
www.hexaly.com

www.hexaly.com

Hexaly Optimizer for Scheduling

Philippe Laborie (plaborie@hexaly.com)

Scheduling seminar (schedulingseminar.com)
November 20, 2024

https://www.localsolver.com/

2

Software company specialized in

Mathematical Optimization, Operations

Research, and Decision Science

Powerful optimization solver & platform

used by Amazon, FedEx, Starbucks, …

Turnkey, custom optimization and planning

applications for Air Liquide, Toyota, …

Fast and scalable solver for Routing,
Scheduling, Packing, and more

20 years of experience

200 clients, 400 applications, and
20,000 users in 25 countries

Offices in Brooklyn, NY, and Paris, France

3

200 companies trust us

A complete platform for building and deploying
mathematical optimization applications

4

Hexaly Optimizer
Fast and scalable mathematical optimization solver

Hexaly Studio
No-code studio to build optimization apps in days

Hexaly Modeler
Low-code modeling language for optimization

Hexaly Cloud
Mathematical Optimization as a Service

https://www.hexaly.com/hexaly-optimizer
https://www.hexaly.com/hexaly-studio
https://www.hexaly.com/hexaly-modeler
https://www.hexaly.com/hexaly-cloud

Hexaly Optimizer
Problem Specific approach vs. Mathematical solver

5

Business problem

Algorithm

Mathematical
modeling

Automated
resolution

Business solution

Hexaly Optimizer for Scheduling

6

• Industrial scheduling problems

• Basic Mathematics

• Hexaly Optimizer

• Modeling language

• Resolution techniques

• Performance

Hexaly Optimizer for Scheduling
Industrial scheduling problems

7

Heterogeneous

• Several types of resources : disjunctive, cumulative, inventories, …

• Resource allocation decisions

• Different types of constraints: temporal, calendars, setup times, batches, …

• Diverse objectives : tardiness, allocation costs, resource setup costs, … (makespan is rare)

Large

• Some problems with up to n=1,000,000 activities, 1,000 resources

• Fine grain granularity of time, typically T=1,000,000 time points

Usually, MIP technology does not scale well on these problems

• Manne’s formulation for disjunctive resources: O(n2) 1,000,000,000,000

• Discrete time formulations are in O(n.T) 1,000,000,000,000

Hexaly Optimizer for Scheduling
Basic Mathematics

8

From elementary school

• Numbers: 1, 2, 3, … ui

• Comparison between numbers: 2 ≤ 4 ui ≤ RHS

• Addition tables: 2 + 3 = 5 Σui

• Multiplication tables: 2 * 3 = 6 Σ ai ui

Hexaly Optimizer for Scheduling
Basic Mathematics

9

From elementary school

• Numbers: 1, 2, 3, … ui

• Comparison between numbers: 2 ≤ 4 ui ≤ RHS

• Addition tables: 2 + 3 = 5 Σui

• Multiplication tables: 2 * 3 = 6 Σ ai ui

☛ MIP

Hexaly Optimizer for Scheduling
Basic Mathematics

10

From secondary school

• Sets A, u ∈ A, |A|, A ⊆ B, partition(A, {Bi}), …

Hexaly Optimizer for Scheduling
Basic Mathematics

11

From secondary school

• Sets A, u ∈ A, |A|, A ⊆ B, partition(A, {Bi}), …

A: all activitiesB1: activities on
machine M1

Hexaly Optimizer for Scheduling
Basic Mathematics

12

From secondary school

• Sets A, u ∈ A, |A|, A ⊆ B, partition(A, {Bi}), …

• Permutations S(A), σ ∈ S(A), σ(0), σ-1(5), …

Hexaly Optimizer for Scheduling
Basic Mathematics

13

From secondary school

• Sets A, u ∈ A, |A|, A ⊆ B, partition(A, {Bi}), …

• Permutations S(A), σ ∈ S(A), σ(0), σ-1(5), …

S: sequence of
activities on
a machine M

Hexaly Optimizer for Scheduling
Basic Mathematics

14

From secondary school

• Sets A, u ∈ A, |A|, A ⊆ B, partition(A, {Bi}), …

• Permutations S(A), σ ∈ S(A), σ(0), σ-1(5), …

• Intervals x = [u,v), t ∈ x, hull(x,y,z), …

Hexaly Optimizer for Scheduling
Basic Mathematics

15

From secondary school

• Sets A, u ∈ A, |A|, A ⊆ B, partition(A, {Bi}), …

• Permutations S(A), σ ∈ S(A), σ(0), σ-1(5), …

• Intervals x = [u,v), t ∈ x, hull(x,y,z), …

x : time interval

start(x) end(x)
length(x)

