Outpatient Appointment Scheduling with Waiting Time Limits

Rachel R. Chen

UC Davis

Joint work with Han Zhu (DUFE), Min Zhang (DUFE) and Zhenzhen Zhang (Tongji)

Introduction

- Long patient waiting times in outpatient clinics remain a serious concern.
 - Mainland China Public Hosp.: average waiting time is 57 minutes
 - HK Public Hosp. Foot & Ankle: average waiting time exceeds 2 hours
 - They negatively impact patients' experiences and perceptions of service quality.

Introduction

- To address this issue, policymakers may impose a waiting time limit (WTL).
 - China Healthcare Commission: WTL = 30 minutes
 - Ministry of Health in Singapore: WTL = 75 minutes
 - The Department of Health in Hong Kong, the Patient's Charter of the United Kingdom Government, ...

MOH and the two clusters want to re-assure the public that we will actively improve the waiting time for SOC consultation. We cannot adopt a one-size-fits-all approach because each medical speciality is different. We recognise the inherent variability and sometimes unpredictability of healthcare services. Notwithstanding, we have established a target that at least 50% of our patients would be seen within 30 minutes of their appointment time, and that 95% of our patients would not have to wait beyond 75 minutes of their appointment times. To achieve, this, we need the co-operation of everyone involved.

Introduction

- When a patient's waiting time limit is exceeded, clinics may need to use flexible or reserved resources to serve the patient —— patient diversion.
- The impact of WTL on the clinic
 - Diverting patients may incur additional costs.
 - Patient diversion disrupts its operations.
- Multiple inherent uncertainties further complicate the analysis.
- It remains unclear how to effectively schedule appointments in the presence of waiting time limits.

Research Questions: We study outpatient appointment scheduling with waiting time limits, in the presence of uncertain service times, patient no-shows, and unpunctual arrivals.

Literature

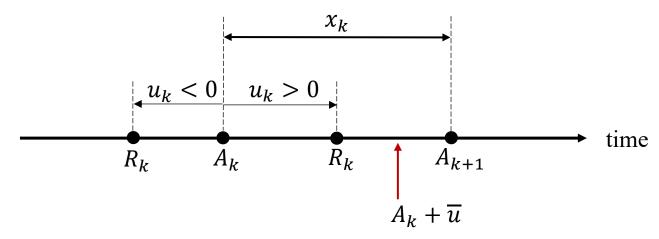
- Appointment scheduling with stochastic service times and no-shows
 - Numerous studies show that the optimal schedule has a dome-shaped pattern. (Hassin and Mendel 2008, Klassen and Yoogalingam 2008, Robinson and Chen 2010, Cayirli and Yang 2014, Zhou and Yue 2019)
 - However, we find the dome-shaped pattern does not necessarily hold in the presence of WTLs.
- Appointment scheduling with waiting time limits
 - hard constraints (Huang et al. 2015, Wen et al. 2020, Zhou et al. 2021, Babashov et al. 2023)
 - soft constraints (Qi 2017, Pan et al. 2020, Wang et al. 2024)
 - Our work considers multiple uncertainties and patient diversion.
- Customer reneging (Jouini et al. 2011, Huh et al. 2013, Lu et al. 2022)
 - Imposing waiting time limits introduces penalties or higher costs.
- Appointment scheduling with patient unpunctuality (Deceuninck et al. 2018, Jiang et al. 2019, Wu and Zhou 2022)
 - None of these studies take into consideration waiting time limits.

Our work differs from prior research by simultaneously considering waiting time limits, uncertain service times, patient no-shows, and unpunctuality.

Model Setup

We study the case with a single doctor serving N patients.

