
Scheduling with
Machine-Dependent

Priority Lists

Tami Tamir

Based on joint work with
Vipin Ravindran Vijayalakshmi and

Marc Schroder

Traditional Scheduling Algorithms

• A centralized authority (a scheduler) determines the

outcome.

• The centralized authority aims to maximize the

system’s utilization and the total users’ welfare.

• All the users obey it.

Job Scheduling Games

• The jobs are controlled by selfish agents who

select the jobs assignment.

• No centralized authority.

Every job selects its machine,
trying to maximize its own

utility

Coordinated Mechanism

Machines have a local scheduling policy.
The jobs know this policy and select their
machine accordingly.

Example: Assume that all the machines schedule
the jobs in LPT (Longest first) order.

pj=5

Which machine
should I join to
minimize my

completion time?

348

27 7

M2

M1

Coordinated Mechanism
LPT Policy

348

27 7
pj=5

M1

M2

Which machine
should I join to
minimize my

completion time?

Cj=7+7+5=19 if I join M2

If the local policy is LPT, I’ll better join M1.
This is my best-response.

27 7

M1

M2 5

Cj=8+5=13 if I join M1

348

27 7

M1

M2

5

348

Coordinated Mechanism
SPT Policy

3 4 8

2 7 7
pj=5

M1

M2

and what if the
machines schedule

the jobs in SPT
(Shortest first) order.

3 4 8

2 7 7

M1

M2

5

Cj=3+4+5=12 if I join M1

3 4 8

2 7 75 Cj=2+5=7 if I join M2

M1

M2

If the local policy is SPT, my best-response is to join M2.

Coordinated Mechanism
SPT Policy

3 4 8

2 7 75

M1

M2

Consider the 2nd job of length 7 in
the resulting schedule

Assume that
joins M2

5

Coordinated Mechanism
SPT Policy

3 4 8

2 7 75

Hey, I can migrate
and reduce my

completion time
from 21 to 14

7

M1

M2

3 4 8

2 75

M1

M2

7

Now, other jobs may have a beneficial migration...

A stable profile in
which no player has
an improving step.

• A local search method.

• Players proceed in turns, each performing a

selfish improving step.

• An important question: Does BRD converge to a

pure Nash equilibrium.

Best Response Dynamics (BRD)

Our Work

We study coordinated mechanisms in which different

machines may have different local policies.

For the associated game, we analyzed:

• Nash equilibrium existence and calculation

• BRD convergence

• Equilibrium inefficiency

Not less important: We studied the centralized version

of this setting.

The Setting

• A set J of n jobs

– Every job jJ has processing time pj

• A set M of m parallel machines

– Every machine i ∈ M has speed si and a priority list
πi: J→ {1,…,n}, defining its scheduling policy.

d ea b c

π1 = ()d e a bc

1 2 3 4 5

The Setting

Example: J={ },
pj= 2 4 2 2 1

m=2,
s1=1 π1 = (e,d,c,b,a)
s2=0.5 π2 = (a,b,c,d,e)

d ea b c

Cj=(4,7,8,3,1)

processing times

A profile of the game:
A schedule : JM.
Cj() = the completion
time of job j in profile 

ca

d beM1

M2

0 1 3 4 7 8

The Setting

Example: J={ },
pj= 2 4 2 2 1

m=2,
s1=1 π1 = (e,d,c,b,a)
s2=0.5 π2 = (a,b,c,d,e)

d ea b c

Cj=(4,7,8,3,1)

processing times

Does anyone have a
beneficial migration? ca

d beM1

M2

0 1 3 4 7 8

The Setting

c

a

d beM1

M2

Cc=8 Cc=5

0 1 3 4 5 9

d ea b c

c

Example: J={ },
pj= 2 4 2 2 1

m=2,
s1=1 π1 = (e,d,c,b,a)
s2=0.5 π2 = (a,b,c,d,e)

processing times

ca

d beM1

M2

0 1 3 4 7 8

Game Theory Definitions

A profile is a pure Nash equilibrium (NE) if no job can
reduce its completion time by changing its strategy
(migrating to a different machine)

A social optimum (SO) of a game is a profile that
attains some optimality criteria.
For example:
social optimum w.r.t total flow time (=sum of Cj)
social optimum w.r.t makespan (=maximal Cj).

