Scheduling with Machine-Dependent Priority Lists

University

Tami Tamir

Based on joint work with
Vipin Ravindran Vijayalakshmi and
Marc Schroder

Traditional Scheduling Algorithms

- A centralized authority (a scheduler) determines the outcome.
- The centralized authority aims to maximize the system's utilization and the total users' welfare.
- All the users obey it.

Job Scheduling Games

- The jobs are controlled by selfish agents who select the jobs assignment.
- No centralized authority.

Every job selects its machine, trying to maximize its own utility

Coordinated Mechanism

Machines have a local scheduling policy.
The jobs know this policy and select their machine accordingly.

Example: Assume that all the machines schedule the jobs in LPT (Longest first) order.

Coordinated Mechanism LPT Policy

Which machine should I join to minimize my completion time?

$$
\mathrm{p}_{1}=5
$$

| 7 | 7 | 5 | 2 |
| :--- | :--- | :--- | :--- | :--- |

$C_{j}=7+7+5=19$ if j join M_{2}

\square $C_{j}=8+5=13$ if l join M_{1}

If the local policy is LPT, I'Il better join M_{1}.

This is my best-response.

Coordinated Mechanism SPT Policy

M_{1}	3	4	8
	3	4	
M_{2}	2	7	7

M_{2}	2	5	7	7

$C_{j}=2+5=7$ if I join M_{2}

M_{1}	3	4	5	8

	2	7	7
	2		

$C_{j}=3+4+5=12$ if I join M_{1}
(2) If the local policy is SPT, my best-response is to join M_{2}.

Coordinated Mechanism SPT Policy

Assume that
joins M_{2}

Consider the $2^{\text {nd }}$ job of length 7 in the resulting schedule

Coordinated Mechanism SPT Policy

	2	5	7

Now, other jobs may have a beneficial migration...

Best Response Dynamics (BRD)

- A local search method.
- Players proceed in turns, each performing a selfish improving step.
- An important question: Does BRD converge to a pure Nash equilibrium.

A stable profile in
which no player has
an improving step.

Our Work

We study coordinated mechanisms in which different machines may have different local policies.

For the associated game, we analyzed:

- Nash equilibrium existence and calculation
- BRD convergence
- Equilibrium inefficiency

Not less important: We studied the centralized version of this setting.

The Setting

- A set J of n jobs

- Every job $j \in J$ has processing time p_{j}
- A set M of m parallel machines
- Every machine $i \in M$ has speed s_{i} and a priority list $\pi_{i}: J \rightarrow\{1, \ldots, n\}$, defining its scheduling policy.

$$
\pi_{1}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 00 \\
1 & 2 & 3 & 4 & \frac{b}{5}
\end{array}\right)
$$

The Setting

$$
\begin{aligned}
& \text { Example: J=\{ } \begin{array}{lllllll}
0 & b & c & 0 & 0 \\
p_{j}= & 2 & 4 & 2 & 2 & 1
\end{array} \quad \text { processing times } \\
& \mathrm{m}=2 \text {, } \\
& s_{1}=1 \quad \pi_{1}=(e, d, c, b, a) \\
& s_{2}=0.5 \quad \pi_{2}=(a, b, c, d, e)
\end{aligned}
$$

A profile of the game:
A schedule σ : $J \rightarrow M$.
$\mathrm{C}_{\mathrm{j}}(\sigma)=$ the completion time of job j in profile σ

$$
C_{j}=(4,7,8,3,1)
$$

The Setting

$$
\begin{aligned}
& \text { Example: J=\{ } \begin{array}{lllllll}
0 & b & c & 0 & 0 \\
p_{j}= & 2 & 4 & 2 & 2 & 1
\end{array} \quad \text { processing times } \\
& \mathrm{m}=2 \text {, } \\
& s_{1}=1 \quad \pi_{1}=(e, d, c, b, a) \\
& s_{2}=0.5 \quad \pi_{2}=(a, b, c, d, e)
\end{aligned}
$$

Does anyone have a beneficial migration?

