
Single-machine hierarchical scheduling with release dates and preemption

Single-machine hierarchical scheduling with release
dates and preemption to minimize the total completion

time and a regular criterion

Rubing Chen
(joint work with Prof. Jinjiang Yuan, Prof. C.T. Ng, Prof.T.C.E. Cheng)

Zhengzhou University, China

Global Scheduling Seminar: www.schedulingseminar.com

Single-machine hierarchical scheduling with release dates and preemption
Outline

1 Introduction

2 Revisit problem 1|rj, pmtn|
∑

Cj

3 Legal sets

4 1|rj, pmtn|Lex(
∑

Cj, f)
1|rj, pmtn|Lex(

∑
Cj,

∑
fj)

1|rj, pmtn|Lex(
∑

Cj, fmax)
1|rj, pmtn|Lex(

∑
Cj, f̃)

5 Further Research

Single-machine hierarchical scheduling with release dates and preemption
Introduction

Single-machine hierarchical scheduling problem 1|β|Lex(f, g):
The problem aims to find a feasible schedule that minimizes the secondary
criterion g under the condition that the primary criterion f is minimized.

1|rj, pmtn|Lex(
∑

Cj, f)
1|rj, pmtn|Lex(

∑
Cj,

∑
fj) O(n3)

1|rj, pmtn|Lex(
∑

Cj, fmax) O(n2)
where each fj(·) is a regular function, j = 1, 2, . . . , n.

Single-machine hierarchical scheduling with release dates and preemption
Introduction

J = {J1, J2, . . . , Jn}: the set of jobs to be processed on a single machine.
For each job Jj ∈ J ,

pj > 0: the processing time,
rj ≥ 0: the release date,
dj ≥ 0: the due date,
d̄j ≥ 0: the deadline,
wj ≥ 0: the weight,
Preemption is allowed.

J : the job set and the job instance.

Single-machine hierarchical scheduling with release dates and preemption
Introduction

The scheduling criterion:
sum-form∑

Cj =
∑n

j=1 Cj: the total completion time;∑
Tj =

∑n
j=1 Tj: the total tardiness;∑

Uj =
∑n

j=1 Uj: the number of tardy jobs;∑
wjCj =

∑n
j=1 wjCj: the total weighted completion time;∑

wjUj =
∑n

j=1 wjUj: the weighted number of tardy jobs;∑
fj =

∑n
j=1 fj(Cj): the total scheduling cost.

max-form
Tmax = max1≤j≤n Tj: the maximum tardiness;

WCmax = max1≤j≤n wjCj: the maximum weighted completion time;

Lmax = max1≤j≤n Lj: the maximum lateness;

fmax = max1≤j≤n fj(Cj): the maximum scheduling cost.

Single-machine hierarchical scheduling with release dates and preemption
Introduction

Related NP-hard results:
1|rj, pmtn, d̄j|

∑
Cj:

unary NP-hard (Chen & Yuan, 20211)
1|rj, pmtn|

∑
wjCj:

unary NP-hard (Labetoulle, Lawler, Lenstra, & Rinnooy Kan 19842)

1Chen, R.B., & Yuan, J.J. (2021). Unary NP-hardness of preemptive scheduling to minimize total completion time with
release times and deadlines. Discrete Applied Mathematics, 304, 45-54.

2Labetoulle J., Lawler E. L., Lenstra J. K., & Rinnooy Kan A. H. G. (1984). Preemptive scheduling of uniform machines
subject to release dates. In Progress in Combinatorial Optimization (pp. 245-261). Academic Press.

Single-machine hierarchical scheduling with release dates and preemption
Introduction

Observation 1

For any criterion f ∈ {
∑

wjCj,
∑

Uj,
∑

Tj,Lmax,Tmax,WCmax},
(i) 1|rj, pmtn|Lex(f,

∑
Cj): unary NP-hard,

(ii) 1|rj, pmtn|Lex(
∑

Cj, f): unknown.

Single-machine hierarchical scheduling with release dates and preemption
Introduction

This stimulates us to study the following problems:
1|rj, pmtn|Lex(

∑
Cj, f)

1|rj, pmtn|Lex(
∑

Cj,
∑

fj)
1|rj, pmtn|Lex(

∑
Cj, fmax)

where for j = 1, 2, . . . , n, each fj(·) is a regular function, and fj(t) is a
finite number for each time t ∈ [0,+∞), i.e., −∞ < fj(t) < +∞.