- A_k : the appointment time of patient k (k = 1,..., N).
- R_k : the actual arrival time of patient k (k = 1,..., N).
- $u_k = R_k A_k \in [\underline{u}, \overline{u}]$: the unpunctual time of patient k (k = 1,..., N).
- $x_k = A_{k+1} A_k$: the job allowance (k = 1,..., N-1).
- decision variables: $\mathbf{x} = (x_1, ..., x_{N-1})$

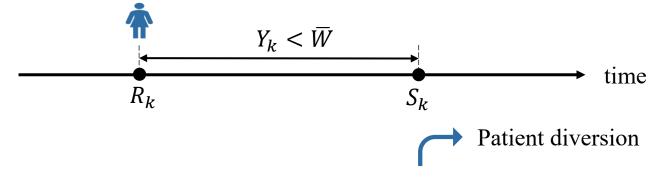


we model no-show patients as "ghosts", who show up at their latest possible arrival times with zero service time.

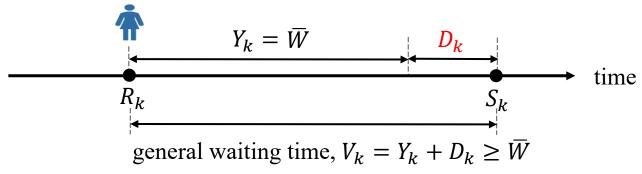
Model Setup

- \overline{W} : waiting time limit.
- S_k : general service starting time of patient k when $\overline{W} = \infty$.
- Y_k : actual waiting time of patient k, measured from her arrival time.
- D_k : virtual waiting time of patient k.

(1) Patients who are seen by the current doctor.

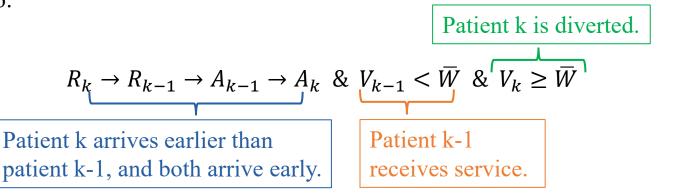


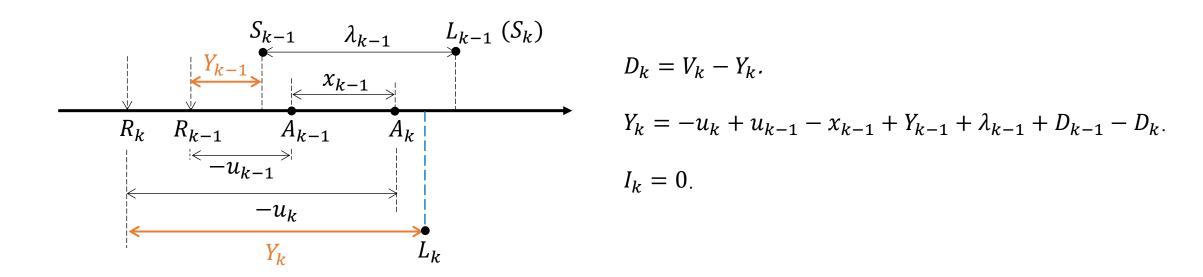
(2) Patients who are unseen by the current doctor.



• $t_k = \mathbb{I}\{V_k \ge \overline{W}\} \in \{0,1\}$ identifies whether patient k is diverted.

- Waiting time limits and patient unpunctuality lead to numerous scenarios of system dynamics.
- A scenario:





Due to patient unpunctuality, the arrival sequence of any two adjacent patients is uncertain, potentially matching or differing from their appointed order.