The Setting

$$
\begin{aligned}
& \mathrm{m}=2 \text {, } \\
& s_{1}=1 \quad \pi_{1}=(e, d, c, b, a) \\
& s_{2}=0.5 \quad \pi_{2}=(a, b, c, d, e)
\end{aligned}
$$

M_{1}	e	d	c	b

Game Theory Definitions

A profile is a pure Nash equilibrium (NE) if no job can reduce its completion time by changing its strategy (migrating to a different machine)

A social optimum (SO) of a game is a profile that attains some optimality criteria.
For example:
social optimum w.r.t total flow time (=sum of C_{j}) social optimum w.r.t makespan (=maximal C_{j}).

SO = Optimal solution for the centralized
problem P| $|\pi| C_{\text {max }}$ or $\mathrm{P}|\pi| \Sigma_{j} C_{j}$

Interesting Questions

- Calculating a NE for a given game instance
- What is the equilibrium inefficiency?

$$
\begin{aligned}
& \text { Price of Anarchy }=\text { wof } \begin{array}{l}
\text { def } \\
\text { Price } \\
\text { PE } \\
\text { Stability }
\end{array}=\text { best } \text { de } / \text { SO }
\end{aligned}
$$

- Convergence of Best-Response Dynamics

Back to our example

$$
\begin{array}{ll}
s_{1}=1 & \pi_{1}=(e, d, c, b, a) \\
s_{2}=0.5 & \pi_{2}=(a, b, c, d, e)
\end{array}
$$

$C_{\text {max }}=8$
A social optimum w.r.t Makespan, but not a NE.

A possible NE profile.

$$
C_{\max }=9
$$

Price of anarchy $\geq 9 / 8$

Related Work

- Koutsoupias and Papadimitriou (1999)
- Czumaj and Vocking (2003)
- Christodoulou, Koutsoupias and Nanavati (2004)
- Cole, Correa, Gkatzelis, Mirrokni and Olver (2015)
- Immorlica, Li, Mirrokni and Schulz (2005)
- Farzad, Olver and Vetta (2008)
- Correa and Queyranne (2012)
- Cole, Correa, Gkatzelis, Mirrokni and Olver (2015)
- Hoeksma and Uetz (2019)
- Bosman, Frascaria, Olver, Sitters, Stougie (2019)

Selfish Scheduling / Coordinated mechanism /Prioritybased model of routing/ The centralized problem.

NE Calculation

Given $\left\langle J, M,\left\{s_{i}\right\},\left\{\pi_{i}\right\}\right\rangle$, calculate a NE profile

NE existence

$$
\begin{array}{lr}
\mathrm{m}=3, \mathrm{M}=\left\{\mathrm{M}_{1}, \mathrm{M}_{2}, M_{3}\right\} \\
\mathrm{s}_{1}=1 & \pi_{1}=(a, b, c, d, e) \\
\mathrm{s}_{2}=s_{2}=0.5 & \pi_{2}=\pi_{3}=(e, d, b, c, a)
\end{array}
$$

One fast machine.
Two slow machines

NE existence

$s_{3}=0.5, \pi_{3}=(e, d, b, c, a)$
$s_{2}=0.5, \pi_{2}=(e, d, b, c, a)$
$s_{1}=1, \quad \pi_{1}=(a, b, c, d, e)$

Since a is the first on π_{1}, it is first on M_{1} in any NE schedule.

NE existence

$s_{3}=0.5, \pi_{3}=(e, d, b, c, a)$
$s_{2}=0.5, \pi_{2}=(e, d, b, c, a)$
$s_{1}=1, \quad \pi_{1}=(a, b, c, d, e)$

Given that ${ }^{\text {a }}$ is on M_{1}, Since e is the first on π_{2}, it is first on M_{2} (w.l.o.g) in any NE schedule

NE existence

$s_{3}=0.5, \pi_{3}=(e, d, b, c, a)$
$s_{2}=0.5, \pi_{2}=(e, d, b, c, a)$
$s_{1}=1, \quad \pi_{1}=(a, b, c, d, e)$

So we know that if a NE exists, then and e are first on M_{1} and M_{2}, respectively. Let's consider the possible locations of job d

NE existence

Therefore, there is no NE in which d is on M_{1}

NE existence

Therefore, there is no NE in which d is on M_{2}

NE existence

$s_{3}=0.5, \pi_{3}=(e, d, b, c, a)$
$s_{2}=0.5, \pi_{2}=(e, d, b, c, a)$
$s_{1}=1, \quad \pi_{1}=(a, b, c, d, e)$

Therefore, there is no NE in which d is on M_{3}

NE existence

We conclude that there are games in which a NE does not exist

NE existence

Can we characterize games that have a NE?

