
1

Machine Learning Inside Decomposition of
Scheduling Problems

Přemysl Šůcha, Antonín Novák, Broos Maenhout, Pavlína Koutecká, Roman Václavík, Jan Hůla,
Michal Bouška, Zdeněk Hanzálek

(suchap@cvut.cz)

Czech Technical University in Prague
Czech Institute of Informatics, Robotics and Cybernetics

Ghent University
Faculty of Economics and Business Administration

mailto:suchap@cvut.cz

2

Why ML? And why in decomposition approaches?

▪ There is a lack of scheduling methods exploiting previously solved instances

for solving new ones.

▪ Heuristic for scheduling problems often require fine-tuning of its parameters.

▪ It is common that CPU time of scheduling algorithms depends on the

distribution of instance parameters (1||S wjUj, strongly correlated instances

wj=pj)

Research question: is it possible to extract any useful information from the

solved instances and use it efficiently to accelerate solving of an unseen

instance?

3

Why ML? And why in decomposition approaches?

▪ Challenges/issues of ML:

▪ Current ML is not very good in approximating combinatorial problems

▪ Instance size scaling is not trivial for ML

▪ Problem feasibility is an issue for ML

▪ Getting training instances is time demanding (NP-hardnes of scheduling

problems)

Research hypothesis: Combination of ML with decomposition methods can

mitigate the above stated ML issues.

4

Outline

▪ Branch and price and ML

▪ Ranker

▪ Estimator

▪ Lawler’s decomposition and ML (1||S Tj)

▪ Conclusion

5

Branch and price and ML

6

Branch and price - Example

▪ Example: Vehicle Routing Problem with Time Windows

▪ The problem is given by a directed graph G = (V, A),

▪ Vertex 0  V is the depot, vertices 1 to n represent customers.

▪ A cost cij and a travel time tij are defined for every (i, j) ∈ A.

▪ Every customer i ∈ V\{0} has a positive demand di , a time

window [ai, bi] and a positive service time ri.

▪ A fleet of U vehicles of capacity Q is available for serving the

customers.

▪ Vehicles must begin and end their routes at the depot.

▪ The VRPTW searches for routes of vehicles minimizing the cost.

0 1

2
3

45

6

7

Branch and price - Dantzig-Wolfe decomposition

▪ Example: Vehicle Routing Problem with Time Windows

1)

2)

0 1

23

1

1

11

1.41.4

0 1

23

1

1

11

1.41.4

1

2

3

1

2

3

4

Feillet, D. A tutorial on column generation and branch-and-price for vehicle routing problems. 4OR-Q J Oper Res 8, 407–424 (2010).

8

Branch and price

▪ Column generation solver the linear relaxation

▪ Branching guarantees finding optimal integer solution

▪ Column generation has Master problem & Subproblem(s)

(or Pricing Problem(s))

▪ Subproblem(s) generate solutions to decomposed

subproblems (patterns) – parametrized by dual solution

▪ Master Problem combines individual patterns

▪ Subproblems detects whether column generation can be

stopped (reduced cost)

▪ The algorithm provides many opportunities to apply

machine learning (interaction among multiple mathematical

models, solving similar problems repetitively, …)

Master Problem

Subproblem

Branching

Column generation

Branch and price

SubproblemSubproblem

dual
solution

pattern(s)

9

Use of Machine Learning in Branch and Price:
Existing Papers

Paper Focus Optimal Branching Multiple
subproblems

Online/offline
ML

Václavík et al. (2018) Subproblem Yes Yes No Online

Morabit et al. (2021) Master Problem Yes (CG) No No Offline

Tahir et al. (2021) Subproblem No No No Offline

Shen et al. (2021) Subproblem Yes Yes No Offline

Quesnel et al. (2022) Subproblem No Yes No Offline

Yuan et al. (2022) Subproblem No Yes No Offline

Morabit et al. (2022) Subproblem No Yes No Offline

Parmentier (2022) Subproblem Yes Yes No Offline

Kraul et al. (2023) Master Problem No No No Offline

Koutecká et al. (2024) Subproblem Yes Yes Yes Offline

10

Branch and price and ML

Idea I. - Ranker

Related paper:
P. Koutecká, P. Šůcha, J. Hula, B. Maenhout: A machine learning approach to rank pricing problems in branch-and-price. Eur. J.
Oper. Res. 320(2): 328-342 (2025)

https://doi.org/10.1016/j.ejor.2024.07.029

11

Branch and Price with multiple subproblems

▪ The majority of the CPU time of the branch and price is usually spent in the subproblem(s)