Hexaly Optimizer for Scheduling
Basic Mathematics

16

From secondary school

• Sets A, u ∈ A, |A|, A ⊆ B, partition(A, {Bi}), …

• Permutations S(A), σ ∈ S(A), σ(0), σ-1(5), …

• Intervals x = [u,v), t ∈ x, hull(x,y,z), …

• Functions f(t)

Hexaly Optimizer for Scheduling
Basic Mathematics

17

From secondary school

• Sets A, u ∈ A, |A|, A ⊆ B, partition(A, {Bi}), …

• Permutations S(A), σ ∈ S(A), σ(0), σ-1(5), …

• Intervals x = [u,v), t ∈ x, hull(x,y,z), …

• Functions f(t)

t

level Example: level of an inventory over time

18

Python Java C++
Hexaly

ModelerC#

Hexaly Mathematical Model

API

Solver

Hexaly Optimizer for Scheduling
Hexaly Optimizer

Hexaly Optimizer for Scheduling
Hexaly Optimizer - Modeling

19

The Hexaly mathematical model is grounded on simple mathematical concepts :
• Numerical variables (Boolean, integer, floating point)
• Set variables
• List (permutation) variables
• Interval variables

Classical algebraical, logical and set theory operators (sum, min, max, and, or, union, hull …)

No need to introduce aggregated constructs like global constraints (even for scheduling)

Multi-objective (lexicographical)

Support for Blackbox (external) functions

Support for initial solutions (warm start)

Hexaly Optimizer for Scheduling
Hexaly Optimizer - Modeling

20

Boolean variable

 x <- bool();

 Possible value: x=true

Integer variable

 x <- int(-10, 10);

 Possible value: x=-2

Floating point variable

PI = 3.14159265359;

x <- float(-PI, PI);

Possible value: x=1.0471975512

Hexaly Optimizer for Scheduling
Hexaly Optimizer - Modeling

21

Set variable List variable

• Uniqueness of items
• Variable size

• Uniqueness of items
• Variable size
• Ordering matters

A : a subset of {0, 1, …, n-1} S : permutation of a subset of {0, 1, …, n-1}

0 1

4

3

5

2

List = [0, 3, 4] List = [1, 2, 5]

A <- set(n); S <- list(n);

Set = {0, 3, 4}

0

4

3

Set = {1, 5}

1

5

Set = {2}

2

Hexaly Optimizer for Scheduling
Hexaly Optimizer - Modeling

22

Interval variable

x <- interval(-1000, 1000);

Possible value: x=[200,600)

x

start=200 end=600

length=400

-1000 1000

Hexaly Optimizer for Scheduling
Hexaly Optimizer - Modeling

23

BOOLEANS
Logical : and, or, not, xor, iif

INTEGERS
Arithmetical :

sum, -, prod, min, max, abs,
div, mod

Relational:
<=, <,
==, !=,
>=, >

ceil, floor, round

FLOATING POINTS
Arithmetical :

sum, -, prod, min, max, abs,
/, sqrt, pow, log,
exp, cos, sin, tan

contains

Hexaly Optimizer for Scheduling
Hexaly Optimizer - Modeling

24

BOOLEANS
Logical : and, or, not, xor, iif

INTEGERS
Arithmetical :

sum, -, prod, min, max, abs,
div, mod

Relational:
<=, <,
==, !=,
>=, >

count

ceil, floor, round

FLOATING POINTS
Arithmetical :

sum, -, prod, min, max, abs,
/, sqrt, pow, log,
exp, cos, sin, tan

partition, disjoint

indexOf, at

SETS
union, intersection,

distinct

INTERVALS
hull, intersection

LISTS

contains

Hexaly Optimizer for Scheduling
Hexaly Optimizer - Modeling

25

BOOLEANS
Logical : and, or, not, xor, iif

INTEGERS
Arithmetical :

sum, -, prod, min, max, abs,
div, mod

Relational:
<=, <,
==, !=,
>=, >

count

ceil, floor, round

FLOATING POINTS
Arithmetical :

sum, -, prod, min, max, abs,
/, sqrt, pow, log,
exp, cos, sin, tan

partition, disjoint

indexOf, at

SETS
union, intersection,

distinct

INTERVALS
hull, intersection

LISTS

ARRAYS
[x0,…,xn-1]

