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1 Historical links between data science and optimization

www.fourthparadigm.com

Copyright 2009 Microsoft Corporation
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1 Historical links between data science and optimization

I Susie Sheehy (Oxford and Melbourne), The Matter of Everything
(How physics shaped the world)

I Subier Sarkar (Oxford), Cosmology should be led by observations
rather than dogma.
’All the great discoveries have been made by simply building an
instrument pointing it at the sky and looking, astronomy is all
about serendipity’

I Jean Francois Puget:
The role of data science is to enable data based decision making.
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1 Historical links between data science and optimization
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1 Heuristics

I ”1960’s heuristics”
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1 Automated Algorithm Construction

I Cfr: John F. Rice, TheAlgorithm Selection Problem, Advances in
Computers, 1976

I Cfr: application of irace for Algorithm Construction
I GA’s were suggested by Alan Turing 1950 and first implemented by Baricelli in 1954 . . .
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1 Design of Experiments

I Peirce (19th century), Fisher (20th century)

I Predict the outcome based on preconditions
• Independent variables (input, predictor)
• Dependent variables (output, response)
• Control variables

I Fisher’s principles
• Comparison, Randomization, Statistical Replication, Blocking,

Orthogonality, Factorial, Combinatorial designs

I Latest possible finding at CERN and FermiLab on the W-boson
mass
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1 (Beginning) 21st century

I F-Race (Birattari et al. 2002)
• Racing algorithm for configuration of metaheuristics

I CALIBRA (Diaz & Laguna 2006)
• Taguchi fractional design + local search
• Up to 5 parameters, no interaction

I SPO+ (Hutter et al. 2010)
• Select promising regions of the design space
• One instance at the time

I Eiben
• Eiben, A. & Smit, S.K. (review, 2011). Parameter tuning for

configuring and analyzing evolutionary algorithms.
doi:10.1016/j.swevo.2011.02.001.
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1 (Further Beginning) 21st century

I ParamILS (Hutter et al. 2009)
• Discrete parameters
• Local search

I Combination of DOE with other methods
• (e.g. Gunawan & Lau 2011)
• Select most promising parameters
• Reject unimportant parameters

I iRace (Lopez-Ibanez et al.)
• Iterated racing
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1 We are in an optimization world
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1 We are in an optimization world
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Model

I Understand the problem
• Interviews
• Reading
• Plant visit

I Design a model
I Write down

• Mathematical Pr.
• Constraint Pr.
• Logic Pr.
• Prob. Pr. . . .

I Compact Model
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Model

I Understand the problem
• Interviews
• Reading
• Plant visit

I Design a model
I Write down

• Mathematical Pr.
• Constraint Pr.
• Logic Pr.
• Prob. Pr. . . .

I Compact Model

Data Science

I Discover / analyse
• Implicit rules
• Implicit constraints
• Historical data

I Improved goals
• Correct costs
• What is important?

I Improved parameters
• Sound estimates

I Massive Data
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Algorithm

I Analyse the problem
• Literature
• Requirements
• Experience

I Design/Select Algorithm
• MILP
• (Meta)Heuristic

I Experiment
• Instances
• Compare

I Efficient Algorithm
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Algorithm

I Analyse the problem
• Literature
• Requirements
• Experience

I Design/Select Algorithm
• MILP
• (Meta)Heuristic

I Experiment
• Instances
• Compare

I Efficient Algorithm

Data Science

I Offline algorithm
and historical data:
• Training
• Tuning
• Selection
• Construction

I Online algorithm
• Active learning/MAB
• Reinforcement Learning
• Features/Characteristics

I Dynamic Algorithm
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2 Outline

1 Historical links between data science and optimization

2 Data Science for Optimization
Optimizing the Optimizer
Inside the Algorithm
Learning the Model
On-Line Learning

3 Instance Space

4 Q&A

5 References
18 https://schedulingseminar.com 11 May 2022

https://schedulingseminar.com


2 Data Science for Optimization

I Algorithm-Problem
Tuning, Selection, Construction

I Algorithm
Embedding Machine Learning Components

I Problem-Algorithm
Instance Space

note Vilas Boas, M.G., Santos, H.G., de Campos Merschmann, L.H.,
Vanden Berghe, G. Optimal decision trees for the algorithm
selection problem: integer programming based approaches. ITOR
2019
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2 Algorithm-Problem

From Pascal Van Hentenrijck, Constraint Programming for
Scheduling, schedulingseminar 13/4/2022:

I On-line learning in constraint programming
A. Schutt, T. Feydy, P.J. Stuckey, M. G. Wallace, Explaining the
cumulative propagator, Constraints, 2011

I Off-line learning from exact solvers
J. Kotary, F. Fioretto, P. Van Hentenryck, Fast Approximations
for Job Shop Scheduling: A Lagrangian Dual Deep Learning
Method, AAAI 2022
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2 Algorithm-Problem example

I Automated design of algorithms, T. Stuetzle, M. Lopez-Ibanez,
cec2017, http://www.cec2017.org/iles/tutorials/ADA.pdf
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2 Opimizing the Optimizer: off-line learning example

I Configuring irace using surrogate configuration benchmarks
(GECCO 2017, ECOM track)

Tuning, Selection, Construction
I Nguyen Dang, Leslie Pérez Cáceres, Thomas Stützle, Patrick De

Causmaecker
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Instances

Algorithm

Configurator
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What about the tuning engine?

Instances

Algorithm

Configurator

Meta-tuning
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2 Meta-tuning

I Real benchmarks: extremely expensive
• An irace run on SPEAR-IBM (budget: 5000 runs) → 2 CPU days
• A meta-tuning on SPEAR-IBM (budget: 5000 irace runs) → 27.5

CPU years

I Artificial benchmark set
• Unclear how to generate
• Unclear how to match characteristics of real configuration tasks

I Surrogate benchmarks
• A prediction model: configuration x instance → performance value
• Build on real benchmark data
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2 Surrogate configuration benchmarks

I Meta-tuning becomes computationally feasible
• An irace run on SPEAR-IBM (budget: 5000 runs)
→ 2 CPU days 5 CPU minutes

• A meta-tuning on SPEAR-IBM (budget: 5000 irace runs)
→ 27.5 CPU years 7.5 CPU days

I Useful for the development of configurators
• Study configurator’s parameters
• Gain insights into configurator’s behaviours
• Better performing configurators
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2 Surrogate configuration benchmarks

I Meta-tuning on the surrogate benchmarks indicates that there is
room for improvement on irace’s performance over its current
default configuration.

I Future work

• Improve the surrogate modelling
• Build a representative library of surrogate benchmarks
• Study other state-of-the-art configurators
• Provide more guidelines for algorithm configurators
• Algorithm selection for algorithm configurators
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2 Data Science for Optimization
Off-line learning inside the algorithm (Data Science for
Algorithm Engineering)

I Characterization of neighborhood behaviors in a
multi-neighborhood local search algorithm,
Dang et al., LION 2016

I Based upon
• Christiaens et al.: A heuristic approach to the Swap-Body Vehicle

Routing Problem. VeRoLog 2014. Oslo, Norway, 22-25 June 2014
• (See also:

Jan Christiaens, Greet Vanden Berghe (2020) Slack Induction by
String Removals for Vehicle Routing Problems. Transportation
Science 54(2):417-433.)
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2 Support for algorithm design

Example: The swap-body vehicle routing problem

30 https://schedulingseminar.com 11 May 2022

https://schedulingseminar.com


2 A multi-neighborhood local search for the Swap-body
Vehicle Routing problem

Neighborhoods(42)

Cheapest insertion (11) Ruin recreate (2) Convert to route (1)
Swap (1) Remove route (1) Convert to sub-route (1))
Intra-route 2-opt (1) Remove sub-route (1) Add sub-route (1))
Inter-route 2-opt (1) Remove sub-route with cheap-

est insertion (1)
Ejection chain (6)

Change swap location (1) Remove chains (8)
Merge routes (1) EachSequenceCheapestInsert

(3)
Split to sub-routes (1)
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2 Research Question

Find groups of similar neighborhoods by
1. Characterizing each neighborhood behaviour as a feature vector

(based on information collected from different algorithm runs)
2. Clustering neighborhoods
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2 Algorithm Design

I Characterizing Neighborhoods Behaviours
I Observables

Try to reflect the changes of neighborhood behaviours according
to the hardness of different solution quality regions

I Probability of nothing, worsening improving (sum 1)

Cheapest 
insertion 25Remove routeMerge route
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2 Algorithm Design

I Identify solution quality regions based on the total number of
times all neighborhoods are applied on each interval

Easy to reach, easy to escape

Hard to reach, 
hard to escape

Easy to reach, 
hard to escape
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2 Algorithm Design

