Scheduling with Machine-Dependent Priority Lists

Tami Tamir

Based on joint work with Vipin Ravindran Vijayalakshmi and Marc Schroder

Traditional Scheduling Algorithms

- A centralized authority (a scheduler) determines the outcome.
- The centralized authority aims to maximize the system's utilization and the total users' welfare.
- All the users obey it.

Job Scheduling Games

- The jobs are controlled by selfish agents who select the jobs assignment.
- No centralized authority.

Every job selects its machine, trying to maximize its own utility

Coordinated Mechanism

Machines have a local scheduling policy. The jobs know this policy and select their machine accordingly.

Example: Assume that all the machines schedule the jobs in LPT (Longest first) order.

If the local policy is LPT, I'll better join M_1 . This is my best-response.

If the local policy is SPT, my best-response is to join M_2 .

Coordinated Mechanism SPT Policy

Consider the 2nd job of length 7 in the resulting schedule

Hey, I can migrate and reduce my completion time from 21 to 14

7

Now, other jobs may have a beneficial migration...

Best Response Dynamics (BRD)

- A local search method.
- Players proceed in turns, each performing a selfish improving step.
- An important question: Does BRD converge to a

pure Nash equilibrium.

A stable profile in which no player has an improving step.

Our Work

We study coordinated mechanisms in which different machines may have different local policies.

For the associated game, we analyzed:

- Nash equilibrium existence and calculation
- BRD convergence
- Equilibrium inefficiency

Not less important: We studied the centralized version of this setting.

• A set J of n jobs

- Every job $j \in J$ has processing time p_i
- A set M of m parallel machines
 - Every machine $i \in M$ has speed s_i and a priority list $\pi_i: J \rightarrow \{1,...,n\}$, defining its scheduling policy.

Example: J={
$$p_j = 2$$
 4 2 2 1 pr

processing times

m=2,

$$s_1=1$$
 $\pi_1 = (e,d,c,b,a)$
 $s_2=0.5$ $\pi_2 = (a,b,c,d,e)$

A profile of the game: A schedule $\sigma: J \rightarrow M$. $C_j(\sigma)$ = the completion time of job j in profile σ

Example:
$$J=\{ \begin{array}{ccc} & & & & & \\ a & b & c & d & e \\ p_j = & 2 & 4 & 2 & 2 & 1 \\ \end{array} \right. product of the product o$$

processing times

m=2,

$$s_1=1$$
 $\pi_1 = (e,d,c,b,a)$
 $s_2=0.5$ $\pi_2 = (a,b,c,d,e)$

Does anyone have a beneficial migration?

Example:
$$J=\{ \begin{array}{ccc} & 0 & 0 & 0 & 0 \\ a & b & c & d & e \\ p_j= & 2 & 4 & 2 & 2 & 1 \\ \end{array} \right)$$

processing times

m=2,

$$s_1=1$$
 $\pi_1 = (e,d,c,b,a)$
 $s_2=0.5$ $\pi_2 = (a,b,c,d,e)$

Game Theory Definitions

A profile is a pure Nash equilibrium (NE) if no job can reduce its completion time by changing its strategy (migrating to a different machine)

A social optimum (SO) of a game is a profile that attains some optimality criteria. For example:

social optimum w.r.t total flow time (=sum of C_j) social optimum w.r.t makespan (=maximal C_i).

SO = Optimal solution for the centralized problem $P|\pi|C_{max}$ or $P|\pi|\sum_j C_j$

Interesting Questions

- Calculating a NE for a given game instance
- What is the equilibrium inefficiency?

Price of Anarchy = worst NE / SO Price of Stability = best NE / SO

- Convergence of **Best-Response Dynamics**

Back to our example

$$s_1 = 1$$
 $\pi_1 = (e,d,c,b,a)$
 $s_2 = 0.5$ $\pi_2 = (a,b,c,d,e)$

C_{max}=8 A social optimum w.r.t Makespan, but not a NE.

A possible NE profile. C_{max}=9

Price of anarchy $\geq 9/8$

Related Work

- Koutsoupias and Papadimitriou (1999)
- Czumaj and Vocking (2003)
- Christodoulou, Koutsoupias and Nanavati (2004)
- Cole, Correa, Gkatzelis, Mirrokni and Olver (2015)
- Immorlica, Li, Mirrokni and Schulz (2005)
- Farzad, Olver and Vetta (2008)
- Correa and Queyranne (2012)
- Cole, Correa, Gkatzelis, Mirrokni and Olver (2015)
- Hoeksma and Uetz (2019)
- Bosman, Frascaria, Olver, Sitters, Stougie (2019)

Selfish Scheduling / Coordinated mechanism /Prioritybased model of routing/ The centralized problem.