Single-machine hierarchical scheduling with release dates and preemption
Revisit problem 1|rj, pmtn|

∑
Cj

A feasible schedule for 1|rj, pmtn|Lex(
∑

Cj, f)
is

an optimal schedule for 1|rj, pmtn|
∑

Cj

Single-machine hierarchical scheduling with release dates and preemption
Revisit problem 1|rj, pmtn|

∑
Cj

1|rj, pmtn|
∑

Cj:
the SRPT (shortest remaining processing time) rule is optimal.
(Schrage 19683, Smith 19784)

The SRPT Rule:
At each decision time τ (when some jobs are released or completed), an available job (if
any) with the smallest remaining processing time is scheduled. This procedure is repeated
until all the jobs are scheduled. (“an available job at time τ” means that the job is released
by time τ and has not been completed.)

3Schrage L. (1968). A proof of the optimality of the shortest remaining processing time discipline. Operations Research,
16, 687-690.

4Smith D. R. (1978). A new proof of the optimality of the shortest remaining processing time discipline. Operations
Research, 26, 197-199.

Single-machine hierarchical scheduling with release dates and preemption
Revisit problem 1|rj, pmtn|

∑
Cj

From Schrage (1968) and Smith (1978), the following lemma holds.

Lemma 1

Every optimal schedule for problem 1|rj, pmtn|
∑

Cj is generated by the
SRPT rule in O(n log n) time. Moreover, when the instance J is given,
all the optimal schedules have the same sequence of job completion times.

Single-machine hierarchical scheduling with release dates and preemption
Revisit problem 1|rj, pmtn|

∑
Cj

Π∗(J): the set of optimal schedules for 1|rj, pmtn|
∑

Cj on J .
Π∗(J) ↔ the implementations of the SRPT rule on J .
The n completion times of jobs of J in all the schedules of Π∗(J):
C(J) = {C(1)(J),C(2)(J), . . . ,C(n)(J)}, and
C(1)(J) < C(2)(J) < · · · < C(n)(J).
T (J) = {rj : 1 ≤ j ≤ n} ∪ {C(i)(J) : 1 ≤ i ≤ n}: the set of decision
times in the implementation of the SRPT rule. For convenience, we
write T (J) = {τ1, τ2, . . . , τm} such that τ1 < τ2 < · · · < τm. Then
n + 1 ≤ m ≤ 2n, τ1 = rmin, and τm = C(n)(J).

Single-machine hierarchical scheduling with release dates and preemption
Revisit problem 1|rj, pmtn|

∑
Cj

For each schedule σ of Π∗(J) and each decision time τi,
the remaining processing times (with repetitions being counted) at τi
are independent of the choice of σ.
pmin(τi): the smallest remaining processing time at τi.
pmax(τi): the largest remaining processing time at τi.

Single-machine hierarchical scheduling with release dates and preemption
Revisit problem 1|rj, pmtn|

∑
Cj

A job Jj is called legal at time C(i)(J) (with respect to instance J),
if Jj completes at time C(i)(J) in some schedule in Π∗(J).
L(i)(J): the set of all the jobs of J that are legal at time C(i)(J).

L(i)(J) = {Jσ(i) : σ ∈ Π∗(J)}.

L(1)(J),L(2)(J), . . . ,L(n)(J) are called the legal sets of J .

Single-machine hierarchical scheduling with release dates and preemption
Revisit problem 1|rj, pmtn|

∑
Cj

An instance J = {J1, J2, . . . , Jn} is called standard,
if pj = pmin(rj) for every job Jj ∈ J .

Procedure RD-Modification:
(i) Apply the SRPT rule to the jobs in instance J to obtain a schedule σ ∈ Π∗(J) and
the set of decision times T (J) = {τ1, τ2, . . . , τn′} such that τ1 < τ2 < · · · < τn′ .
(ii) Set r′j := rj for j = 1, 2, . . . , n.
(iii) For i = 1, 2, . . . , n′, do the following: for every job Jj with r′j = τi and pj > pmin(τi)

(if any), reset r′j := τi+1, where pmin(τi) can be obtained from σ directly.
(iv) For j = 1, 2, . . . , n, define J′

j as a job with release date r′j and processing time pj.
(v) Output the instance J ′ = {J′

1, J′
2, . . . , J′

n}. We call J ′ the J -standardization.