- Out-of-order case
 - Out-of-order arrivals of two adjacent patients

$$(1) R_k \to R_{k-1} \to A_{k-1} \to A_k$$

(1)
$$R_k \to R_{k-1} \to A_{k-1} \to A_k$$
 (4) $A_{k-1} \to R_k \to R_{k-1} \to A_k$

(2)
$$R_k \to A_{k-1} \to R_{k-1} \to A_k$$
 (5) $A_{k-1} \to R_k \to A_k \to R_{k-1}$ (3) $R_k \to A_{k-1} \to A_k \to R_{k-1}$ (6) $A_{k-1} \to A_k \to R_k \to R_{k-1}$

$$(5) A_{k-1} \to R_k \to A_k \to R_{k-1}$$

$$(3) R_k \to A_{k-1} \to A_k \to R_{k-1}$$

$$(6) A_{k-1} \to A_k \to R_k \to R_{k-1}$$

Patients may exit the queue due to waiting time limits.

$$(1) V_{k-1} < \overline{W} \& V_k < \overline{W} (2) V_{k-1} < \overline{W} \& V_k \ge \overline{W} (3) V_{k-1} \ge \overline{W} \& V_k \ge \overline{W}$$

- In-order case
 - $R_k \le L_{k-1}: V_{k-1} < (\ge) \overline{W} \& V_k < (\ge) \overline{W}$ (4 scenarios)
 - $R_k \le L_{k-1}: V_{k-1} < (\ge) \overline{W} \& V_k < (\ge) \overline{W}$ (4 scenarios) $L_{k-1} < R_k \le L_{k-1} + D_{k-1}: (1) V_{k-1} \ge \overline{W} \& V_k < \overline{W}$ (2) $V_{k-1} \ge \overline{W} \& V_k \ge \overline{W}$ (2 scenarios) $R_k > L_{k-1} + D_{k-1}: (1) V_{k-1} < \overline{W} \& V_k < \overline{W}$ (2) $V_{k-1} \ge \overline{W} \& V_k < \overline{W}$ (2 scenarios)

26 scenarios

• Proposition 1 unifies expressions of system dynamics of 26 scenarios.

Proposition 1. In both out-of-order and in-order cases, the k^{th} patient's general waiting time V_k and the doctor's idle time I_k are given by

$$V_k = \begin{cases} (-u_1)^+, k = 1; \\ (V_{k-1} + \lambda_{k-1} - x_{k-1} + u_{k-1} - u_k)^+, \forall k \ge 2. \end{cases}$$
 (1)

$$I_{k} = \begin{cases} (u_{1})^{+}, k = 1; \\ (-V_{k-1} - \lambda_{k-1} + x_{k-1} - u_{k-1} + u_{k})^{+}, \forall k \ge 2. \end{cases}$$
 (2)

min
$$\mathbb{E}\left[\sum_{k=1}^{N} (\alpha W_k + \theta t_k + \beta I_k) + \gamma O\right]$$
 ①patients' waiting cost + ② penalty cost + ③ idle time cost + ④ overtime cost.

s.t.
$$V_k = \begin{cases} (-u_1)^+, k = 1; \\ (V_{k-1} + \lambda_{k-1} - x_{k-1} + u_{k-1} - u_k)^+, \forall k = 2, ..., N \end{cases}$$
$$((u_1)^+, k = 1;$$

$$I_k = \begin{cases} (u_1)^+, k = 1; \\ (-V_{k-1} - \lambda_{k-1} + x_{k-1} - u_{k-1} + u_k)^+, \forall k = 2, \dots, N \end{cases}$$

$$t_k = \mathbb{I}(V_k \ge \overline{W}), \forall k = 1, ..., N$$

$$\lambda_k = \xi_k (1 - t_k), \forall k = 1, \dots, N$$

$$Y_{k} = \min(V_{k}, \overline{W}), \forall k = 1, ..., N$$

$$W_{\nu} = (Y_{\nu} - (-u_{\nu})^{+})^{+}, \forall k = 1, ..., N$$

$$O = (\sum_{k=1}^{N-1} x_k + u_N + V_N + \lambda_N - T)^{+}$$

$$x_k \in X, V_k, Y_k, I_k, W_k, O \ge 0, t_k \in \{0,1\}, \forall k = 1, ..., N$$

- (1) general waiting time
- (2) idle time
 - (3) identify whether patient k is diverted
 - (4) actual service time
 - (5) actual waiting time
 - (6) the clinic-concerned waiting time
 - (7) overtime