I Cluster the neighborhoods
Each neighborhood is represented as a vector of
#instancesx#regionsx#observables

I The clustering problem is of
high-dimension, low-sample size
(42 individuals, 150 dimensions)
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2 Algorithm Design

I Clustering result: 9 clusters
1 Ejection-chain 3, 4, 5; Remove-chain 1, 2, 3, 6, 7, 8;

Remove-sub-route-with-cheapest-insertion;
2 Swap; Inter-route-two-opt
3 Cheapest-insertion 10, 15, 20, 25, 35, 50;

Each-sequence-cheapest-insertion (2,5), (4,4), (5,2);
Remove-chain 4

4 Cheapest-insertion 1, 2, 3, 4, 5
5 Change-swap-location; Merge-route
6 Add-sub-route; Convert-to-sub-route
7 Ejection-chain 10, 15, 35; Remove-chain 5; Intra-route-two-opt
8 Ruin-recreate 2, 3
9 Convert-to-route; Remove-sub-route; Remove-route;

Split-to-sub-route
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2 Algorithm Design

Applied to algorithm tuning

original vs clustered : p = 0.00216206
basic vs clustered : p =  0.009258918
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2 Learning the Model

Can we learn the constraints ?

Luc De Raedt, Synth Project, Synthesising Inductive Data Models
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2 Some References

I Leonardo C.T. Bezerra, Manuel López-Ibáñez, and Thomas
Stützle. Automatically Designing State-of-the-Art Multi- and
Many-Objective Evolutionary Algorithms. Evolutionary
Computation, 28(2):195-226, 2020.

I Ansótegui, C., Sellmann, M., Shah, T., Tierney, K. (2021).
Learning to Optimize Black-Box Functions with Extreme Limits
on the Number of Function Evaluations. In: Simos, D.E.,
Pardalos, P.M., Kotsireas, I.S. (eds) Learning and Intelligent
Optimization. LION 2021. LNCS, vol 12931. Springer, Cham.
https://doi.org/10.1007/978-3-030-92121-7 2
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2 On-Line Learning:
Monte Carlo tree search for combinatorial optimization

I Other example
A. Hottung, S. Tanaka, K. Tierney, Deep Learning Assisted
Heuristic Tree Search for the Container Pre-marshalling Problem,
COR 2020

I Current Motivation
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2 Monte Carlo tree search

I Learning algorithm for game-playing
• Estimate move quality by Monte Carlo simulations
• Better estimates over time: learning

I Operates on game tree:
• Node = game state
• Edge = move
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2 One Iteration

42 https://schedulingseminar.com 11 May 2022

https://schedulingseminar.com


2 Similarities combinatorial optimization

Model search space as a tree:
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2 Important differences

Game playing
I One game tree = one game

(one tree for Chess, one tree
for Go, . . .

I Consequence: learne once
(lots of time avaliable)

I #statesGo < 10171

#statesChess < 1046

I Pruning a game tree is usually
difficult

Combinatorial optimization
I One search space tree = one

problem instance
I Consequence: many instances

= limited time
I # solutions for 1000 binary

variables > 10300

I Combinatorial structure can
be exploited
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2 Adaptations in context of combinatorial optimization

I Adapt Monte Carlo tree search to better suit new context.
Several components need to be customized:
• Eliminate dominated nodes
• Several mathematical changes in core of Monte Carlo tree search:

- ”value” of game = win, tie or loss
↔ value of solution = real number

• Monte Carlo simulation can be done by optimization heuristic
• Subtree pruning by calculating bounds
• Limiting search space by beam width
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2 Case Study A

Thanos, E., Toffolo, T., Santos, H.G., Vancroonenburg, W., Vanden Berghe, G. (2021). The tactical berth allocation
problem with time-variant specific quay crane assignments. COMPUTERS & INDUSTRIAL ENGINEERING, (2021)
Vilas Boas, M.G., Santos, H.G., de Campos Merschmann, L.H., Vanden Berghe, G. Optimal decision trees for the
algorithm selection problem: integer programming based approaches. ITOR 2019
Jooken J, Leyman P, De Causmaecker P, Wauters T. Exploring search space trees using an adapted version of Monte
Carlo tree search for a combinatorial optimization problem. (2020)
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2 Results Case study A

I Comparison with three algorithms from literature on two datasets

I Dataset 1: 24 instances of realistic size (16-100 containers)
• Own algorithm best at 23 out of 24 instances (including ties)
• 16 proven optimal solutions