▪ In the case of multiple subproblems (SP) there are multiple:

▪ solve all subproblems and add all patterns with negative reduced cost

▪ solve all subproblems and add pattern with the most negative reduced cost

▪ stop solving SPs when finding k patterns with negative reduced cost (partial pricing)

▪ Partial pricing:

12

Use of the Ranker in Branch and Price

Master Problem

Subproblem

Branching

SubproblemSubproblem

Master Problem

Subproblem

Branching

SubproblemSubproblem

Ranking

samples

Acquisition of training samples Usage of the ranker

13

Learning to Rank

▪ Typical ML predicts a class or value for a single item

▪ Learning to rank generates a relative order of multiple items (more challenging)

▪ Learning to rank is defined as:

▪ q is a query sampled from distribution Q.

▪ Each q has n items 𝑥1
𝑞
, … , 𝑥𝑛

𝑞
each represented by m features

▪ For each item we have relevance score 𝑟1
𝑞

, defining the order in q

▪ Learning to rank approaches:

▪ pointwise – considers items independently

▪ pairwise – considers items pairs

▪ listwise – considers items list

14

Learning to Rank

▪ The idea was applied to Operating Room Planning and Scheduling problem given by

▪ set of surgeons and operating rooms

▪ set of patients on a waiting list

▪ nonlinear objective function penalizing waiting time, overtime, …

▪ For each subproblem we defined 17 features of four types

▪ Count (e.g., number of patients)

▪ Average (e.g., average surgery time of considered patients)

▪ Histogram (e.g., clinical priority of assumed patients)

▪ Value (e.g., value of a dual variable)

▪ Two types of relevance scores

▪ Binary

▪ Graded

15

Training of Ranking models

▪ Training data

▪ 120 instances of the Operating Room Planning and Scheduling problem

(heterogenous, small)

▪ 58,408 queries assuming 932,190 subproblems

▪ 80% for training, 20% testing

▪ Training process ≤ 5 minutes (LambdaMART model)

16

Experimental Results

▪ We compared multiple Learning to rank models (Precision = #relevant top ranked items/k)

▪ Binary relevance outperformed graded relevance regarding ranking metrics but it was

worst inside the branch and price

▪ The ranking procedure reduces up to 41% of subproblems (k=5), and saves about 10% of

the CPU time.

Model Type Ranking model Precision (k=1)

Pairwise
LambdaRank 0.74

LambdaMART 0.92

Listwise ListNet 0.76

Pointwise

Random forest 0.59

Gradient boosted trees 0.76

Neural network 0.78

17

Branch and price and ML

Idea II. - Estimator

Related paper:
R. Václavík, A. Novák, P. Šůcha, Zdenek Hanzálek: Accelerating the Branch-and-Price Algorithm Using Machine Learning. Eur.
J. Oper. Res. 271(3): 1055-1069 (2018)

https://doi.org/10.1016/j.ejor.2018.05.046

18

Branch and Price and Subproblem(s)

▪ Properties of subproblem(s):

▪ Usually NP-hard combinatorial problems

▪ Are solved repetitively (usually differing only in the objective function)

▪ Typically consume the majority of the computation time

▪ The idea is to predict an upper bound to the subproblem to prune its solution space

(assuming minimization form of the objective function)

▪ Online ML

19

Use of the Estimator in Branch and Price

Master Problem

Subproblem

Branching

SubproblemSubproblem

Estimator

samples

Usage of the estimator and its training

Training

20

Estimator in the Branch and Price

estimator
inference

estimator
training

21

Estimator

Loos function for a single sample

Discounting function for previous samples

22

Online learning

▪ An improvement was also observed on child nodes having less iterations that the root

node thanks to the reuse of data samples from the superior node.