• Sample Average Approximation (SAA) + linearization operations: a deterministic mixed-integer linear program (DMILP).

$$\begin{aligned} & \min \frac{1}{S} \sum_{k=1}^{S} [\sum_{k=1}^{N} (\alpha W_{k}^{i} + \theta t_{k}^{i} + \beta I_{k}^{i}) + \gamma O^{i} \\ & s.t. \quad V_{1}^{i} = (-u_{1}^{i})^{+}, \forall i = 1, \dots, S \\ & I_{1}^{i} = (u_{1}^{i})^{+}, \forall i = 1, \dots, S \\ & V_{k}^{i} - I_{k}^{i} = V_{k-1}^{i} + \lambda_{k-1}^{i} - x_{k-1} + u_{k-1}^{i} - u_{k}^{i}, \forall k = 2, \dots, N, \forall i = 1, \dots, S \\ & V_{k}^{i} \leq M_{1,k}^{i} v_{k}^{i}, \forall k = 2, \dots, N, \forall i = 1, \dots, S \\ & I_{k}^{i} \leq M_{2,k}^{i} \mu_{k}^{i}, \forall k = 2, \dots, N, \forall i = 1, \dots, S \\ & V_{k}^{i} + \mu_{k}^{i} \leq 1, \forall k = 2, \dots, N, \forall i = 1, \dots, S \\ & V_{k}^{i} + \mu_{k}^{i} \leq \{0,1\}, \forall k = 2, \dots, N, \forall i = 1, \dots, S \\ & V_{k}^{i} \leq \overline{W}, \forall k = 1, \dots, N, \forall i = 1, \dots, S \\ & Y_{k}^{i} \leq \overline{W}, \forall k = 1, \dots, N, \forall i = 1, \dots, S \\ & Y_{k}^{i} \leq V_{k}^{i}, \forall k = 1, \dots, N, \forall i = 1, \dots, S \\ & Y_{k}^{i} \geq V_{k}^{i} - M_{2,k}^{i} t_{k}^{i}, \forall k = 1, \dots, N, \forall i = 1, \dots, S \\ & V_{k}^{i} \geq Y_{k}^{i} - (-u_{k}^{i})^{+}, \forall k = 1, \dots, N, \forall i = 1, \dots, S \\ & O^{i} \geq V_{N}^{i} + \lambda_{N}^{i} + \sum_{k=1}^{N-1} x_{k} + u_{N}^{i} - T, \forall i = 1, \dots, S \\ & O^{i} \geq V_{N}^{i} + \lambda_{N}^{i} + \sum_{k=1}^{N-1} x_{k} + u_{N}^{i} - T, \forall i = 1, \dots, S \\ & O^{i} \geq V_{N}^{i} + \lambda_{N}^{i} + \sum_{k=1}^{N-1} x_{k} + u_{N}^{i} - T, \forall i = 1, \dots, S \\ & O^{i} \geq V_{N}^{i} + \lambda_{N}^{i} + \sum_{k=1}^{N-1} x_{k} + u_{N}^{i} - T, \forall i = 1, \dots, S \\ & O^{i} \geq V_{N}^{i} + \lambda_{N}^{i} + \sum_{k=1}^{N-1} x_{k} + u_{N}^{i} - T, \forall i = 1, \dots, S \\ & O^{i} \geq V_{N}^{i} + \lambda_{N}^{i} + \sum_{k=1}^{N-1} x_{k} + u_{N}^{i} - T, \forall i = 1, \dots, S \\ & O^{i} \geq V_{N}^{i} + \lambda_{N}^{i} + \sum_{k=1}^{N-1} x_{k} + u_{N}^{i} - T, \forall i = 1, \dots, S \\ & O^{i} \geq V_{N}^{i} + \lambda_{N}^{i} + \sum_{k=1}^{N-1} x_{k} + u_{N}^{i} - T, \forall i = 1, \dots, S \\ & O^{i} \geq V_{N}^{i} + \lambda_{N}^{i} + \sum_{k=1}^{N-1} x_{k} + u_{N}^{i} - T, \forall i = 1, \dots, S \\ & O^{i} \geq V_{N}^{i} + \lambda_{N}^{i} + \sum_{k=1}^{N-1} x_{k} + u_{N}^{i} - T, \forall i = 1, \dots, S \\ & O^{i} \geq V_{N}^{i} + \lambda_{N}^{i} + \sum_{k=1}^{N-1} x_{k} + u_{N}^{i} - T, \forall i = 1, \dots, S \\ & O^{i} \geq V_{N}^{i} + \lambda_{N}^{i} + \sum_{k=1}^{N-1} x_{k} + u_{N}^{i} - T, \forall i = 1, \dots, S \\ & O^{i} \geq V_{N}^{i} + \lambda_{N}^{i} + \sum_{k=1}^{N-1} x_{k} + u_{N}^{i} - T, \forall i = 1, \dots, S \\ & O^{i} \geq V_{N}^{i} + \lambda_$$