SO = Optimal solution for the centralized
problem P||𝐶m𝑎𝑥 or P||σ𝑗 𝐶𝑗

Interesting Questions

- Calculating a NE for a given game instance

- What is the equilibrium inefficiency?

Price of Anarchy = worst NE / SO

Price of Stability = best NE / SO

def

def

- Convergence of Best-Response Dynamics

Back to our example

Cj=(4,7,8,3,1) Cj=(4,9,5,3,1)

s1=1 π1 = (e,d,c,b,a)
s2=0.5 π2 = (a,b,c,d,e)

Price of anarchy  9/8

Cmax=8
A social optimum w.r.t
Makespan, but not a NE.

A possible NE profile.
Cmax=9

c

a

d beM1

M2

0 1 3 4 5 9

ca

d beM1

M2

0 1 3 4 7 8

Related Work

- Koutsoupias and Papadimitriou (1999)
- Czumaj and Vocking (2003)
- Christodoulou, Koutsoupias and Nanavati (2004)
- Cole, Correa, Gkatzelis, Mirrokni and Olver (2015)
- Immorlica, Li, Mirrokni and Schulz (2005)
- Farzad, Olver and Vetta (2008)
- Correa and Queyranne (2012)
- Cole, Correa, Gkatzelis, Mirrokni and Olver (2015)
- Hoeksma and Uetz (2019)
- Bosman, Frascaria, Olver, Sitters, Stougie (2019)

Selfish Scheduling / Coordinated mechanism /Priority-
based model of routing/ The centralized problem.

Given J,M,{si},{πi} , calculate a NE profile

NE Calculation

Wait, who says that
NE exists?

NE existence

m=3, M={M1,M2,M3}
s1=1 π1 = (a,b,c,d,e)
s2=s2=0.5 π2 = π3 = (e,d,b,c,a)

n=5
J={a,b,c,d,e}

a

b

c

d

e

5

4

4.5

9.25

2

pj

One fast machine.

Two slow machines

s3=0.5, π3 =(e,d,b,c,a)

s2=0.5, π2 =(e,d,b,c,a)

s1=1, π1 =(a,b,c,d,e)

Since is the first on π1, it is
first on M1 in any NE schedule.

a

b

c

d

e

5

4

4.5

9.25

2

a

0 5

M3

M2

M1 a

NE existence

Given that is on M1, Since
is the first on π2, it is first on M2

(w.l.o.g) in any NE schedule

b

c

d

e

5

4

4.5

9.25

2

s3=0.5, π3 =(e,d,b,c,a)

s2=0.5, π2 =(e,d,b,c,a)

s1=1, π1 =(a,b,c,d,e)

a e

0 5

M3

M2

M1 a

e

a

NE existence

s3=0.5, π3 =(e,d,b,c,a)

s2=0.5, π2 =(e,d,b,c,a)

s1=1, π1 =(a,b,c,d,e)

So we know that if a NE exists,
then and are first on M1

and M2, respectively.
Let’s consider the possible
locations of job

b

c

d

e

5

4

4.5

9.25

2

a e

0 5

M3

M2

M1 a

e

a

NE existence

d

b

c

d

e

5

4

4.5

9.25

2

s3=0.5, π3 =(e,d,b,c,a)

s2=0.5, π2 =(e,d,b,c,a)

s1=1, π1 =(a,b,c,d,e)

0 5 8 9.5 18.5

M3

M2

M1 a

e

a

d b

c

Therefore, there is no NE in which is on M1d

NE existence

Case 1: Job on M1

Job would go to M3

Job would go to M1

Job would go to M3

d

b

c

d

Case 2: Job on M2.