Upper bound prediction (of reduced cost) in the root node

23

Experimental Results

▪ The estimator was teste on two problem types

1) Nurse Rostering Problem (NRP) 2)Time-Division Multiplexing scheduling (TDM)

▪ The estimator reduced the entire CPU of the branch and price by:

▪ 40% in the case of the NRP

▪ 22% in the case of the TDM

24

Conclusions

▪ two ML-based method to speedup branch and price

▪ exploit advantages of the decomposition and preserves optimality

▪ efficient way to generate training data (one instance = multiple samples)

▪ method was applied to a practical planning and scheduling problems

Related papers:

▪ P. Koutecká, P. Šůcha, J. Hula, B. Maenhout: A machine learning approach to rank pricing

problems in branch-and-price. Eur. J. Oper. Res. 320(2): 328-342 (2025)

▪ R. Václavík, A. Novák, P. Šůcha, Zdenek Hanzálek: Accelerating the Branch-and-Price Algorithm

Using Machine Learning. Eur. J. Oper. Res. 271(3): 1055-1069 (2018)

25

Lawler’s decomposition and ML

Related paper:
M. Bouška, P. Šůcha, A. Novák, Z. Hanzálek: Deep learning-driven scheduling algorithm for a single machine problem
minimizing the total tardiness. Eur. J. Oper. Res. 308(3): 990-1006 (2023)

https://doi.org/10.1016/j.ejor.2022.11.034

26

Scheduling Problem 1||S Tj

▪ the problem is given by a set of n jobs J={1,…,n}

▪ each job j ∈ J is defined using two non-negative integer parameters:

▪ processing time pj, and

▪ due date dj.

▪ a solution is a schedule - assignment of the jobs to the start times (no overlap, no

preemption)

▪ violation of due date is penalized by tardiness Tj = max(0, Cj - dj)

▪ the goal is to find a schedule minimizing ∑Tj

▪ the problem is NP-hard.

j

tdj

pj

Cj

27

Lawler’s Decomposition for 1||S Tj

▪ for this problem we based our approach on Lawler’s decomposition

(EDD) and decomposition proposed by Della Croce et al. (SPT)

▪ an example Lawler’s decomposition assuming 4 jobs, i.e., N={1,2,3,4}:

1

t100

Job j pj dj

1 2 4

2 5 5

3 2 6

4 3 11

d1

3

5

d2d3 d4

4 1

t100

d1

5

d2d3 d4

1

t100

d1

5

d2d3 d4

43 3 4

Tj = 0 + 2 + 4 + 1 = 7 Tj = 0 + 4 + 0 + 1 = 5 Tj = 0 + 7 + 0 + 0 = 7

N = {1,3} N = {4}N = {1} N = {3,4} N = {1,3,4} N = {}

222

Splitting job

• Eugene L. Lawler, A “Pseudopolynomial” Algorithm for Sequencing Jobs to Minimize Total Tardiness, Annals of Discrete Mathematics, Volume 1, 1977, Pages 331-342.

• Della Croce, F., Tadei, R., Baracco, P., & Grosso, A. A new decomposition approach for the single machine total tardiness scheduling problem. Journal of the Operational
Research Society, 49(10), 1101–1106, 1998.

28

The Solution - Idea

▪ instead of enumerating all possibilities, we employed ML to estimate the

optimal position of the splitting job r in the decomposition (heuristic solution)

▪ estimating the position can be hard, therefore we use a different strategy:

▪ for every position k of the splitting job we estimate the total tardiness as:

▪ estimating ෠𝑇 for P(k) and S(k) is not easy:

1. varying sizes of P(k) and S(k)

2. combinatorial problem (difficult to approximate, training data)

t
r

෠𝑇(k)(N) = ෠𝑇(P(k)) + Tr + ෠𝑇(S(k))

… …

29

The Estimation of the Objective Function Value

1. estimation ෠𝑇 is obtained by a recurrent neural network (LSTM)

2. properties leading to successful design:

▪ instead of estimating total tardiness, we estimate relative deviation to

EDD solution,

▪ generation of training data set using Lawler’s decomposition

▪ …

30

The Algorithm

Function Algorithm(J): Input: a set of jobs J, Output: schedule π

1. Small instances are solved using an exact approach.
2. Determines the splitting job (rEDD, rSPT) and the position sets (KEDD, KSPT) for both decompositions
(assuming filtering rules)
3. Select the decomposition with smaller position set, i.e.,

if |KEDD|≤|KSPT| then r = rEDD, K = KEDD else r = rSPT, K = KSPT

4. Determine the position k* in K of the splitting job r using the estimator such that
k* = argkK min (෠𝑇(P(k)) + Tr + ෠𝑇(S(k)))