Unfortunately, No.

Theorem: Given an instance of a scheduling game, it is NP-complete to decide whether the game has a NE.
Proof: Reduction from 3-bounded 3-dimensional matching

On the other hand:

We identified four classes of games for which a NE is guaranteed to exist.
\mathcal{G}_{1} : Unit Jobs
\mathcal{G}_{2} : Two machines
\mathcal{G}_{3} : Identical machines
\mathcal{G}_{4} : Global priority list

Note: This characterization is tight. In our No-NE example, there are three machines, two of them are identical (same speed and same priority list)

For each of the four classes, we present:

- A polynomial time algorithm for computing a NE
- A proof that BRD converges to a NE
- Tight analysis of the equilibrium inefficiency:

Objective Instance class	Makespan	Sum of Completion Time PoA and PoS
$\mathcal{G}_{1}:$ Unit Jobs	1	1
$\mathcal{G}_{2}:$ Two machines	$\frac{\sqrt{5}+1}{2}$	$\Theta(n)$
$\mathcal{G}_{3}:$ Identical machines	$2-\frac{1}{m}$	$\Theta\left(\frac{n}{m}\right)$
$\mathcal{G}_{4}:$ Global priority list	$\Theta(m)$	$\Theta(n)$

Two machines

Theorem: If $m=2$, then a NE exists and can be calculated efficiently.

Proof: Algorithm

Two machines

Algorithm:

1. Assign all the jobs on M_{1} according to π_{1}.
2. For $k=1, \ldots, n$, let job j for which $\pi_{2}(j)=k$ perform a best-response move.

$$
\mathrm{M}_{2} \quad \mathrm{~s}_{2} \leq 1
$$

$$
\begin{array}{ll|l|l|l|l|l|}
M_{1} & s_{1}=1 & j_{1} & j_{2} & j_{3} & j_{4} & \ldots \\
\hline j_{n} & \pi_{1}=\left(j_{1}, j_{2}, j_{3}, \ldots, j_{n}\right)
\end{array}
$$

Two machines

Claim: The algorithm produces a NE.

Proof:

Let σ denote the schedule produced by the algorithm.

1. Jobs on M_{1} have no incentive to deviate (easy).
2. Suppose a job j on M_{2} has an incentive to deviate.

Let Δ be the set of jobs that have a higher priority on M_{1} than j and moved to M_{2} after j .

Before j was considered
now
by the algorithm

$$
\begin{aligned}
& \pi_{1}=(\ldots, \Delta, \ldots, B, \ldots) \\
& \pi_{2}=(\ldots, B, \ldots, \Delta, \ldots)
\end{aligned}
$$

Two machines

(i) $P_{A}+p_{j}<\left(P_{B}+p_{j}\right) / s_{2}$
(ii) $\left(P_{B}+p_{j}+P_{\Delta}\right) / s_{2}<P_{A}+P_{\Delta}$

$$
\Longleftrightarrow p_{j}+P_{\Delta} / s_{2}<P_{\Delta}
$$

A Contradiction (since $\mathrm{p}_{\mathrm{j}} \geq 0$ and $\mathrm{s}_{2} \leq 1$)

Two machines

Remark: A possible generalization of our setting considers unrelated machines (p_{ij} is the processing time of job if processed on machine j).

In this environment, a NE need not exist already with only two unrelated machines.

Equilibrium inefficiency

The makespan of a profile σ, is $C_{\max }(\sigma)=\max _{j \in J} C_{j}(\sigma)$
For a game G,

$$
\operatorname{PoA}(G)=\frac{\max _{\sigma \in N E(G)} C_{\max }(\sigma)}{\min _{\sigma^{*}} C_{\max }\left(\sigma^{*}\right)}=\frac{\text { makespan of the worst NE schedule }}{\text { min makespan (social optimum) }}
$$

For a class of games \mathcal{G}, define $\operatorname{PoA}(\mathcal{G})=\sup _{G \in \mathcal{G}} \operatorname{PoA}(G)$