It would move to M3.
b

c

d

e

5

4

4.5

9.25

2

s3=0.5, π3 =(e,d,b,c,a)

s2=0.5, π2 =(e,d,b,c,a)

s1=1, π1 =(a,b,c,d,e)

0 5 8 9 18.5

M3

M2

M1 a

e

a

d

d

b

Therefore, there is no NE in which is on M2
d

NE existence

b

c

d

e

5

4

4.5

9.25

2

s3=0.5, π3 =(e,d,b,c,a)

s2=0.5, π2 =(e,d,b,c,a)

s1=1, π1 =(a,b,c,d,e)

0 5 8 9 13 18.25

M3

M2

M1 a

e

a

db

c

Therefore, there is no NE in which is on M3
d

NE existence

Case 3: Job on M3

Job would go to M1

Job would go to M2

Job would go to M1

d

b

c

d

b

c

d

e

5

4

4.5

9.25

2

a

We conclude that there are games
in which a NE does not exist

NE existence

Can we characterize games that
have a NE?

NE existence

Unfortunately, No.

Theorem: Given an instance of a scheduling
game, it is NP-complete to decide whether the
game has a NE.
Proof: Reduction from 3-bounded 3-dimensional
matching

On the other hand:

b

c

d

e

5

4

4.5

9.25

2

a
Note: This characterization is tight. In our
No-NE example, there are three
machines, two of them are identical
(same speed and same priority list)

We identified four classes of games for which a
NE is guaranteed to exist.

𝒢1: Unit Jobs
𝒢2: Two machines
𝒢3: Identical machines
𝒢4: Global priority list

Sum of Completion
Time

PoA and PoS

Makespan

PoA and PoS

Objective
Instance class

11𝒢1: Unit Jobs

Θ(𝑛)
5 + 1

2
𝒢2: Two machines

Θ
𝑛

𝑚
2 −

1

𝑚
𝒢3: Identical machines

Θ(𝑛)Θ(𝑚)𝒢4: Global priority list

For each of the four classes, we present:

• A polynomial time algorithm for computing a NE
• A proof that BRD converges to a NE
• Tight analysis of the equilibrium inefficiency:

Two machines

Theorem: If m = 2, then a NE exists and can be calculated
efficiently.

Proof: Algorithm

M1 M2

s1=1 s2=s1

Two machines

Algorithm:
1. Assign all the jobs on M1 according to π1.
2. For k = 1,…,n, let job j for which π2(j) = k perform
a best-response move.

j1 j2 j3 j4 jn π1 =(j1,j2,j3,…,jn)

π2 =(j3, j1, …)

j1 j2

j3

j4 jn

…

…

s1=1

s21M2

M1

s1=1

s21M2

M1

Two machines

Claim: The algorithm produces a NE.
Proof:
Let  denote the schedule produced by the algorithm.
1. Jobs on M1 have no incentive to deviate (easy).
2. Suppose a job j on M2 has an incentive to deviate.
Let  be the set of jobs that have a higher priority on M1 than
j and moved to M2 after j.

M1 M2

s1=1 s2=s1

A j

Before j was considered
by the algorithm

B   B’js21

now

A (≺j)s1=1…

B …

A’ (≻j)s1=1

s21M2

M1

π1 =(…,,…,B,…)
π2 =(…,B,…,,…)

Two machines
M1 M2

s1=1 s2=s1

(i) PA+pj < (PB+pj)/s2

(ii) (PB+pj+P)/s2 < PA+P

pj + P/s2 < P

A Contradiction (since pj0 and s21)

A j

B   B’js21

now

A (≺j)s1=1…

B …

A’ (≻j)

Before j was considered
by the algorithm

s1=1

s21M2

M1

Two machines
M1 M2

Remark: A possible generalization of our setting considers
unrelated machines (pij is the processing time of job i if
processed on machine j).

In this environment, a NE need not exist already with only
two unrelated machines.