The Tailored Integer L-shaped Method

- The standard integer L-shaped method
 - The second stage problem: S subproblems are mixed integer nonlinear programs.
 - Directly solving subproblems individually by off-the-shelf solvers is time-consuming.
- The tailored integer L-shaped method
 - Proposition 2 shows that the subproblem Q(x, i) has good properties, which allow us to deduce its optimal value without using any optimization solver.

Proposition 2. Given a first-stage solution x and scenario i, the unique feasible solution $(W_k^{i^*}, t_k^{i^*}, I_k^{i^*}, O^{i^*}), k = 1, ..., N$ satisfying (42) - (50) is the optimal solution to subproblem (SP), so that $Q^*(x, i) = \sum_{k=1}^N \left(\alpha W_k^{i^*} + \theta t_k^{i^*} + \beta I_k^{i^*}\right) + \gamma O^{i^*}$.

Numerical Analysis —— The Tailored ILSM

Table 2 Performance of the tailored ILSM

$p_{ns} = 0.1$			RunningTime(s)			$\operatorname{Gap}(\%)$			$p_{ns} = 0.2$			RunningTime(s)			$\operatorname{Gap}(\%)$		
$\overline{\mathrm{T}}$	N	S	Std-ILSM	SAA	ILSM	Std-ILSM	SAA	ILSM	$\overline{\mathrm{T}}$	N	S	Std-ILSM	SAA	ILSM	Std-ILSM	SAA	ILSM
60	4	1500	26	23	8	0	0	0	60	4	1500	26	17	8	0	0	0
		2000	28	39	10	0	0	0			2000	32	29	11	0	0	0
		2500	34	55	12	0	0	0			2500	40	45	13	0	0	0
		3000	46	60	16	0	0	0			3000	49	97	19	0	0	0
	5	1500	47	34	15	0	0	0		5	1500	53	32	17	0	0	0
		2000	68	57	22	0	0	0			2000	65	42	24	0	0	0
		2500	88	88	28	0	0	0			2500	81	64	28	0	0	0
		3000	102	119	34	0	0	0			3000	112	84	37	0	0	0
	6	1500	85	48	29	0	0	0		6	1500	83	40	31	0	0	0
		2000	122	77	39	0	0	0			2000	120	64	44	0	0	0
		2500	137	104	49	0	0	0			2500	140	152	53	0	0	0
		3000	162	222	58	0	0	0			3000	159	330	59	0	0	0
120	8	1500	277	257	126	0	0	0	120	8	1500	1530	1015	595	0	0	0
		2000	393	320	190	0	0	0			2000	1901	2685	701	0	0	0
		2500	479	670	202	0	0	0			2500	2375	3518	870	0	0	0
		3000	642	1158	283	0	0	0			3000	2750	7200	1056	0	2.99	0
	10	1500	2415	1657	940	0	0	0		10	1500	4831	3229	1780	0	0	0
		2000	3196	4235	1230	0	0	0			2000	6279	7200	2257	0	2.87	0
		2500	4715	6610	1736	0	0	0			2500	7200	7200	2945	1.97	2.90	0
		3000	5206	7200	2031	0	1.93	0			3000	7200	7200	3661	2.23	3.15	0
	12	1500	7200	6239	2860	2.95	0	0		12	1500	7200	6091	4237	3.50	0	0
		2000	7200	7200	4056	4.23	3.81	0			2000	7200	7200	5945	4.70	3.63	0
		2500	7200	7200	5825	3.92	4.37	0			2500	7200	7200	6830	4.88	3.97	0
		3000	7200	7200	6860	5.44	4.88	0			3000	7200	7200	7200	5.28	3.87	2.32