Equilibrium inefficiency

The makespan of a profile σ, is $C_{\max }(\sigma)=\max _{j \in J} C_{j}(\sigma)$
For a game G,

$$
\operatorname{PoA}(G)=\frac{\max _{\sigma \in N E(G)} C_{\max }(\sigma)}{\min _{\sigma^{*}} C_{\max }\left(\sigma^{*}\right)}=\frac{\text { makespan of the worst NE schedule }}{\text { min makespan (social optimum) }}
$$

For a class of games \mathcal{G}, define $\operatorname{PoA}(\mathcal{G})=\sup _{G \in \mathcal{G}} \operatorname{PoA}(G)$

Instance class	Makespan PoA
$\mathcal{G}_{1}:$ Unit Jobs	1
$\mathcal{G}_{2}:$ Two machines	$\frac{\sqrt{5}+1}{2}$
$\mathcal{G}_{3}:$ Identical machines	$2-\frac{1}{m}$
$\mathcal{G}_{4}:$ Global priority list	$\Theta(m)$

Equilibrium inefficiency, two machines.

Theorem: Let G be a game played on two machines, $\mathrm{s}_{1}=1$ and $s_{2} \leq 1$, then $\operatorname{PoA}(G) \leq \min \left\{1+s_{2}, 1+\frac{1}{1+s_{2}}\right\}$

Since $1+s=1+\frac{1}{1+s}$ for $s=\frac{\sqrt{5}-1}{2}$, the theorem implies that $\operatorname{PoA}\left(\mathcal{G}_{2}\right) \leq \frac{\sqrt{5}+1}{2}$.

Equilibrium inefficiency, two machines.

Theorem: Let G be a game played on two machines, $\mathrm{s}_{1}=1$
and $s_{2} \leq 1$, then $\operatorname{PoA}(G) \leq \min \left\{1+s_{2}, 1+\frac{1}{1+s_{2}}\right\}$
Proof: Let σ be a NE.

1. $\quad C_{\max }(\sigma) \leq \sum_{j \in J} p_{j}$
(if all jobs on fast machine)
2. $\quad C_{\max }\left(\sigma^{*}\right) \geq \frac{\sum_{j \in J} p_{j}}{1+s_{2}}$
(balanced)

Implying that $\quad C_{\max }(\sigma) \leq\left(1+s_{2}\right) \cdot C_{\max }\left(\sigma^{*}\right)$.

Equilibrium inefficiency, two machines.

Theorem: Let G be a game played on two machines, $\mathrm{s}_{1}=1$ and $s_{2} \leq 1$, then $\operatorname{PoA}(G) \leq \min \left\{1+s_{2}, 1+\frac{1}{1+s_{2}}\right\}$

Proof: Let a be the last job to complete in a NE σ.

1. $C_{\max }(\sigma) \leq p_{a}+\sum_{j \neq a: \sigma_{j}=1} p_{j} \quad$ (a can go to fast machine)
2. $C_{\max }(\sigma) \leq\left(p_{a}+\sum_{j \neq a: \sigma_{j}=2} p_{j}\right) / s_{2} \quad$ (a can go to slow machine) Implying that

$$
\left(C_{\max }(\sigma) \geq p_{a}\right)
$$

$$
C_{\max }(\sigma) \leq \frac{p_{a}+\sum_{j \in J} p_{j}}{1+s_{2}} \leq\left(1+\frac{1}{1+s_{2}}\right) \cdot C_{\max }\left(\sigma^{*}\right)
$$

Equilibrium inefficiency, two machines.

Theorem: For every $s \leq 1$, there exists a game with $s_{1}=1$, $s_{2}=s$, and $\operatorname{PoS}(G)=\min \left\{1+s, 1+\frac{1}{1+s}\right\}$.

$$
\operatorname{PoS}(G)=\frac{\text { makespan of the best NE schedule }}{\min \text { makespan (social optimum) }}
$$

Equilibrium inefficiency, two machines.