The makespan of a profile 𝜎, is 𝐶𝑚𝑎𝑥 𝜎 = 𝑚𝑎𝑥𝑗∈𝐽𝐶𝑗 𝜎

For a game 𝐺,

For a class of games 𝒢, define 𝑃𝑜𝐴 𝒢 = 𝑠𝑢𝑝𝐺∈𝒢𝑃𝑜𝐴 𝐺

Equilibrium inefficiency

makespan of the worst NE schedule
min makespan (social optimum)𝑃𝑜𝐴 𝐺 =

𝑚𝑎𝑥𝜎∈𝑁𝐸(𝐺) 𝐶𝑚𝑎𝑥 𝜎

𝑚𝑖𝑛𝜎∗𝐶𝑚𝑎𝑥 𝜎∗
=

The makespan of a profile 𝜎, is 𝐶𝑚𝑎𝑥 𝜎 = 𝑚𝑎𝑥𝑗∈𝐽𝐶𝑗 𝜎

For a game 𝐺,

For a class of games 𝒢, define 𝑃𝑜𝐴 𝒢 = 𝑠𝑢𝑝𝐺∈𝒢𝑃𝑜𝐴 𝐺

Equilibrium inefficiency

Makespan PoAInstance class

1𝒢1: Unit Jobs

5 + 1

2
𝒢2: Two machines

2 −
1

𝑚
𝒢3: Identical machines

Θ(𝑚)𝒢4: Global priority list

makespan of the worst NE schedule
min makespan (social optimum)𝑃𝑜𝐴 𝐺 =

𝑚𝑎𝑥𝜎∈𝑁𝐸(𝐺) 𝐶𝑚𝑎𝑥 𝜎

𝑚𝑖𝑛𝜎∗𝐶𝑚𝑎𝑥 𝜎∗
=

Theorem: Let G be a game played on two machines, s1 = 1

and s2 1, then 𝑃𝑜𝐴 𝐺 ≤ 𝑚𝑖𝑛 1 + 𝑠2, 1 +
1

1+𝑠2

Equilibrium inefficiency, two machines.

Since 1 + 𝑠 = 1 +
1

1+𝑠
for 𝑠 =

5−1

2
, the theorem implies

that 𝑃𝑜𝐴 𝒢2 ≤
5+1

2 .

Theorem: Let G be a game played on two machines, s1 = 1

and s2 1, then 𝑃𝑜𝐴 𝐺 ≤ 𝑚𝑖𝑛 1 + 𝑠2, 1 +
1

1+𝑠2

Equilibrium inefficiency, two machines.

Proof: Let  be a NE.

1.

2.

Implying that

((if all jobs on fast machine

(balanced)

Theorem: Let G be a game played on two machines, s1 = 1

and s2 1, then 𝑃𝑜𝐴 𝐺 ≤ 𝑚𝑖𝑛 1 + 𝑠2, 1 +
1

1+𝑠2

Equilibrium inefficiency, two machines.

Proof: Let a be the last job to complete in a NE .

1.

2.

Implying that (𝐶𝑚𝑎𝑥(𝜎) ≥ 𝑝𝑎)

((a can go to fast machine

((a can go to slow machine

Theorem: For every s 1, there exists a game with s1 = 1,

s2=s, and 𝑃𝑜𝑆 𝐺 = 𝑚𝑖𝑛 1 + 𝑠, 1 +
1

1+𝑠
.

Equilibrium inefficiency, two machines.

makespan of the best NE schedule
min makespan (social optimum)

𝑃𝑜𝑆 𝐺 =

Theorem: For every s 1, there exists a game with s1 = 1,

s2=s, and 𝑃𝑜𝑆 𝐺 = 𝑚𝑖𝑛 1 + 𝑠, 1 +
1

1+𝑠
.

Equilibrium inefficiency, two machines.

Proof: case 1: s ≤
5+1

2
.

Let J={x,y}, px = 1, py =
1

𝑠
π1 = π2 = (x, y).