Single-machine hierarchical scheduling with release dates and preemption
Revisit problem 1|rj, pmtn|

∑
Cj

Lemma 2

Given an instance J , Procedure RD-Modification generates an equivalent
and standard instance J ′ in O(n2) time.

Lemma 3

Let J = {J1, J2, . . . , Jn} be a standard instance and let Jj ∈ Ln(J), i.e.,
Jj = Jσ(n) for some schedule σ ∈ Π∗(J). Then J \ {Jj} is also a standard
instance.

Single-machine hierarchical scheduling with release dates and preemption
Revisit problem 1|rj, pmtn|

∑
Cj

Under release dates and preemption
preemptive-list schedules: a useful tool

O = (Jo(1), Jo(2), . . . , Jo(n)): a permutation of the n jobs of J .
Procedure Pmtn-LS(O):
Jo(1) is scheduled as early as possible ([ro(1), ro(1) + po(1)]).
When the first j jobs in O have been scheduled and j < n, the job Jo(j+1) is scheduled
preemptively in the remaining idle time space (subject to its release date) as early as
possible. This procedure is repeated until all the jobs are scheduled.

Pmtn-LS(O): the (preemptive) schedule obtained by the above procedure and call it the
Pmtn-LS schedule (preemptive list schedule) determined by O.

Single-machine hierarchical scheduling with release dates and preemption
Revisit problem 1|rj, pmtn|

∑
Cj

From Yuan, Ng, & Cheng (2015)5, we can obtain the following result.

Lemma 4

Procedure Pmtn-LS(O) takes O(n log n) time.

A permutation O = (Jo(1), Jo(2), . . . , Jo(n)) is called completion-coinciding
if Co(1)(Pmtn-LS(O)) < Co(2)(Pmtn-LS(O)) < · · · < Co(n)(Pmtn-LS(O)).

From Yuan, Ng, & Cheng (2020)6, we can obtain the following result.

Lemma 5

For every permutation O = (Jo(1), Jo(2), . . . , Jo(n)), there is a completion-coinciding
permutation O′ = (Jo′(1), Jo′(2), . . . , Jo′(n)) such that Pmtn-LS(O)= Pmtn-LS(O′).

5Yuan J. J., Ng C. T., & Cheng T. C. E. (2015). Two-agent single-machine scheduling with release dates and preemption
to minimize the maximum lateness. Journal of Scheduling, 18, 147-153.

6Yuan J. J., Ng C. T., & Cheng T. C. E. (2020). Scheduling with release dates and preemption to minimize multiple
max-form objective functions. . European Journal of Operational Research, 280, 860–875

Single-machine hierarchical scheduling with release dates and preemption
Revisit problem 1|rj, pmtn|

∑
Cj

For a schedule σ,
let O(σ) = (Jσ(1), Jσ(2), . . . , Jσ(n)), where Jσ(j) is the j-th completed job in σ.

Lemma 6

For every schedule σ ∈ Π∗(J), we have σ = Pmtn-LS(O(σ)), and O(σ) is a
completion-coinciding permutation of J .

Π∗(J) the completion-coinciding permutation←→ Pmtn-LS schedules

Single-machine hierarchical scheduling with release dates and preemption
Revisit problem 1|rj, pmtn|

∑
Cj

Each schedule σ ∈ Π∗(J) has three identities:
σ represents an implementation of the SRPT rule on instance J ,
σ is an optimal schedule for problem 1|rj, pmtn|

∑
Cj on instance J ,

O(σ) = (Jσ(1), Jσ(2), . . . , Jσ(n)) is a completion-coinciding
permutation of J such that σ = Pmtn-LS(O(σ)).

Single-machine hierarchical scheduling with release dates and preemption
Revisit problem 1|rj, pmtn|

∑
Cj

Let O = (Jo(1), Jo(2), . . . , Jo(n)) be a permutation of J .
O is called a TC-optimal permutation of J if O is a completion-coinciding
permutation of J such that O ∈ Π∗(J), where “TC” stands for the “total
completion time”.