at

contains

Hexaly Optimizer for Scheduling
Hexaly Optimizer - Modeling

26

BOOLEANS
Logical : and, or, not, xor, iif

INTEGERS
Arithmetical :

sum, -, prod, min, max, abs,
div, mod

Relational:
<=, <,
==, !=,
>=, >

count

ceil, floor, round

FLOATING POINTS
Arithmetical :

sum, -, prod, min, max, abs,
/, sqrt, pow, log,
exp, cos, sin, tan

partition, disjoint

indexOf, at

SETS
union, intersection,

distinct

INTERVALS
hull, intersection

LISTS

ARRAYS
[x0,…,xn-1]

at

All n-ary operators (sum, min, max, and, or, distinct, …) can be
variadic meaning that their scope can be a variable collection :
 x <- set(n);
 weight <- sum(x, i => Weight[i]);
 colors <- distinct(x, i => Color[i]);

Hexaly Optimizer for Scheduling
Hexaly Optimizer - Modeling

27

Example: precedence constraint between two activities

x <- interval(0, 1000);

y <- interval(0, 1000);

constraint x < y;
x y

Hexaly Optimizer for Scheduling
Hexaly Optimizer - Modeling

28

Example: precedence constraint between two activities

x <- interval(0, 1000);

y <- interval(0, 1000);

constraint x < y;

Example: precedence constraints between activities endpoints

constraint end(x) + Delay <= start(y);

constraint start(x) + delayExpr == start(y);

x y

x

y

x y

Hexaly Optimizer for Scheduling
Hexaly Optimizer - Modeling

29

Example: activity with fixed duration

x <- interval(0, 1000);

constraint length(x) == Duration;

Hexaly Optimizer for Scheduling
Hexaly Optimizer - Modeling

30

Example: activity with fixed duration

x <- interval(0, 1000);

constraint length(x) == Duration;

Example: activity with intensity function

x <- interval(0, 1000);

constraint sum(x, t => Working[t]) == WorkDuration;

Hexaly Optimizer does not “unroll" the expression over the entire interval of x

t

Working

Hexaly Optimizer for Scheduling
Hexaly Optimizer - Modeling

31

Example: activity with fixed duration

x <- interval(0, 1000);

constraint length(x) == Duration;

Example: activity with intensity function

x <- interval(0, 1000);

constraint sum(x, t => Working[t]) == WorkDuration;

Example: activity with time-dependent price

x <- interval(0, 1000);

cost <- sum(x, t => Price[t])

Hexaly Optimizer does not “unroll" the expression over the entire interval of x

t

Price

t

Working

Hexaly Optimizer for Scheduling
Hexaly Optimizer - Modeling

32

Example: makespan

x[i in 0…N] <- interval(0, 1000);

minimize max[i in 0…N] end(x[i]);

Example: weighted sum of tardiness cost

minimize sum[i in 0…N] (Weight[i] * max(0, end(x[i])- DueDate[i]));

Example: Net Present Value

maximize sum[i in 0…N] (NetCashFlow[i] / pow(1+DiscountRate, end(x[i])));

Hexaly Optimizer for Scheduling
Hexaly Optimizer - Modeling

33

Example: disjunctive resource (machine)

seq <- list(n);

x[i in 0…n] <- interval(0, 1000);

constraint count(seq) == n;

constraint and(1…n, i => x[seq[i-1]] < x[seq[i]]);

Hexaly Optimizer does not “unroll" the expression over the entire interval of x

0
1

4

3

2

seq = [0, 3, 4, 1, 2]

x[0] x[3] x[4] x[1] x[2]

The formulation of the constraint uses a variadic “and” (equivalent to a “forall” expression): size is O(n)

Hexaly Optimizer for Scheduling
Hexaly Optimizer - Modeling

34

Example: disjunctive resource (machine) with sequence-dependent setup times

seq <- list(n);

x[i in 0…n] <- interval(0, 1000);

constraint count(seq) == n;

constraint and(1…n, i => end(x[seq[i-1]]) + SetupTime[seq[i-1]][seq[i]] <= start(x[seq[i]]));

Hexaly Optimizer does not “unroll" the expression over the entire interval of x

0
1

4

3

2

seq = [0, 3, 4, 1, 2]

x[0] x[3] x[4] x[1] x[2]

The formulation of the constraint uses a variadic “and” (equivalent to a “forall” expression): size is O(n)