NE Calculation

Given $\langle J, M, \{s_i\}, \{\pi_i\} \rangle$, calculate a NE profile

m=3, M={M₁, M₂, M₃}

$$s_1=1$$
 $\pi_1 = (a, b, c, d, e)$
 $s_2=s_2=0.5$ $\pi_2 = \pi_3 = (e, d, b, c, a)$

One fast machine.

Two slow machines

Since a is the first on π_1 , it is first on M_1 in any NE schedule.

 $s_3=0.5, \pi_3=(e,d,b,c,a)$ $s_2=0.5, \pi_2=(e,d,b,c,a)$ $s_1=1, \pi_1=(a,b,c,d,e)$

Given that \boxed{a} is on M_1 , Since \boxed{e} is the first on π_2 , it is first on M_2 (w.l.o.g) in any NE schedule

s₃=0.5, π_3 =(e,d,b,c,a) s₂=0.5, π_2 =(e,d,b,c,a) s₁=1, π_1 =(a,b,c,d,e)

So we know that if a NE exists, then a and e are first on M_1 and M_2 , respectively. Let's consider the possible locations of job d

s₃=0.5, π_3 =(e,d,b,c,a) s₂=0.5, π_2 =(e,d,b,c,a) s₁=1, π_1 =(a,b,c,d,e)

 $s_3=0.5, \pi_3=(e,d,b,c,a)$ $s_2=0.5, \pi_2=(e,d,b,c,a)$ $s_1=1, \pi_1=(a,b,c,d,e)$

Therefore, there is no NE in which d is on M_1

 $s_3=0.5, \pi_3=(e,d,b,c,a)$ $s_2=0.5, \pi_2=(e,d,b,c,a)$ $s_1=1, \pi_1=(a,b,c,d,e)$

Therefore, there is no NE in which d is on M_2

s₃=0.5,
$$π_3 = (e,d,b,c,a)$$

s₂=0.5, $π_2 = (e,d,b,c,a)$
s₁=1, $π_1 = (a,b,c,d,e)$

Therefore, there is no NE in which \square is on M_3

We conclude that there are games in which a NE does not exist

Can we characterize games that have a NE?

Unfortunately, No.

Theorem: Given an instance of a scheduling game, it is NP-complete to decide whether the game has a NE. Proof: Reduction from 3-bounded 3-dimensional matching

On the other hand:

We identified four classes of games for which a NE is guaranteed to exist.

 G_1 : Unit Jobs G_2 : Two machines G_3 : Identical machines G_4 : Global priority list

Note: This characterization is tight. In our No-NE example, there are three machines, two of them are identical (same speed and same priority list)

For each of the four classes, we present:

- A polynomial time algorithm for computing a NE
- A proof that BRD converges to a NE
- Tight analysis of the equilibrium inefficiency:

Objective Instance class	Makespan PoA and PoS	Sum of Completion Time PoA and PoS
\mathcal{G}_1 : Unit Jobs	1	1
\mathcal{G}_2 : Two machines	$\frac{\sqrt{5}+1}{2}$	$\Theta(n)$
\mathcal{G}_3 : Identical machines	$2-\frac{1}{m}$	$\Theta\left(\frac{n}{m}\right)$
\mathcal{G}_4 : Global priority list	$\Theta(m)$	$\Theta(n)$

Two machines

Theorem: If m = 2, then a NE exists and can be calculated efficiently.

Proof: Algorithm

Two machines

Algorithm:

- 1. Assign all the jobs on M_1 according to π_1 .
- 2. For k = 1,...,n, let job j for which $\pi_2(j) = k$ perform

a best-response move.

Two machines

Claim: The algorithm produces a NE. Proof:

Let $\boldsymbol{\sigma}$ denote the schedule produced by the algorithm.

- **1**. Jobs on M₁ have no incentive to deviate (easy).
- **2**. Suppose a job j on M_2 has an incentive to deviate.

Let Δ be the set of jobs that have a higher priority on M_1 than j and moved to M_2 after j.

s₁=1

 $s_2 = s \le 1$

Two machines

(ii) $(P_B + p_i + P_\Delta)/s_2 < P_A + P_\Delta$

(i) $P_A + p_i < (P_B + p_i)/s_2$

 $p_j + P_{\Delta}/s_2 < P_{\Delta}$

A Contradiction (since $p_i \ge 0$ and $s_2 \le 1$)

Remark: A possible generalization of our setting considers unrelated machines (p_{ij} is the processing time of job i if processed on machine j).