O is called a legal permutation of J if Jo(j) ∈ L(j)(J) for j = 1, 2, . . . , n.

Remark:

The legal permutation provides a clearer description of each job in it.

For each schedule σ ∈ Π∗(J), O(σ) = (Jσ(1), Jσ(2), . . . , Jσ(n)) is not only a
TC-optimal permutation of J but also a legal permutation of J .

Each TC-optimal permutation of J must be a legal permutation of J .

Single-machine hierarchical scheduling with release dates and preemption
Revisit problem 1|rj, pmtn|

∑
Cj

An important property:

Lemma 7

Let O = (Jo(1), Jo(2), . . . , Jo(n)) be a permutation of the n jobs in J .
O is a TC-optimal permutation of J

⇕
O is a legal permutation of J .

Single-machine hierarchical scheduling with release dates and preemption
Legal sets

Each legal set L(i)(J) is the set of available jobs with the smallest
remaining processing time at the previous decision time just before
C(i)(J).

The available jobs with the smallest remaining processing time pmin(τi)
at each decision time τi consist of two parts of jobs:

the jobs newly released at time τi

the jobs inherited from the previous decision time τi−1

Single-machine hierarchical scheduling with release dates and preemption
Legal sets

Definition 1

Let i be an index in {1, 2, . . . ,m} (T (J) = {τ1, τ2, . . . , τm}).
(i) Ki is the set of distinct remaining processing times at time τi and set ki = |Ki|.
λi (the optional index at time τi) is the repetition number of pmin(τi) at time τi.
If ki > 0, pmin(τi) = min{q : q ∈ Ki}. If ki = 0, set pmin(τi) = +∞ and λi = 0.
At time τi, the SRPT rule has λi choices for processing a job in the interval [τi, τi+1].
(ii) For each q ∈ Ki,
J (i, q) is the set of available jobs that have the same remaining processing time q at
time τi in all the schedules of Π∗(J) and call it the q-cluster at time τi,
(A job Jz is said to be available at time τi if rz ≤ τi < Cz(σ) in some schedule
σ ∈ Π∗(J).)
(iii) Define τ0 = −∞, K0 = ∅, and k0 = 0.

Single-machine hierarchical scheduling with release dates and preemption
Legal sets

Lemma 8

For i ∈ {1, 2, . . . ,m − 1} with Ki ̸= ∅ and for q ∈ Ki, we have the
following four statements for the q-cluster J (i, q) at time τi.
(i) If q ̸= pmin(τi−1) and q ̸= pmin(τi−1)− (τi − τi−1), then
J (i, q) = J (i − 1, q) ∪ {Jz : rz = τi, pz = q}.
(ii) If q = pmin(τi−1) and λi−1 > 1, then
J (i, q) = J (i − 1, q) ∪ {Jz : rz = τi, pz = q}.
(iii) If q = pmin(τi−1) and λi−1 = 1, then
J (i, q) = {Jz : rz = τi, pz = q}.
(iv) If q = pmin(τi−1)− (τi − τi−1), then
J (i, q) = J (i − 1, pmin(τi−1)) ∪ {Jz : rz = τi, pz = q}.

Single-machine hierarchical scheduling with release dates and preemption
Legal sets

Algorithm 1

For generating the legal sets L(1)(J),L(2)(J), . . . ,L(n)(J).

Input: A standard instance J = {J1, J2, . . . , Jn} with r1 ≤ r2 ≤ · · · ≤ rn.
Step 1: Apply the SRPT rule to the jobs in instance J to obtain a schedule σ ∈ Π∗(J),
together with the corresponding completion times Cσ(1)(σ),Cσ(2)(σ), . . . ,Cσ(n)(σ).
Step 2: From schedule σ, do the following:
(2.1) Set C(h)(J) := Cσ(h)(σ) for h = 1, 2, . . . , n. Generate the set of decision times
T (J) = {τ1, τ2, . . . , τm}, where τ1 < τ2 < · · · < τm.
(2.2) Determine the index sequence i1, i2, . . . , in of {1, 2, . . . ,m} such that
i1 < i2 < · · · < in and τih = C(h)(J) for h = 1, 2, . . . , n.
(2.3) Determine the items pmin(τi), λi, ki, and Ki for i = 1, 2, . . . ,m.
(2.4) For each i ∈ {1, 2, . . . , n′} and q ∈ Ki, calculate J ′′(i, q) := {Jz : rz = τi, pz = q}.