Hexaly Optimizer for Scheduling
Hexaly Optimizer - Modeling

35

Example: disjunctive resource (machine) with sequence-dependent setup times

seq <- list(n);

x[i in 0…n] <- interval(0, 1000);

constraint count(seq) == n;

constraint and(1…n, i => end(x[seq[i-1]]) + SetupTime[seq[i-1]][seq[i]] <= start(x[seq[i]]));

Example: setup costs
minimize sum(1…n, i => SetupCost[seq[i-1]][seq[i]]);

Hexaly Optimizer does not “unroll" the expression over the entire interval of x

Hexaly Optimizer for Scheduling
Hexaly Optimizer - Modeling

36

Example: disjunctive resource (machine) allocation

seq[j in 0…m] <- list(n);

x[i in 0…n] <- interval(0, 1000);

constraint partition(seq);

for [j in 0…m] constraint and(1…count(seq[j]), i => x[seq[j][i-1]] < x[seq[j][i]]);

Hexaly Optimizer does not “unroll" the expression over the entire interval of x

0
1

4

3

2 seq[1] = [4, 1, 2]

x[0] x[3] x[4] x[1] x[2]

seq[0] = [0, 3]

The formulation of the constraint uses a variadic “and” (equivalent to a “forall” expression): size is O(n)

Hexaly Optimizer for Scheduling
Hexaly Optimizer - Modeling

37

Example: disjunctive resource (machine) allocation

seq[j in 0…m] <- list(n);

x[i in 0…n] <- interval(0, 1000);

constraint partition(seq);

for [j in 0…m] constraint and(1…count(seq[j]), i => x[seq[j][i-1]] < x[seq[j][i]]);

Example: resource-dependent features

constraint contains(seq[0], 3); // Compulsory machine
constraint !contains(seq[0], 2); // Incompatible machine
constraint contains(seq[0], 1) <= !contains(seq[1], 4) ; // Dependency constraints

Hexaly Optimizer for Scheduling
Hexaly Optimizer - Modeling

38

Example: disjunctive resource (machine) allocation

seq[j in 0…m] <- list(n);

x[i in 0…n] <- interval(0, 1000);

constraint partition(seq);

for [j in 0…m] constraint and(1…count(seq[j]), i => x[seq[j][i-1]] < x[seq[j][i]]);

Example: resource-dependent features
mach[i in 0…m] <- find(seq, i); // Machine of task i (element of the partition i belongs to)
for [i in 0…n] {

 constraint length(x[i]) == Duration[i][mach[i]]; // Machine-dependent duration
 constraint start(x[i]) >= AvailableTime[mach[i]]; // Machine start time
}

Hexaly Optimizer for Scheduling
Hexaly Optimizer - Modeling

39

Example: disjunctive resource (machine) allocation

seq[j in 0…m] <- list(n);

x[i in 0…n] <- interval(0, 1000);

constraint partition(seq);

for [j in 0…m] constraint and(1…count(seq[j]), i => x[seq[j][i-1]] < x[seq[j][i]]);

Example: resource-dependent features
mach[i in 0…n] <- find(seq, i); // Machine of task i (element of the partition i belongs to)
constraint end(x[i]) + TravelTime[mach[i]][mach[j]] <= start(x[j]); // Change-over time

Hexaly Optimizer for Scheduling
Hexaly Optimizer - Modeling

40

Example: cumulative resource

At any time t, the sum of the weights of the tasks running on the resource must be less than the
capacity of the resource

x[i in 0…n] <- interval(0, 1000);

Hexaly Optimizer for Scheduling
Hexaly Optimizer - Modeling

41

Example: cumulative resource

At any time t, the sum of the weights of the tasks running on the resource must be less than
the capacity of the resource

x[i in 0…n] <- interval(0, 1000);

constraint and(0...1000,

 t =>

 …);

Hexaly Optimizer for Scheduling
Hexaly Optimizer - Modeling

42

Example: cumulative resource

At any time t, the sum of the weights of the tasks running on the resource must be less than
the capacity of the resource

x[i in 0…n] <- interval(0, 1000);

constraint and(0...1000,

 t =>

 sum[i in 0...n](Weight[i] …

Hexaly Optimizer for Scheduling
Hexaly Optimizer - Modeling

43

Example: cumulative resource

At any time t, the sum of the weights of the tasks running on the resource must be less than
the capacity of the resource

x[i in 0…n] <- interval(0, 1000);

constraint and(0...1000,

 t =>

 sum[i in 0...n](Weight[i] * contains(x[i], t)) …

Hexaly Optimizer for Scheduling
Hexaly Optimizer - Modeling

44

Example: cumulative resource

At any time t, the sum of the weights of the tasks running on the resource must be less than
the capacity of the resource

x[i in 0…n] <- interval(0, 1000);

constraint and(0...1000,

 t =>

 sum[i in 0...n](Weight[i] * contains(x[i], t)) <= Capacity);