Theorem: For every $s \leq 1$, there exists a game with $s_{1}=1$, $s_{2}=s$, and $\operatorname{PoS}(G)=\min \left\{1+s, 1+\frac{1}{1+s}\right\}$.
Proof: case 1: $\mathrm{s} \leq \frac{\sqrt{5}+1}{2}$.
Let $\mathrm{J}=\{\mathrm{x}, \mathrm{y}\}, \mathrm{p}_{\mathrm{x}}=1, \mathrm{p}_{\mathrm{y}}=\frac{1}{s}$

$$
\pi_{1}=\pi_{2}=(x, y) .
$$

$$
\begin{aligned}
& 1+s=1+\frac{1}{1+s} \\
& \text { for } s=\frac{\sqrt{5}-1}{2}
\end{aligned}
$$

$\left.{ }^{*}\right)$ if $s=\frac{\sqrt{5}-1}{2}$, take $p_{y}=\frac{1}{s}-\epsilon$)

$$
\mathrm{PoS}=1+\mathrm{s}
$$

Equilibrium inefficiency, two machines.

case $2: \mathrm{s}>\frac{\sqrt{5}-1}{2}$.
$J=\{x, y, z\}, p_{x}=1, p_{y}=s^{2}+s-1, p_{z}=1+s$.
$\pi_{1}=\pi_{2}=(x, y, z)$.
In all NE: (1) x is on the fast machine
(2) y is on the slow machine since $s^{2}+s>\left(s^{2}+s-1\right) / s$.
(3) z is indifferent. $p_{x}+p_{z}=\left(p_{y}+p_{z}\right) / s=2+s$.

$$
\operatorname{PoS}=\frac{2+s}{1+s}=1+\frac{1}{1+s}
$$

Equilibrium inefficiency, Identical machines

Theorem:
If $s_{i}=1$ for all $i \in M$, then $\operatorname{PoA}(G) \leq 2-\frac{1}{m}$
Proof:
We show that any NE is a possible outcome of Graham's List-scheduling algorithm

Theorem:
If $s_{i}=1$ for all $i \in M$, then it is NP-hard to approximate the best NE within a factor of $2-\frac{1}{m}-\epsilon$ for all $\epsilon>0$. Proof:
Reduction from 3D-matching.

Back to centralized setting (not a game)

- A set J of n jobs, and a set M of m parallel machines
- Every job $j \in J$ has processing time p_{j}
- In case of unrelated machines, $p_{i j}$ is the processing time of job j on machine i.
- Every machine $i \in M$ has a priority list $\pi_{\mathrm{i}}: J \rightarrow\{1, \ldots, \mathrm{n}\}$, defining its scheduling policy.

The Goal: Find a schedule that minimizes $\sum_{j} C_{j}$

Note: In the centralized setting, priority lists do not `upgrade’ the problem of minimizing the Makespan

The problems $\mathrm{P}|\pi| \sum_{j} C_{j}$ and $\mathrm{R}|\pi| \sum_{j} C_{j}$

Without priority lists, both problems are solvable
$\mathrm{P}\left|\mid \sum_{j} C_{j}-\mathrm{SPT}\right.$ is optimal [Smith 1956]
$\mathrm{R}\left|\mid \sum_{j} C_{j}\right.$ - can be represented as a bipartite weighted matching problem [Bruno, Coffman, Sethi 1974]

Theorem: $\mathrm{P}|\pi| \sum_{j} C_{j}$ is APX-hard

We therefore consider several restricted classes:

- Global priority list
- Fixed number of machines
- Fixed number of priority classes

The problems $\mathrm{P}|\pi| \sum_{j} C_{j}$ and $\mathrm{R}|\pi| \sum_{j} C_{j}$

Our results:

	π_{i}	$\boldsymbol{\pi}_{\text {global }}$	$\pi_{L P T}$	$\boldsymbol{\pi}_{i, \boldsymbol{c}}$	$\pi_{\text {global, }}$
P	APX-hard	QPTAS	P	APX-hard	P
R	APX-hard	APX-hard	APX-hard	APX-hard	APX-hard

$\pi_{i, c}$ and $\pi_{g l o b a l, c}$: the jobs are partitioned into c job classes $\mathrm{J}_{1}, \ldots, \mathrm{~J}_{\mathrm{c}}$. For every $1<\mathrm{k} \leq \mathrm{c}$, every machine processes jobs from J_{k} after it processes jobs from $U_{j<k} J_{j}$. Note: in every optimal schedule, for every $1 \leq \mathrm{i} \leq \mathrm{m}$ and $1 \leq \mathrm{k} \leq \mathrm{c}$, machine i processes jobs of J_{k} in SPT order.