(*) if s =
5−1

2
, take py =

1

𝑠
− 𝜖)

x y
0 1 1+1/s

Unique NE
(1+1/s < 1/s2)

x

y
0 s

Social optimum

1 + 𝑠 = 1 +
1

1+𝑠

for 𝑠 =
5−1

2

PoS = 1+s

s

1

speed

s

1

Equilibrium inefficiency, two machines.

case 2: s >
5−1

2
.

J={x,y,z}, px = 1, py = s2+s−1, pz = 1+s.
π1 = π2 = (x, y, z).

In all NE: (1) x is on the fast machine
(2) y is on the slow machine since s2 + s > (s2+s−1)/s.
(3) z is indifferent. px + pz = (py + pz)/s = 2+s.

x

y

z
0 1 2+s

x y

z
0 1+s

x

y z

0 1 2+s

NE #1 NE #2 Social optimum

PoS =
2+𝑠

1+𝑠
= 1 +

1

1+𝑠

s

1

speed
s

1

Equilibrium inefficiency, Identical machines

Theorem:

If si= 1 for all i M, then PoA(G)  2 −
1

𝑚

Proof:
We show that any NE is a possible outcome of Graham's
List-scheduling algorithm

Theorem:
If si= 1 for all i M, then it is NP-hard to approximate the

best NE within a factor of 2 −
1

𝑚
− 𝜖 for all 𝜖 > 0.

Proof:
Reduction from 3D-matching.

Back to centralized setting (not a game)

The Goal: Find a schedule that minimizes σ𝑗 𝐶𝑗

Note: In the centralized setting, priority lists do not
`upgrade’ the problem of minimizing the Makespan

• A set J of n jobs, and a set M of m parallel machines

– Every job jJ has processing time pj

– In case of unrelated machines, pij is the processing
time of job j on machine i.

– Every machine i ∈ M has a priority list
πi: J→ {1,…,n}, defining its scheduling policy.

The problems P||σ𝑗 𝐶𝑗 and R||σ𝑗 𝐶𝑗

We therefore consider several restricted classes:
• Global priority list
• Fixed number of machines
• Fixed number of priority classes

Without priority lists, both problems are solvable
P||σ𝑗 𝐶𝑗 - SPT is optimal [Smith 1956]

R||σ𝑗 𝐶𝑗 - can be represented as a bipartite weighted

matching problem [Bruno, Coffman, Sethi 1974]

Theorem: P||σ𝑗 𝐶𝑗 is APX-hard

The problems P||σ𝑗 𝐶𝑗 and R||σ𝑗 𝐶𝑗

Our results:

𝜋𝑖,𝑐 and 𝜋𝑔𝑙𝑜𝑏𝑎𝑙,𝑐 : the jobs are partitioned into c job

classes J1, … , Jc. For every 1 < k ≤ c, every machine
processes jobs from Jk after it processes jobs from ∪j<kJj .
Note: in every optimal schedule, for every 1 ≤ i ≤ m and
1 ≤ k ≤ c, machine i processes jobs of Jk in SPT order.

𝝅𝒈𝒍𝒐𝒃𝒂𝒍,𝒄𝝅𝒊,𝒄𝝅𝑳𝑷𝑻𝝅𝒈𝒍𝒐𝒃𝒂𝒍𝝅𝒊

PAPX-hardPQPTASAPX-hardP

APX-hardAPX-hardAPX-hardAPX-hardAPX-hardR

The problems P||σ𝑗 𝐶𝑗 and R||σ𝑗 𝐶𝑗

Our results:

In P if m is a constant

𝝅𝒈𝒍𝒐𝒃𝒂𝒍,𝒄𝝅𝒊,𝒄𝝅𝑳𝑷𝑻𝝅𝒈𝒍𝒐𝒃𝒂𝒍𝝅𝒊

PAPX-hardPQPTASAPX-hardP

APX-hardAPX-hardAPX-hardAPX-hardAPX-hardR

The problems P||σ𝑗 𝐶𝑗 and R||σ𝑗 𝐶𝑗

1 j

pij is counted 𝑙𝑖 + 1 − 𝑙𝑖 − 2 = 3 times in jCj

Mi

𝑙𝑖

the delay-coefficient
of the job

1 2 … 𝑘 = 𝑙𝑖 − 2

A Useful Observation: Let 𝑙𝑖 denote the number of jobs
on machine 𝑖.
The job with the 𝑘-th highest priority assigned to machine
𝑖 contributes exactly 𝑙𝑖 + 1 − 𝑘 times its processing time
to the sum of completion times.