In this environment, a NE need not exist already with only two unrelated machines.

Equilibrium inefficiency

The makespan of a profile σ , is $C_{max}(\sigma) = max_{j \in J}C_j(\sigma)$ For a game G,

$$PoA(G) = \frac{max_{\sigma \in NE(G)} C_{max}(\sigma)}{min_{\sigma^*} C_{max}(\sigma^*)} =$$

makespan of the worst NE schedule min makespan (social optimum)

For a class of games G, define $PoA(G) = sup_{G \in G} PoA(G)$

Equilibrium inefficiency

The makespan of a profile σ , is $C_{max}(\sigma) = max_{j \in J}C_j(\sigma)$ For a game G,

$$PoA(G) = \frac{max_{\sigma \in NE(G)} C_{max}(\sigma)}{min_{\sigma^*} C_{max}(\sigma^*)} =$$

makespan of the worst NE schedule min makespan (social optimum)

For a class of games G, define $PoA(G) = sup_{G \in G} PoA(G)$

Instance class	Makespan PoA	
\mathcal{G}_1 : Unit Jobs	1	
\mathcal{G}_2 : Two machines	$\frac{\sqrt{5}+1}{2}$	
\mathcal{G}_3 : Identical machines	$2-\frac{1}{m}$	
\mathcal{G}_4 : Global priority list	$\Theta(m)$	

Theorem: Let G be a game played on two machines, $s_1 = 1$ and $s_2 \le 1$, then $PoA(G) \le min\left\{1 + s_2, 1 + \frac{1}{1 + s_2}\right\}$

Since
$$1 + s = 1 + \frac{1}{1+s}$$
 for $s = \frac{\sqrt{5}-1}{2}$, the theorem implies that $PoA(\mathcal{G}_2) \le \frac{\sqrt{5}+1}{2}$.

Theorem: Let G be a game played on two machines, $s_1 = 1$ and $s_2 \le 1$, then $PoA(G) \le min\left\{1 + s_2, 1 + \frac{1}{1 + s_2}\right\}$

Proof: Let σ be a NE.

1.
$$C_{max}(\sigma) \leq \sum_{j \in J} p_j$$
 (if all jobs on fast machine)
2. $C_{max}(\sigma^*) \geq \frac{\sum_{j \in J} p_j}{1 + s_2}$ (balanced)

Implying that $C_{max}(\sigma) \leq (1 + s_2) \cdot C_{max}(\sigma^*).$

Theorem: Let G be a game played on two machines, $s_1 = 1$ and $s_2 \le 1$, then $PoA(G) \le min\left\{1 + s_2, 1 + \frac{1}{1 + s_2}\right\}$

Proof: Let a be the last job to complete in a NE σ .

$$C_{max}(\sigma) \leq \frac{p_a + \sum_{j \in J} p_j}{1 + s_2} \leq \left(1 + \frac{1}{1 + s_2}\right) \cdot C_{max}(\sigma^*).$$

Theorem: For every $s \le 1$, there exists a game with $s_1 = 1$, $s_2 = s$, and $PoS(G) = min\left\{1 + s, 1 + \frac{1}{1+s}\right\}$.

 $PoS(G) = \frac{\text{makespan of the best NE schedule}}{\text{min makespan (social optimum)}}$

Theorem: For every $s \le 1$, there exists a game with $s_1 = 1$, $s_2 = s$, and $PoS(G) = min\left\{1 + s, 1 + \frac{1}{1+s}\right\}$.

Proof: case 1:
$$s \le \frac{\sqrt{5}+1}{2}$$
.
Let J={x,y}, $p_x = 1$, $p_y = \frac{1}{s}$ $\pi_1 = \pi_2 = (x, y)$.

$$1 + s = 1 + \frac{1}{1+s}$$

for $s = \frac{\sqrt{5}-1}{2}$

(*) if
$$s = \frac{\sqrt{5}-1}{2}$$
, take $p_y = \frac{1}{s} - \epsilon$)

$$PoS = 1+s$$

case 2: s >
$$\frac{\sqrt{5}-1}{2}$$
.
J={x,y,z}, p_x = 1, p_y = s²+s-1, p_z = 1+s.
 $\pi_1 = \pi_2 = (x, y, z)$.