The constraint is written in intention: Hexaly Optimizer does not unroll the loop on t

Hexaly Optimizer for Scheduling
Hexaly Optimizer - Modeling

45

Example: cumulative resource

The temporal scope can be a variable range or an interval variable

x[i in 0…n] <- interval(0, 1000);

constraint and(0...makespan,

 t =>

 sum[i in 0...n](Weight[i] * contains(x[i], t)) <= Capacity);

The constraint is written in intention: Hexaly Optimizer does not unroll the loop on t

Hexaly Optimizer for Scheduling
Hexaly Optimizer - Modeling

46

Example: cumulative resource

The capacity may be time-dependent

x[i in 0…n] <- interval(0, 1000);

constraint and(0...makespan,

 t =>

 sum[i in 0...n](Weight[i] * contains(x[i], t)) <= Capacity[t]);

The constraint is written in intention: Hexaly Optimizer does not unroll the loop on t

Mathematical solvers for scheduling problems
Hexaly Optimizer - Modeling

47

Example: cumulative resource

The task scope may be a (variable) set

x[i in 0…n] <- interval(0, n);

constraint and(0...makespan,

 t =>

 sum(taskset, i => (Weight[i] * contains(x[i], t)) <= Capacity[t]);

The constraint is written in intention: Hexaly Optimizer does not unroll the loop on t

Hexaly Optimizer for Scheduling
Hexaly Optimizer - Modeling

48

Wrap-up: Complete HXM model for the Resource Constrained Project Scheduling Problem (RCPSP)

function model() {

 task[i in 0...n] <- interval(0, H);
 for [i in 0...n] constraint length(task[i]) == DUR[i];
 for [i in 0...n][j in 0...NSUCC[i]] constraint task[i] < task[SUCC[i][j]];
 makespan <- max[i in 0...n](end(task[i]));
 for [r in 0...m]
 constraint and(0...makespan, t => sum[i in 0...n](USE[i][r] * contains(task[i],t)) <= CAP[r]);
 minimize makespan;
}

H: Schedule horizon
DUR[i]: Duration of task i
NSUCC[i]: Number of successors of task i
SUCC[i][j]: jth successor of task i
CAP[r]: Capacity of resource r
USE[i][r]: Quantity of resource r used by task i

task[i]: Interval representing task i

49

Python Java C++C#

Hexaly Mathematical Model

API

Solver

BoundsSolutions

Hexaly Optimizer for Scheduling
Hexaly Optimizer

Cooperation of different exact and heuristic algorithms

Hexaly
Modeler

Hexaly Optimizer

Hybridizes a myriad of exact and heuristic methods under the hood

50

Simplex Augmented LagrangianInterior-Point

Black-box Surrogate modelingDerivative-free methods

Spatial Branch-and-Bound Interval methodsCutting planes

Primal heuristics Large neighborhood search Branch-Cut-Price

Clause learningConstraint propagation Dantzig-Wolfe reformulations

Local search Exact scheduling algorithms on relaxations

Multi-objective optimization Statistical learning techniques for autotuning

51

Performance

Flexible Job Shop (330 classical
instances)

Hexaly 13.0 v.s. Gurobi 11.0 on the
Flexible Job Shop Scheduling
Problem (FJSP)

52

Performance

RCPSP – RG300

Hexaly 13.0 v.s OR-Tools 9.10
(CPSAT) v.s. Gurobi 11.0 on the
Resource Constrained Scheduling
Problem (RCPSP) with 300 tasks
(RG300)

53

Performance (Primal solutions)

Job Shop
 1.7% deviation,
 133 instances, up to 2000 operations

Flexible Job Shop (FJSP)
 0.5% deviation,
 330 instances, up to 500 operations

FJSP with transition time
 0.96% deviation,
 instances up to 500 tasks

FJSP with calendars
 2.25% deviation,
 instances up to 500 jobs

Open Shop
 0.00% deviation,
 60 instances, up to 400 tasks

RCPSP (cumulative)
 1.42% deviation,
 instances up to 300 tasks

Deviation to the best-known
solutions in 60s with Hexaly 13.0

54

Performance (Scaling on large problems)

Large instances of job-shop
problem (Da Col and Teppan 2022)
1,000 jobs and 1,000 machines
(1,000,000 operations).