LPT - Longest Processing Time First

LPT – every machine processes jobs in LPT order.

P|LPT|σ𝑗 𝐶𝑗 :

A global priority list  =(1,2,…,n), where p1  p2  …  pn.

R|LPT|σ𝑗 𝐶𝑗 :

For machine i, i =(1i,2i,…,ni), where pi,1i  pi,2i  …  pi,ni.

An optimal algorithm for P|LPT|σ𝑗 𝐶𝑗

Claim: There exists an optimal schedule for P|LPT|σ𝑗 𝐶𝑗
in which for some 𝑙1 ≤ 𝑙2 ≤ ⋯ ≤ 𝑙𝑚 such that σ𝑖 𝑙𝑖 = 𝑛,
it holds that machine 𝑖 processes the consequent sub-
sequence of 𝑙𝑖 jobs 1 + σ𝑘<𝑖 𝑙𝑘 , … , σ𝑘≤𝑖 𝑙𝑘 .

Illustration of the claim:

1 2 3 4 5 6 … n

Assume m=3, then some optimal schedule looks like this:

1 … 𝑙1

𝑙1+1 …

𝑙1+𝑙2+1 …

𝑙1+𝑙2…

n

𝑙1 𝑗𝑜𝑏𝑠

𝑙2 𝑗𝑜𝑏𝑠

𝑙3 𝑗𝑜𝑏𝑠M3

M1

M2

An optimal algorithm for P|LPT|σ𝑗 𝐶𝑗

Claim: There exists an optimal schedule for P|LPT|σ𝑗 𝐶𝑗
in which for some 𝑙1 ≤ 𝑙2 ≤ ⋯ ≤ 𝑙𝑚 such that σ𝑖 𝑙𝑖 = 𝑛,
it holds that machine 𝑖 processes the consequent sub-
sequence of 𝑙𝑖 jobs 1 + σ𝑘<𝑖 𝑙𝑘 , … , σ𝑘≤𝑖 𝑙𝑘 .

Illustration of the claim:

1 2 3 4 5 6 … n

Assume m=3, then some optimal schedule looks like this:

1

5

4

2 3

8

…

…

n

Not structured

1 … 𝑙1

𝑙1+1 …

𝑙1+𝑙2+1 …

𝑙1+𝑙2…

nM3

M1

M2

An optimal algorithm for P|LPT|σ𝑗 𝐶𝑗

Proof: (for two machines) Assume that we know how
many jobs are assigned to each of the machines. W.l.o.g.,
assume that 𝑙1 ≤ 𝑙2.
We show that in some optimal schedule, M1 processes
the 𝑙1 longest jobs, and M2 processes the 𝑙2 shortest jobs.

1 … 𝑙1

𝑙1 + 1 … 𝑙1 + 𝑙2

M1

M2

𝑙1

𝑙2

An optimal algorithm for P|LPT|σ𝑗 𝐶𝑗

Consider the 𝑖 -th job on machine 2. This job gets a
coefficient of 𝑙2 + 1 − 𝑖.
The shortest possible job that can get this coefficient is
job 𝑙1 + 𝑖.
Consider a job 𝑖 ≤ 𝑙1. The minimal coefficient job 𝑖 can
get is 𝑙1 + 1 − 𝑖 (for example, in every schedule, the
longest job, has coefficient at least 𝑙1).