The problems $\mathrm{P}|\pi| \sum_{j} C_{j}$ and $\mathrm{R}|\pi| \sum_{j} C_{j}$

Our results:

	$\boldsymbol{\pi}_{\boldsymbol{i}}$	$\boldsymbol{\pi}_{\text {global }}$	$\boldsymbol{\pi}_{L P T}$	$\boldsymbol{\pi}_{\boldsymbol{i}, \boldsymbol{c}}$	$\pi_{\text {global, }}$
P	APX-hard	QPTAS	P	APX-hard	P
R	APX-hard	APX-hard	APX-hard	APX-hard	APX-hard
In P if m is a constant					

The problems $\mathrm{P}|\pi| \sum_{j} C_{j}$ and $\mathrm{R}|\pi| \sum_{j} C_{j}$

A Useful Observation: Let l_{i} denote the number of jobs on machine i.
The job with the k-th highest priority assigned to machine i contributes exactly $l_{i}+1-k$ times its processing time to the sum of completion times.
the delay-coefficient of the job

$p_{i j}$ is counted $l_{i}+1-\left(l_{i}-2\right)=3$ times in $\Sigma_{\mathrm{j}} \mathrm{C}_{\mathrm{j}}$

π_{LPT} - Longest Processing Time First

$\pi_{\text {LPT }}$ - every machine processes jobs in LPT order.
$\mathrm{P}\left|\pi_{\mathrm{LPT}}\right| \sum_{j} C_{j}:$
A global priority list $\pi=(1,2, \ldots, n)$, where $p_{1} \geq p_{2} \geq \ldots \geq p_{n}$.
$\mathrm{R}\left|\pi_{\mathrm{LPT}}\right| \sum_{j} C_{j}:$
For machine $i, \pi_{i}=\left(1_{i}, 2_{i}, \ldots, n_{i}\right)$, where $p_{i, 1 i} \geq p_{i, 2 i} \geq \ldots \geq p_{i, n i}$.

An optimal algorithm for $\mathrm{P}\left|\pi_{\mathrm{LpT}}\right| \sum_{j} C_{j}$

Claim: There exists an optimal schedule for $\mathrm{P}\left|\pi_{\text {LPT }}\right| \sum_{j} C_{j}$ in which for some $l_{1} \leq l_{2} \leq \cdots \leq l_{m}$ such that $\sum_{i} l_{i}=n$, it holds that machine i processes the consequent subsequence of l_{i} jobs $1+\sum_{k<i} l_{k}, \ldots, \sum_{k \leq i} l_{k}$.

Illustration of the claim:

Assume $m=3$, then some optimal schedule looks like this:

An optimal algorithm for $\mathrm{P}\left|\pi_{\mathrm{LpT}}\right| \sum_{j} C_{j}$

Claim: There exists an optimal schedule for $\mathrm{P}\left|\pi_{\text {LPT }}\right| \sum_{j} C_{j}$ in which for some $l_{1} \leq l_{2} \leq \cdots \leq l_{m}$ such that $\sum_{i} l_{i}=n$, it holds that machine i processes the consequent subsequence of l_{i} jobs $1+\sum_{k<i} l_{k}, \ldots, \sum_{k \leq i} l_{k}$.

Illustration of the claim:

| 1 | 2 | 3 | 4 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Assume $m=3$, then some optimal schedule looks like this:

An optimal algorithm for $\mathrm{P}\left|\pi_{\mathrm{LpT}}\right| \sum_{j} C_{j}$

Proof: (for two machines) Assume that we know how many jobs are assigned to each of the machines. W.l.o.g., assume that $l_{1} \leq l_{2}$.
We show that in some optimal schedule, M_{1} processes the l_{1} longest jobs, and M_{2} processes the l_{2} shortest jobs.

An optimal algorithm for $\mathrm{P}\left|\pi_{\mathrm{LPT}}\right| \sum_{j} C_{j}$

Consider the i-th job on machine 2. This job gets a coefficient of $l_{2}+1-i$.
The shortest possible job that can get this coefficient is job $l_{1}+i$.
Consider a job $i \leq l_{1}$. The minimal coefficient job i can get is $l_{1}+1-i$ (for example, in every schedule, the longest job, has coefficient at least l_{1}).