In all NE: (1) x is on the fast machine (2) y is on the slow machine since $s^2 + s > (s^2+s-1)/s$. (3) z is indifferent. $p_x + p_z = (p_y + p_z)/s = 2+s$.

Equilibrium inefficiency, Identical machines

Theorem:

If $s_i = 1$ for all $i \in M$, then $PoA(G) \le 2 - \frac{1}{m}$

Proof:

We show that any NE is a possible outcome of Graham's List-scheduling algorithm

Theorem:

If $s_i = 1$ for all $i \in M$, then it is NP-hard to approximate the best NE within a factor of $2 - \frac{1}{m} - \epsilon$ for all $\epsilon > 0$. Proof: Reduction from 3D-matching.

Back to centralized setting (not a game)

- A set J of n jobs, and a set M of m parallel machines
 - Every job $j \in J$ has processing time p_i
 - In case of unrelated machines, p_{ij} is the processing time of job j on machine i.
 - Every machine $i \in M$ has a priority list $\pi_i: J \rightarrow \{1,...,n\}$, defining its scheduling policy.

The Goal: Find a schedule that minimizes $\sum_{i} C_{i}$

Note: In the centralized setting, priority lists do not `upgrade' the problem of minimizing the Makespan

Without priority lists, both problems are solvable P $|\sum_{j} C_{j}$ - SPT is optimal [Smith 1956] R $|\sum_{j} C_{j}$ - can be represented as a bipartite weighted matching problem [Bruno, Coffman, Sethi 1974]

Theorem: $P|\pi|\sum_j C_j$ is APX-hard (\mathbf{z})

We therefore consider several restricted classes:

- Global priority list
- Fixed number of machines
- Fixed number of priority classes

Our results:

	π_i	π_{global}	π_{LPT}	$\pi_{i,c}$	$\pi_{global,c}$
Ρ	APX-hard	QPTAS	Р	APX-hard	Р
R	APX-hard	APX-hard	APX-hard	APX-hard	APX-hard

 $\pi_{i,c}$ and $\pi_{global,c}$: the jobs are partitioned into c job classes $J_1, ..., J_c$. For every $1 < k \le c$, every machine processes jobs from J_k after it processes jobs from $\bigcup_{j < k} J_j$. Note: in every optimal schedule, for every $1 \le i \le m$ and $1 \le k \le c$, machine i processes jobs of J_k in SPT order.

Our results:

	π_i	π_{global}	π_{LPT}	$\pi_{i,c}$	$\pi_{global,c}$
Ρ	APX-hard	QPTAS	Р	APX-hard	Р
R	APX-hard	APX-hard	APX-hard	APX-hard	APX-hard
			1		
In P if m is a constant					

A Useful Observation: Let l_i denote the number of jobs on machine i.

The job with the k-th highest priority assigned to machine

i contributes exactly $l_i + 1 - k$ times its processing time

to the sum of completion times.

the delay-coefficient of the job

 p_{ij} is counted $l_i + 1 - (l_i - 2) = 3$ times in $\Sigma_j C_j$

$\pi_{\rm LPT}$ - Longest Processing Time First

 π_{LPT} – every machine processes jobs in LPT order.

 $P | \pi_{LPT} | \sum_j C_j :$ A global priority list $\pi = (1, 2, ..., n)$, where $p_1 \ge p_2 \ge ... \ge p_n$.

 $R | \pi_{LPT} | \sum_{j} C_{j}$: For machine i, $\pi_{i} = (1_{i}, 2_{i}, ..., n_{i})$, where $p_{i,1^{i}} \ge p_{i,2^{i}} \ge ... \ge p_{i,n^{i}}$.

An optimal algorithm for $P|\pi_{LPT}|\sum_j C_j$

Claim: There exists an optimal schedule for $P|\pi_{LPT}|\sum_j C_j$ in which for some $l_1 \leq l_2 \leq \cdots \leq l_m$ such that $\sum_i l_i = n$, it holds that machine *i* processes the consequent subsequence of l_i jobs $1 + \sum_{k \leq i} l_k, \dots, \sum_{k \leq i} l_k$.

Illustration of the claim:

Assume m=3, then some optimal schedule looks like this:

An optimal algorithm for $P|\pi_{LPT}|\sum_j C_j$

Claim: There exists an optimal schedule for $P|\pi_{LPT}|\sum_j C_j$ in which for some $l_1 \leq l_2 \leq \cdots \leq l_m$ such that $\sum_i l_i = n$, it holds that machine *i* processes the consequent subsequence of l_i jobs $1 + \sum_{k \leq i} l_k, \dots, \sum_{k \leq i} l_k$.