…

… 𝑖

𝑙1 1

𝑙2 𝑙2 + 1 − 𝑖 1

M1

M2 delay
coefficients

An optimal algorithm for P|LPT|σ𝑗 𝐶𝑗

When jobs 𝑗 = 1,… , 𝑙1 are on M1 and jobs
𝑗 = 𝑙1 + 1,… , 𝑙2 are on M2, every coefficient (on M2) is
matched with the shortest job that can get this
coefficient, and every job (on M1) is matched with the
minimal coefficient it can get.

…

…

𝑙1 1

𝑙2 𝑙2 + 1 − 𝑖 1

M1

M2 delay
coefficients

𝑖

An optimal algorithm for P|LPT|σ𝑗 𝐶𝑗

Theorem: P|LPT|σ𝑗 𝐶𝑗 is polynomial time solvable.

Proof: A dynamic programming based on the above claim

…

…

𝑙1 1

𝑙2 𝑙2 + 1 − 𝑖 1

M1

M2 delay
coefficients

𝑖

On the other hand:

With unrelated machines, the problem is hard and hard
to approximate:

Theorem: R|LPT|σ𝑗 𝐶𝑗 is APX-hard

R|LPT|σ𝑗 𝐶𝑗 is APX-hard

Theorem: R|LPT|σ𝑗 𝐶𝑗 is APX-hard

Proof: (for now, NP-hardness only)
Reduction from vertex-cover
Given a graph G and an integer k, does G have a VC of
size k?

VC of

size 2.

a

e
d

b

c
For every edge, at
least one endpoint
is in the VC

R|LPT|σ𝑗 𝐶𝑗 is APX-hard

Given G=(V,E) and k, construct an instance for R|LPT|σ𝑗 𝐶𝑗:

|V| machines, where Mi corresponds to node iV.
The set of jobs consists of two sets D and A.
D includes |V|-k dummy jobs. ∀𝑖, 𝑑, 𝑝𝑖,𝑑 = 1
A includes |E| jobs, each corresponding to an edge eE.

𝑝𝑖,(𝑢,𝑣) = ቊ
0 𝑖 = 𝑢 𝑜𝑟 𝑖 = 𝑣
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

VC of

size 2?

M={a,b,c,d,e}
J= DA
D={d1,d2,d3}
A={(ab),(ad),(ae),…}

𝑖 is an endpoint of (𝑢,𝑣)

a

e
d

b

c

R|LPT|σ𝑗 𝐶𝑗 is APX-hard

LPT implies that if a job (edge) is assigned on a machine
corresponding to one of its endpoint then it is processed
after any dummy job assigned to this machine.

VC of

size 2

A VC of size k  a schedule with σ𝑗 𝐶𝑗=|V|-k

a
b
c
d
e d3

d1

d2

edges covered by c

edges covered by a

Every dummy job goes to a different machine.
All A-jobs have Cj=0.

0 1

a

e
d

b

c

R|LPT|σ𝑗 𝐶𝑗 is APX-hard

Hardness proof for APX-hardness a bit more technical.
The reduction is from Max-k-VC of a bounded degree
graph.
Given G, k, where max-degree(G) = , find U ⊆ V, |U|=k,
such that the number of edges adjacent to vertices in U is
maximal.

Summary and open problems

• The introduction of machine-dependent priority lists
opens a new world of optimization problems.

• Challenging analysis as a game as well as an
optimization problem.

• General instances: no guaranteed NE, hard to approx.
• Some important classes behave nicely.

Summary and open problems

To do list:
• Complexity status of P|𝜋| σ𝑗 𝐶𝑗 (QPTAS but no hardness proof)

• Identify additional tractable/stable instances
• Approximation algorithms
• Priority-list can be viewed as a special case of machines-based

precedence constraints (precedence constraints given by a
chain). Study the general P|machine-based prec|σ𝑗 𝐶𝑗

• Analyze instances with due-dates and lateness-related obj.

Assume a global priority list.
What is the minimal number of machines
required to complete all jobs on time?

Questions?