Single-machine hierarchical scheduling with release dates and preemption
Legal sets

Step 3: Set k0 := 0. For i = 1, 2, . . . , n′ with ki > 0, generate the clusters at time τi in
the following way:
– For each q ∈ Ki, set J (i, q) :=

J (i− 1, q) ∪ J ′′(i, q), if q /∈ {pmin(τi−1), pmin(τi−1)− (τi − τi−1)},

J (i− 1, q) ∪ J ′′(i, q), if q = pmin(τi−1) and λi−1 > 1,

J ′′(i, q), if q = pmin(τi−1) and λi−1 = 1,

J (i− 1, pmin(τi−1)) ∪ J ′′(i, q), if q = pmin(τi−1)− (τi − τi−1).

Step 4: For h = 1, 2, . . . , n, set L(h)(J) := J (ih − 1, pmin(τih−1)).
Output: C(1)(J),C(2)(J), . . . ,C(n)(J) and L(1)(J),L(2)(J), . . . ,L(n)(J).

Lemma 9

Algorithm 1 generates the n legal sets L(1)(J),L(2)(J), . . . ,L(n)(J) in O(n2) time.

Single-machine hierarchical scheduling with release dates and preemption
Legal sets

Sometimes, we only need the last legal set L(n)(J).

Lemma 10

Let J = {J1, J2, . . . , Jn} with r1 ≤ r2 ≤ · · · ≤ rn be a standard instance.
Let j∗ = min{j : Jj ∈ L(n)(J)}.
Then L(n)(J) = {Jj ∈ J : j ≥ j∗, pj = pmax(rj)}.

Since J is a standard instance, for each job Jj ∈ J , pj = pmin(rj).
From Lemma 10, for each job Jj ∈ Ln(J), pj = pmax(rj) = pmin(rj).

Single-machine hierarchical scheduling with release dates and preemption
Legal sets

Algorithm 2

For generating the last legal set L(n)(J).

Input: A standard instance J = {J1, J2, . . . , Jn} with r1 ≤ r2 ≤ · · · ≤ rn.
Step 1: Apply the following modified SRPT rule to the jobs in instance J to obtain a
schedule σ ∈ Π∗(J) and the values pmax(rj) for j ∈ {1, 2, . . . , n}: At each decision
time, we schedule an available job (if any) with the largest job index. This procedure is
repeated until all the jobs are scheduled.
Step 2: Set j∗ := σ(n) and set L(n)(J) := {Jj ∈ J : j ≥ j∗, pj = pmax(rj)}.
Output: The set L(n)(J).

Lemma 11

For a standard instance J , Algorithm 2 generates L(n)(J) in O(n) time.

Single-machine hierarchical scheduling with release dates and preemption
1|rj, pmtn|Lex(

∑
Cj, f)

1|rj, pmtn|Lex(
∑

Cj,
∑

fj)

⋆ 1|rj, pmtn|Lex(
∑

Cj,
∑

fj)

Π∗(J) is the set of feasible schedules of 1|rj, pmtn|Lex(
∑

Cj,
∑

fj)
A schedule σ of J is in Π∗(J) if and only if O(σ) is not only a
TC-optimal permutation of J but also a legal permutation of J
The equivalence of the TC-optimal permutation of J and the legal
permutation of J

Problem 1|rj, pmtn|Lex(
∑

Cj,
∑

fj) on a standard instance J
⇓

An n × n linear assignment problem

Single-machine hierarchical scheduling with release dates and preemption
1|rj, pmtn|Lex(

∑
Cj, f)

1|rj, pmtn|Lex(
∑

Cj,
∑

fj)

The indicator variables xij of a legal permutation O is:

xij =


1, if Jj = Jo(i) ∈ L(i)(J),

0, otherwise.

The cost cij is:

cij =


fj(C(i)(J)), if Jj ∈ L(i)(J),

+∞, otherwise.

