
=

1

1+𝑎
 and the approximation ratio 

is 1 +
𝑎

2+𝑎
.

• Eg. If ℎ 𝑥 = 1 − exp −𝑟𝑥 , 𝑟 > 0 then
ℎ′ 1

ℎ′ 0
= 𝑒−𝑟, and the approximation 

ratio is
2

1+𝑒−𝑟 .

Implications for scheduling



MSOP for supermodular 𝒇

Previous work:

• 𝑓 supermodular and 𝑔 the cardinality function: 4-approximation in Iwata, 
Tetali and Tripathi (2012)

• 𝑓 supermodular and 𝑔 modular: 4-approximation in Streeter and Golovin 
(2008) 

Proofs inspired by 4-approximation for min-sum set cover in Feige, Lovász and 
Tetali (2004).



Definition: An 𝛼-approximate Sidney decomposition is one such that at each 
step, the next element of the decomposition is chosen to approximate the 
density problem within a factor 𝛼.

Theorem: Suppose 𝑓 is subadditive. Then for any 𝛼, an 𝛼-approximate Sidney 
decomposition is a 4𝛼-approximation for an optimal chain for MSOP.

Main theorem (Happach, Hellerstein & L., 2022)

𝑓 𝑆 ∪ 𝑇 ≤ 𝑓 𝑆 + 𝑓(𝑇) for disjoint 𝑆, 𝑇



• Let 𝑆0, 𝑆1, … , 𝑆𝑘  be a greedy chain
• Let 𝑇0, 𝑇1, … , 𝑇ℓ be an optimal chain
• Rewrite objective function for greedy chain as

෍

𝑖=1

𝑘

𝜑𝑖 𝑔 𝑆𝑖 − 𝑔 𝑆𝑖−1 ,

     where 𝜑𝑖 = 𝑔 𝑉 − 𝑔 𝑆𝑖−1
𝑓 𝑆𝑖 −𝑓(𝑆𝑖−1)

𝑔 𝑆𝑖 −𝑔(𝑆𝑖−1)

• Draw a histogram for the optimal chain in the 
“usual way”

• Scale the red histogram by a factor of ½ in the 
horizontal and vertical directions and show 
that it fits into the blue histogram

Idea of proof of main theorem (𝜶 = 𝟏)



• Let 𝑆0, 𝑆1, … , 𝑆𝑘  be a greedy chain
• Let 𝑇0, 𝑇1, … , 𝑇ℓ be an optimal chain
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෍
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𝑘
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     where 𝜑𝑖 = 𝑔 𝑉 − 𝑔 𝑆𝑖−1
𝑓 𝑆𝑖 −𝑓(𝑆𝑖−1)
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• Draw a histogram for the optimal chain in the 
“usual way”

• Scale the red histogram by a factor of ½ in the 
horizontal and vertical directions and show 
that it fits into the blue histogram

Idea of proof of main theorem (𝜶 = 𝟏)



1. 4-approximation for 𝑓 supermodular and 𝑔 cardinality 
function in Iwata, Tetali and Tripathi (2012)

2. 4-approximation for 𝑓 supermodular and 𝑔 modular in 
Streeter and Golovin (2008) 

3. 8-approximation for expanding search problem in Hermans, 
Leus and Matuschke (2021)

4. 4-approximation for bipartite OR-scheduling in Happach and 
Schulz (2020)

Known applications



• Jobs correspond to nodes of DAG
• A job can only be completed when at least one of its predecessors has been 

completed

Theorem: There is a polynomial time 4-approximation algorithm for the 
problem of minimizing the sum of weighted completion times of a set of jobs 
that must be scheduled to respect some OR-precedence constraints in the 
form of an inforest (or, more generally, a multitree).

New application: OR-scheduling

an inforest a multitree



• More work needed on the “density problem”
• Could a 4-approximation be found for Generalized Min-Sum 

Set Cover? Best known approximation is 4.642
(Bansal, Batra, Farhadi, Tetali, 2021)

Future work
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