Job-shop 1000x1000

55

Performance (Lower bounds)

Gap between Hexaly lower bound
and the best-known solution in 60s

RCPSP
 Hexaly improves the best known
 lower bounds on 34% of the
 instances from the RG300 benchmark
 (165 instances over 480)

Check our benchmarks: hexaly.com/benchmarks

56

https://www.hexaly.com/benchmarks

Check our examples: www.hexaly.com/docs/last/exampletour

57

Time-Dependent Vehicle
Routing with Time Windows

Location Routing Prize-Collecting
Vehicle Routing

Pickup and Delivery
with Time Windows

Clustered
Vehicle Routing

Inventory Routing Split Delivery
Vehicle Routing

Traveling Salesman Capacitated
Vehicle Routing

Capacitated
Arc Routing

Vehicle Routing
with Time Windows

Check our examples: www.hexaly.com/docs/last/exampletour

58

Aircraft Landing Assembly Line
Balancing

Car Sequencing Movie Shoot
Scheduling

FJSP Setup Times

Open Shop

RCPSP

Stochastic scheduling

Flow Shop

Job Shop

Job Shop Intensity Flexible Job Shop

	Slide 1
	Slide 2
	Slide 3
	Slide 4: A complete platform for building and deploying mathematical optimization applications
	Slide 5: Hexaly Optimizer
	Slide 6: Hexaly Optimizer for Scheduling
	Slide 7: Hexaly Optimizer for Scheduling
	Slide 8: Hexaly Optimizer for Scheduling
	Slide 9: Hexaly Optimizer for Scheduling
	Slide 10: Hexaly Optimizer for Scheduling
	Slide 11: Hexaly Optimizer for Scheduling
	Slide 12: Hexaly Optimizer for Scheduling
	Slide 13: Hexaly Optimizer for Scheduling
	Slide 14: Hexaly Optimizer for Scheduling
	Slide 15: Hexaly Optimizer for Scheduling
	Slide 16: Hexaly Optimizer for Scheduling
	Slide 17: Hexaly Optimizer for Scheduling
	Slide 18: Hexaly Optimizer for Scheduling
	Slide 19: Hexaly Optimizer for Scheduling
	Slide 20: Hexaly Optimizer for Scheduling
	Slide 21: Hexaly Optimizer for Scheduling
	Slide 22: Hexaly Optimizer for Scheduling
	Slide 23: Hexaly Optimizer for Scheduling
	Slide 24: Hexaly Optimizer for Scheduling
	Slide 25: Hexaly Optimizer for Scheduling
	Slide 26: Hexaly Optimizer for Scheduling
	Slide 27: Hexaly Optimizer for Scheduling
	Slide 28: Hexaly Optimizer for Scheduling
	Slide 29: Hexaly Optimizer for Scheduling
	Slide 30: Hexaly Optimizer for Scheduling
	Slide 31: Hexaly Optimizer for Scheduling
	Slide 32: Hexaly Optimizer for Scheduling
	Slide 33: Hexaly Optimizer for Scheduling
	Slide 34: Hexaly Optimizer for Scheduling
	Slide 35: Hexaly Optimizer for Scheduling
	Slide 36: Hexaly Optimizer for Scheduling
	Slide 37: Hexaly Optimizer for Scheduling
	Slide 38: Hexaly Optimizer for Scheduling
	Slide 39: Hexaly Optimizer for Scheduling
	Slide 40: Hexaly Optimizer for Scheduling
	Slide 41: Hexaly Optimizer for Scheduling
	Slide 42: Hexaly Optimizer for Scheduling
	Slide 43: Hexaly Optimizer for Scheduling
	Slide 44: Hexaly Optimizer for Scheduling
	Slide 45: Hexaly Optimizer for Scheduling
	Slide 46: Hexaly Optimizer for Scheduling
	Slide 47: Mathematical solvers for scheduling problems
	Slide 48: Hexaly Optimizer for Scheduling
	Slide 49: Hexaly Optimizer for Scheduling
	Slide 50: Hexaly Optimizer
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56: Check our benchmarks: hexaly.com/benchmarks
	Slide 57: Check our examples: www.hexaly.com/docs/last/exampletour
	Slide 58: Check our examples: www.hexaly.com/docs/last/exampletour