The n× n linear assignment problem:

min
∑n

i=1
∑n

j=1 cijxij

s.t.
∑n

i=1 xij = 1, for all j ∈ {1, . . . , n},∑n
j=1 xij = 1, for all i ∈ {1, . . . , n},

xij ∈ {0, 1}, for all i, j ∈ {1, . . . , n}.

(1)

Single-machine hierarchical scheduling with release dates and preemption
1|rj, pmtn|Lex(

∑
Cj, f)

1|rj, pmtn|Lex(
∑

Cj,
∑

fj)

Lemma 12

Let x∗ = (x∗ij : 1 ≤ i, j ≤ n) be an optimal solution for the n × n linear
assignment problem stated in (1).
Let O∗ = (Jo∗(1), Jo∗(2), . . . , Jo∗(n)) be the permutation of J such that
x∗i,o∗(i) = 1 for i = 1, 2, . . . , n.
Then O∗ is an optimal schedule for problem 1|rj, pmtn|Lex(

∑
Cj,

∑
fj) on

instance J .

Single-machine hierarchical scheduling with release dates and preemption
1|rj, pmtn|Lex(

∑
Cj, f)

1|rj, pmtn|Lex(
∑

Cj,
∑

fj)

Algorithm 3

For solving problem 1|rj, pmtn|Lex(
∑

Cj,
∑

fj).

Input: A standard instance J = {J1, J2, . . . , Jn} with r1 ≤ r2 ≤ · · · ≤ rn.
Step 1: Run Algorithm 1 to obtain the completion times
C(1)(J),C(2)(J), . . . ,C(n)(J), and the legal sets L(1)(J),L(2)(J), . . . ,L(n)(J).
Step 2: Calculate the position cost cij, 1 ≤ i, j ≤ n, and then generate the n× n linear
assignment problem in (1).
Step 3: Solve the n× n linear assignment problem in (1) to obtain its optimal solution
x∗ = (x∗ij : 1 ≤ i, j ≤ n) and its optimal value Value(x∗) =

∑n
i=1

∑n
j=1 cijx∗ij.

Step 4: Generate the permutation O∗ = (Jo∗(1), Jo∗(2), . . . , Jo∗(n)) of J , where, for
each i ∈ {1, 2, . . . , n}, o∗(i) is the unique index in {1, 2, . . . , n} such that x∗i,o∗(i) = 1.
Step 5: Run Procedure Pmtn-LS(O∗) to obtain the schedule σ∗ = Pmtn-LS(O∗) of J .
Output: Schedule σ∗ = Pmtn-LS(O∗) and its objective value Value(x∗).

Single-machine hierarchical scheduling with release dates and preemption
1|rj, pmtn|Lex(

∑
Cj, f)

1|rj, pmtn|Lex(
∑

Cj,
∑

fj)

Theorem 5.1

Algorithm 3 solves problem 1|rj, pmtn|Lex(
∑

Cj,
∑

fj) in O(n3) time.

Single-machine hierarchical scheduling with release dates and preemption
1|rj, pmtn|Lex(

∑
Cj, f)

1|rj, pmtn|Lex(
∑

Cj, fmax)

⋆ 1|rj, pmtn|Lex(
∑

Cj, fmax) on a standard instance J

Lemma 13

Consider the problem 1|rj, pmtn|Lex(
∑

Cj, fmax) on the standard instance
J with r1 ≤ r2 ≤ · · · ≤ rn, and suppose that Jj′ ∈ L(n)(J) such that

fj′(C(n)(J)) = min{fj′′(C(n)(J)) : Jj′′ ∈ L(n)(J)}.

Then there is an optimal schedule in which Jj′ is the last completed job.

Single-machine hierarchical scheduling with release dates and preemption
1|rj, pmtn|Lex(

∑
Cj, f)

1|rj, pmtn|Lex(
∑

Cj, fmax)

Algorithm 4

For solving problem 1|rj, pmtn|Lex(
∑

Cj, fmax).