An optimal algorithm for $\mathrm{P}\left|\pi_{\mathrm{LpT}}\right| \sum_{j} C_{j}$

When jobs $j=1, \ldots, l_{1}$ are on M_{1} and jobs
$j=l_{1}+1, \ldots, l_{2}$ are on M_{2}, every coefficient (on M_{2}) is matched with the shortest job that can get this coefficient, and every job (on M_{1}) is matched with the minimal coefficient it can get.

An optimal algorithm for $\mathrm{P}\left|\pi_{\mathrm{LPT}}\right| \sum_{j} C_{j}$

Theorem: $\mathrm{P}\left|\pi_{\mathrm{LPT}}\right| \sum_{j} C_{j}$ is polynomial time solvable.

Proof: A dynamic programming based on the above claim

On the other hand:

With unrelated machines, the problem is hard and hard to approximate:

Theorem: $\mathrm{R}\left|\pi_{\mathrm{LPT}}\right| \sum_{j} C_{j}$ is APX-hard

$\mathrm{R}\left|\pi_{\mathrm{LPT}}\right| \sum_{j} C_{j}$ is APX-hard

Theorem: $\mathrm{R}\left|\pi_{\mathrm{LPT}}\right| \sum_{j} C_{j}$ is APX-hard Proof: (for now, NP-hardness only)
Reduction from vertex-cover
Given a graph G and an integer k, does G have a VC of size k?

VC of
size 2.
For every edge, at
least one endpoint is in the VC

$\mathrm{R}\left|\pi_{\text {LPT }}\right| \sum_{j} C_{j}$ is APX-hard

Given $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and k , construct an instance for $\mathrm{R}\left|\pi_{\mathrm{LPT}}\right| \sum_{j} C_{j}$:
$|V|$ machines, where M_{i} corresponds to node $i \in V$.
The set of jobs consists of two sets D and A .
D includes $|\mathrm{V}|-\mathrm{k}$ dummy jobs. $\forall i, d, p_{i, d}=1$
A includes $|\mathrm{E}|$ jobs, each corresponding to an edge $\mathrm{e} \in \mathrm{E}$.

$$
p_{i,(u, v)}=\left\{\begin{array}{cc}
0 & i=u \text { or } i=v \\
1 & \text { otherwise }
\end{array} \quad i \text { is an endpoint of }(u, v)\right.
$$

$\mathrm{M}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$
$\mathrm{J}=\mathrm{D} \cup \mathrm{A}$
$\mathrm{D}=\left\{\mathrm{d}_{1}, \mathrm{~d}_{2}, \mathrm{~d}_{3}\right\}$
$A=\{(a b),(a d),(a e), \ldots\}$

$\mathrm{R}\left|\pi_{\text {LPT }}\right| \sum_{j} C_{j}$ is APX-hard

$\pi_{\text {LPT }}$ implies that if a job (edge) is assigned on a machine corresponding to one of its endpoint then it is processed after any dummy job assigned to this machine.

A VC of size $\mathrm{k} \Leftrightarrow$ a schedule with $\sum_{j} C_{j}=|\mathrm{V}|-\mathrm{k}$

Every dummy job goes to a different machine.
All A-jobs have $\mathrm{C}_{\mathrm{j}}=0$.

$\mathrm{R}\left|\pi_{\text {LPT }}\right| \sum_{j} C_{j}$ is APX-hard

Hardness proof for APX-hardness a bit more technical. The reduction is from Max-k-VC of a bounded degree graph.
Given G, k, where max-degree $(G)=\Delta$, find $U \subseteq V,|U|=k$, such that the number of edges adjacent to vertices in U is maximal.

Summary and open problems

- The introduction of machine-dependent priority lists opens a new world of optimization problems.
- Challenging analysis as a game as well as an optimization problem.
- General instances: no guaranteed NE, hard to approx.
- Some important classes behave nicely.

Summary and open problems

To do list:

- Complexity status of $\mathrm{P}|\pi| \sum_{j} C_{j}$ (QPTAS but no hardness proof)
- Identify additional tractable/stable instances
- Approximation algorithms
- Priority-list can be viewed as a special case of machines-based precedence constraints (precedence constraints given by a chain). Study the general P|machine-based prec $\mid \sum_{j} C_{j}$
- Analyze instances with due-dates and lateness-related obj.

Assume a global priority list.
What is the minimal number of machines required to complete all jobs on time?

Questions?

© marketoonist.com