Illustration of the claim:

Assume m=3, then some optimal schedule looks like this:

An optimal algorithm for $P|\pi_{LPT}|\sum_{j} C_{j}$

Proof: (for two machines) Assume that we know how many jobs are assigned to each of the machines. W.l.o.g., assume that $l_1 \leq l_2$. We show that in some optimal schedule, M_1 processes the l_1 longest jobs, and M_2 processes the l_2 shortest jobs.

An optimal algorithm for $P|\pi_{LPT}|\sum_{j} C_{j}$

Consider the *i* -th job on machine 2. This job gets a coefficient of $l_2 + 1 - i$. The shortest possible job that can get this coefficient is job $l_1 + i$. Consider a job $i \le l_1$. The minimal coefficient job *i* can get is $l_1 + 1 - i$ (for example, in every schedule, the longest job, has coefficient at least l_1).

An optimal algorithm for $P|\pi_{LPT}|\sum_{j} C_{j}$

When jobs $j = 1, ..., l_1$ are on M_1 and jobs $j = l_1 + 1, ..., l_2$ are on M_{2} every coefficient (on M_2) is matched with the shortest job that can get this coefficient, and every job (on M_1) is matched with the minimal coefficient it can get.

An optimal algorithm for $P|\pi_{LPT}|\sum_j C_j$

Theorem: P | π_{LPT} | $\sum_{i} C_{i}$ is polynomial time solvable.

Proof: A dynamic programming based on the above claim

On the other hand:

With unrelated machines, the problem is hard and hard to approximate:

Theorem: $\mathbb{R} | \pi_{LPT} | \sum_j C_j$ is APX-hard

$\mathbb{R}|\pi_{LPT}|\sum_{j} C_{j}$ is APX-hard

Theorem: $\mathbb{R}|\pi_{LPT}|\sum_{j} C_{j}$ is APX-hard Proof: (for now, NP-hardness only) Reduction from vertex-cover Given a graph G and an integer k, does G have a VC of size k?

$\mathbb{R}[\pi_{LPT}] \sum_{i} C_{i}$ is APX-hard

Given G=(V,E) and k, construct an instance for R $|\pi_{LPT}| \sum_i C_i$: |V| machines, where M_i corresponds to node $i \in V$. The set of jobs consists of two sets D and A. D includes |V|-k dummy jobs. $\forall i, d, p_{i,d} = 1$ A includes |E| jobs, each corresponding to an edge $e \in E$.

 $p_{i,(u,v)} = \begin{cases} 0 & i = u \text{ or } i = v \\ 1 & otherwise \end{cases} \quad i \text{ is an endpoint of } (u,v)$

 $M=\{a,b,c,d,e\}$ $J = D \cup A$ $D = \{d_1, d_2, d_3\}$ A={(ab),(ad),(ae),...}

$\mathbb{R}|\pi_{LPT}|\sum_{j} C_{j}$ is APX-hard

 π_{LPT} implies that if a job (edge) is assigned on a machine corresponding to one of its endpoint then it is processed after any dummy job assigned to this machine.

Every dummy job goes to a different machine. All A-jobs have C_j=0.

$\mathbb{R}|\pi_{LPT}|\sum_{j} C_{j}$ is APX-hard

Hardness proof for APX-hardness a bit more technical. The reduction is from Max-k-VC of a bounded degree graph.

Given G, k, where max-degree(G) = Δ , find U \subseteq V, |U|=k, such that the number of edges adjacent to vertices in U is maximal.

Summary and open problems

- The introduction of machine-dependent priority lists opens a new world of optimization problems.
- Challenging analysis as a game as well as an optimization problem.
- General instances: no guaranteed NE, hard to approx.
- Some important classes behave nicely.

Summary and open problems

To do list:

- Complexity status of $P|\pi| \sum_{j} C_{j}$ (QPTAS but no hardness proof)
- Identify additional tractable/stable instances
- Approximation algorithms
- Priority-list can be viewed as a special case of machines-based precedence constraints (precedence constraints given by a chain). Study the general P|machine-based prec $|\sum_{i} C_{i}$
- Analyze instances with due-dates and lateness-related obj.

Assume a global priority list. What is the minimal number of machines required to complete all jobs on time?

Questions?

© marketoonist.com