The tailored ILSM outperforms both benchmarks in all instances.

Numerical Analysis —— The Optimal Schedule

- The optimal schedule in the presence of waiting time limits **has larger job allowances** than that without waiting time limits.
- The well-known dome-shaped pattern is no longer guaranteed under waiting time limits.

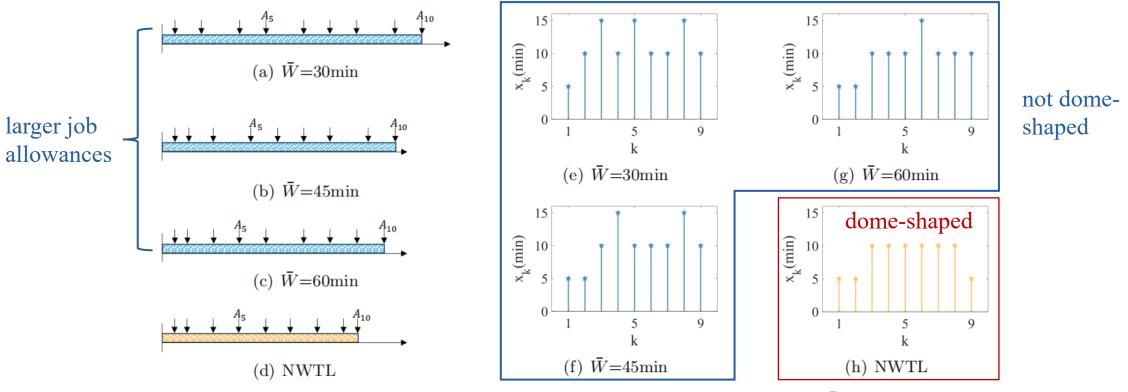


Figure 4 Optimal schedules of the WTL systems under different \bar{W} .

Numerical Analysis ——The Impact of Waiting Time Limits

• Waiting time limits help reduce variation in patient waiting times across different positions in the schedule, thereby **enhancing fairness** in the schedule.

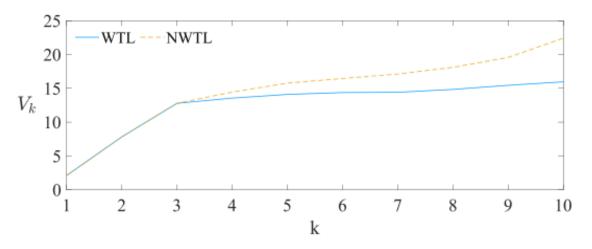


Figure 5 Average general waiting times for patients of different positions in a line

Numerical Analysis ——The Impact of Waiting Time Limits

- Patient waiting time ↓
- Doctor utilization $\mathbf{\Psi}$ (idle time $\mathbf{\uparrow}$; overtime $\mathbf{\Psi}$).
- When θ is relatively low, waiting time limits may benefit the clinic.