Input: A standard job instance J = {J1, J2, . . . , Jn} with r1 ≤ r2 ≤ · · · ≤ rn.
Step 1: Generate a permutation O = (Jo(1), Jo(2), . . . , Jo(n)) of J in the following way.
(1.1) Set Jn = J . Set i := n.
(1.2) Run Algorithm 2 on instance Ji to obtain L(i)(Ji).
(1.3) Pick a job Jj′ ∈ L(i)(Ji) such that fj′(C(i)(Ji)) is as small as possible. Set
o(i) := j′.
(1.4) If i = 1, then go to Step 2. If i > 1, then set Ji−1 := Ji \ {Jj′} and go to Step
(1.5).
(1.5) Set i := i− 1 and go to Step (1.2).
Step 2: Generate the schedule σ = Pmtn-LS(O) and calculate the value fmax(σ).
Output: Schedule σ and its objective value fmax(σ).

Single-machine hierarchical scheduling with release dates and preemption
1|rj, pmtn|Lex(

∑
Cj, f)

1|rj, pmtn|Lex(
∑

Cj, fmax)

Theorem 5.2

Algorithm 4 solves problem 1|rj, pmtn|Lex(
∑

Cj, fmax) in O(n2) time.

Single-machine hierarchical scheduling with release dates and preemption
1|rj, pmtn|Lex(

∑
Cj, f)

1|rj, pmtn|Lex(
∑

Cj, f̃)

⋆ 1|rj, pmtn|Lex(
∑

Cj, f̃), f̃ ∈ {
∑

wjCj,
∑

Tj,Lmax,Tmax,WCmax}
Let J = {J1, J2, . . . , Jn}, where r1 ≤ r2 ≤ . . . ≤ rn.

Table 1: The O-permutation for problem 1|rj, pmtn|Lex(
∑

Cj, f̃)

Scheduling problem O-permutation
1|rj, pmtn|Lex(

∑
Cj,

∑
wjCj) wo(1) ≥ wo(2) ≥ · · · ≥ wo(n)

1|rj, pmtn|Lex(
∑

Cj,
∑

Tj) do(1) ≤ do(2) ≤ · · · ≤ do(n)

1|rj, pmtn|Lex(
∑

Cj,Lmax) do(1) ≤ do(2) ≤ · · · ≤ do(n)

1|rj, pmtn|Lex(
∑

Cj,Tmax) do(1) ≤ do(2) ≤ · · · ≤ do(n)

1|rj, pmtn|Lex(
∑

Cj,WCmax) wo(1) ≥ wo(2) ≥ · · · ≥ wo(n)

Single-machine hierarchical scheduling with release dates and preemption
1|rj, pmtn|Lex(

∑
Cj, f)

1|rj, pmtn|Lex(
∑

Cj, f̃)

Lemma 14

For problem 1|rj, pmtn|Lex(
∑

Cj, f̃), there is an optimal schedule
σ ∈ Π∗(J) such that, at each decision time τi ∈ T (J) with ki ≥ 1, if
multiple available jobs have the smallest remaining processing time, the
one with the smallest index under permutation O is processed in the
interval [τi, τi+1] in σ.

Single-machine hierarchical scheduling with release dates and preemption
1|rj, pmtn|Lex(

∑
Cj, f)

1|rj, pmtn|Lex(
∑

Cj, f̃)

SRPT(̃f) Rule:
At each decision time, we schedule an available job with the smallest remaining processing
time, with ties being broken by choosing the candidate job with the smallest index under
permutation O. This procedure is repeated until all the jobs are scheduled.

Theorem 5.3

Problem 1|rj, pmtn|Lex(
∑

Cj, f̃) is solvable by the SRPT(̃f) Rule in
O(n log n) time, where f̃ ∈ {

∑
wjCj,

∑
Tj,Lmax,Tmax,WCmax}.

Single-machine hierarchical scheduling with release dates and preemption
Further Research

Yj (the late work of Jj): the amount of processing of Jj scheduled
after its due date dj.
When preemption is allowed, Yj is not uniquely determined by Cj.

Our approach is no longer applicable to the following two problems:
1|rj, pmtn|Lex(

∑
Cj,

∑
Yj)

1|rj, pmtn|Lex(
∑

Cj,
∑

wjYj)

Single-machine hierarchical scheduling with release dates and preemption

Thank You

	Outline
	Introduction
	Revisit problem 1|rj, pmtn|Cj
	Legal sets
	1|rj, pmtn|Lex(Cj, f)
	1|rj, pmtn|Lex(Cj, fj)
	1|rj, pmtn|Lex(Cj, f)
	1|rj, pmtn|Lex(Cj,)

	Further Research
	