5. Recursively call the Algorithm both subproblems, i.e.,
πP = Algorithm(P(k*)); πS = Algorithm(S(k*))

6. Return joined schedule π ={πP, r, πS}

31

Training of the Estimator

▪ Training instances were generated utilizing the standard benchmark generator

(Potts & Van Wassenhove, 1991) for fixed rdd and tf

▪ Training data:

▪ For each n ∈ [75, 100] we generated 20 instances

▪ Using decompositions we generated 1.6 × 106 samples (optimal solutions)

▪ Generation of samples took 600 seconds (decomposition based generation is 20 times

faster),

▪ Training took 3 hours

Potts, C., & Van Wassenhove, L. N. (1991). Single machine tardiness sequencing heuristics. IIE

Transactions, 23(4), 346–354.

32

Comparison with SotA

Garraffa et al.
(2018)(*

Our approach

n CPU
time [s]

gap [%] CPU
time [s]

gap [%]

100-145 0.34 0 0.46 0.39

200-245 11.09 0.07 1.56 0.45

300-345 15.00 1.02 3.07 0.31

400-450 15.00 2.33 5.01 0.24

…

750-795 15.00 3.75 13.95 0.11

(* Time limit set to 15s

Exact approach GA

Süer et al. (2012)(** Our approach

n CPU time
[s]

gap [%] CPU time
[s]

gap [%]

10 2.00 0 0 0

20 51.00 0 0.06 0

30 354.00 0 0.013 0.1

50 536.00 2.12 0.018 0.006

100 1083.00 6.32 0.044 0.002

(** CPU time was rescaled w.r.t. power of their and our CPU

▪ Garraffa, M., Shang, L., Della Croce, F., & T’Kindt, V. (2018). An exact exponential branch-and-merge algorithm for the single
machine total tardiness problem. Theoretical Computer Science, 745, 133–149.

▪ Süer, G. A., Yang, X., Alhawari, O. I., Santos, J., & Vazquez, R. (2012). A genetic algorithm approach for minimizing total
tardiness in single machine scheduling. International Journal of Industrial Engineering and Management, 3(3), 163–171.

33

Conclusions

▪ a synergy between the state-of-the-art OR methods and our NN

▪ an efficient way to generate the training data set

▪ NN is able to generalize the acquired knowledge (training on 100 jobs max)

▪ our approach provides near-optimal solutions very quickly

M. Bouška, P. Šůcha, A. Novák, Z. Hanzálek: Deep learning-driven scheduling algorithm for a single

machine problem minimizing the total tardiness. Eur. J. Oper. Res. 308(3): 990-1006 (2023)

34

Conclusion

35

Use of ML to solve Combinatorial Problems

▪ In general, current ML is not strong enough to approximate combinatorial problems

▪ End-to-end approaches ignore fundamental properties of scheduling problems

▪ Scheduling domain should not ignore SotA in ML and vice versa

▪ Decomposition techniques allow many interesting opportunities to apply ML

▪ Related papers:

▪ R. Václavík, P. Šůcha, Z. Hanzálek: Roster evaluation based on classifiers for the nurse rostering problem. J.

Heuristics 22(5): 667-697 (2016)

▪ R. Václavík, A. Novák, P. Šůcha, Zdenek Hanzálek: Accelerating the Branch-and-Price Algorithm Using Machine

Learning. Eur. J. Oper. Res. 271(3): 1055-1069 (2018)

▪ M. Bouška, P. Šůcha, A. Novák, Z. Hanzálek: Deep learning-driven scheduling algorithm for a single machine

problem minimizing the total tardiness. Eur. J. Oper. Res. 308(3): 990-1006 (2023)

▪ P. Koutecká, P. Šůcha, J. Hula, B. Maenhout: A machine learning approach to rank pricing problems in branch-

and-price. Eur. J. Oper. Res. 320(2): 328-342 (2025)

https://link.springer.com/article/10.1007/s10732-016-9314-9
https://doi.org/10.1016/j.ejor.2018.05.046
https://doi.org/10.1016/j.ejor.2022.11.034
https://doi.org/10.1016/j.ejor.2024.07.029