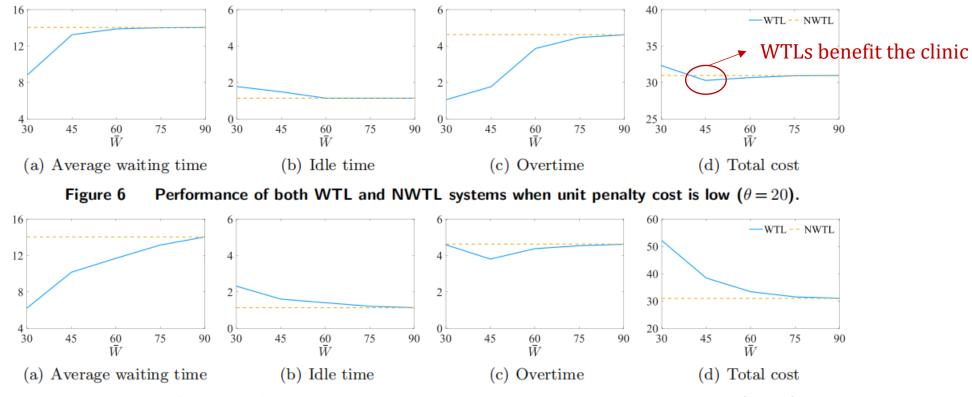


Figure 7 Performance of both WTL and NWTL systems when unit penalty cost is high ($\theta = 75$).

Numerical Analysis ——The Impact of Waiting Time Limits

• In the presence of waiting time limits, the total cost of the system is minimized when patients tend to arrive slightly late on average.

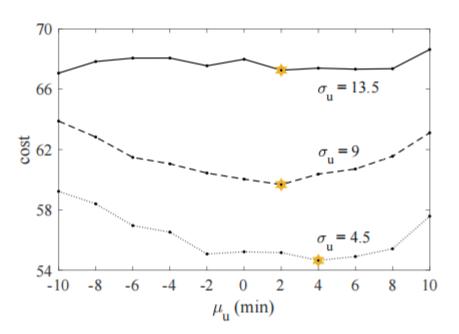


Figure 8 Comparison of Total Costs under Different Unpunctuality Parameters.

Numerical Analysis —— Different Regulatory Contexts with \overline{W} and heta

- Configurations of waiting time limits (\overline{W}) and the unit penalty cost (θ) across different regulatory contexts.
 - Clinic self-regulation
 - The clinic proactively sets \overline{W} ;
 - θ : the clinic's additional resource cost for each diverted patient (exogenous).
 - Planner-imposed waiting time limit
 - A social planner sets \overline{W} ;
 - θ : the clinic's additional resource cost for each diverted patient (exogenous).
 - Social planner joint regulation
 - A social planner simultaneously decides on both \overline{W} and θ_2 (a fine);
 - θ_1 : the clinic's additional resource cost for each diverted patient (exogenous);
 - $\theta = \theta_1 + \theta_2$.
 - (1) The clinic has incentives to misreport its true cost of serving each diverted patient.
 - (2) The social planner can combine waiting time limits with fines to improve social welfare.

Conclusion

- We study appointment scheduling with waiting time limits, in the presence of uncertain service times, patient no-shows, and unpunctuality.
- We introduce the concept of virtual waiting time, which helps us unify the modeling of system dynamics of 26 scenarios into one stochastic program. (Proposition 1)
- We develop a tailored integer L-shaped method. (Proposition 2)

Conclusion

- We unravel the impact of waiting time limits on **job allowances**, **the optimal schedule**, **fairness** in patient waiting, **doctor utilization**, and **clinic costs**. In the presence of waiting time limits,
 - (1) the optimal schedule has larger job allowances;
 - (2) the optimal schedule does not necessarily exhibit the dome-shaped pattern;
 - (3) the presence of waiting time limits improves fairness in the schedule;
 - (4) the doctor utilization is reduced;
 - (5) when the penalty cost is relatively low, waiting time limits may benefit the clinic;
 - (6) the total cost of the system is minimized when patients tend to arrive slightly late on average.
- Our results offer valuable insights for clinics and policymakers.