I Dataset 2: 24 instances of large size (200-300 containers)
• Own algorithm best at 24 out 24 instances (including ties)
• 13 proven optimal solutions
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2 Conclusions

I Adaptation of Monte Carlo tree search in combinatorial
optimization context
• All modifications rely on combinatorial structure

I Competitive with state-of-the-art methods on two case studies:
• Several new best results + proven optimal solutions
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3 Outline

1 Historical links between data science and optimization

2 Data Science for Optimization

3 Instance Space
Problem Instance space Analysis
The 0-1 Knapsack Problem

4 Q&A

5 References
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3 Problem Instance space Analysis

Questions:
I Which features of problem instances affect problem instance

difficulty (per algorithm)?

I Do phase transitions occur for problem P and where are they
situated?

I Which part of the problem instance space is filled by the problem
instances of class C for problem P?

(Smith-Miles K, Baatar D, Wreford B, Lewis R. COR, 2014)
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3 Graph colouring problem: problem instance space
visualization

(figure from Smith-Miles K, Baatar D, Wreford B, Lewis R. COR, 2014)
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3 Application : Algorithm selection

I Four components in algorithm selection problem
• Algorithm space A: set of algorithms to solve a problem
• Performance space: B: metrics to quantify performance quality
• Problem instance space P: set of problem instances
• Feature space F: set of features that characterize the

problems in P

Find a mapping g from features to algorithms, such that given a
problem instance p ∈ P with features f(p) ∈ F the algorithm
g(f(p)) ∈ A is as good as possible according to Y .

I Optimization, machine learning
I Theoretical, Emprical
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3 Hardness and Algorithm selection

I Where are the hard instances?
• Pisinger
• Smith-Miles
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3 The 0-1 Knapsack Problem

I Classical problem, studied intensively
I Several other optimization problems are variation or more general

(e.g. travelling thief problem, multidimensional knapsack
problems and knapsack problem with conflict graphs)

I Any binary integer programming problem can be reduced to the
0-1 knapsack problem!

Bonyadi MR, Michalewicz Z, Barone L. CEC 2013
Kellerer H, Pferschy U, Pisinger D. Knapsack problems 2004
Pferschy U, Schauer J. J. Graph Algorithms Appl.. 2009
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3 Algorithms for The 0-1 Knapsack Problem

I NP-hard, but solvable in pseudopolynomial time: O(nc)
I Many practical algorithms based on branch-and-bound, dynamic

programming or hybrid forms, e.g.:

Algorithm Authors Publication
MT1 Martello and Toth EJOR: 1977
MT2 Martello and Toth Management Science: 1988

Expknap Pisinger EJOR: 1995
Minknap Pisinger Operations Research: 1997
Combo Martello, Pisinger and Toth Management Science: 1999

Bellman R. Dynamic programming. Science. 1966
Martello, S., & Toth, P. An upper bound for the zero-one knapsack problem and a branch and bound algorithm.
European Journal of Operational Research. 1977;1(3), 169-175
Martello S, Toth P. A new algorithm for the 0-1 knapsack problem. Management Science. 1988 May;34(5):633-44.
Pisinger D. An expanding-core algorithm for the exact 0-1 knapsack problem. European Journal of Operational Research.
1995 Nov 16;87(1):175-87.
Pisinger D. A minimal algorithm for the 0-1 knapsack problem. Operations Research. 1997 Oct;45(5):758-67.
Martello S, Pisinger D, Toth P. Dynamic programming and strong bounds for the 0-1 knapsack problem. Management
science. 1999 Mar;45(3):414-24.
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3 Crucial concept: cores

I Most successful algorithms rely on cores:
• core ∼ (small) subset of items hard to decide to include
• Empirically: go for greedy for all items not in the core

I Greedy: based on exact optimum for relaxed problem

Martello S, Toth P. Management Science. 1988
Pisinger D. EJOR 1995European Journal of Operational Research. 1995
Pisinger D. Operations Research. 1997
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3 Example greedy algorithm for relaxed problem
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3 Core illustration
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3 Powerful state-of-the-art algorithms

I Exact optima (for the original problem) can be computed for
classes of large problems (> 10000 its) in (milli)seconds

I frequently the O(nlog(n)) sorting time is the dominant term

I 0-1 knapsack problem is considered an easy NP-hard problem
• do not forget decades of research on now state-of-the-art

algorithms

I Current problem instances are no longer a challenge
• despite best algorithm (Combo) being published already in 1999

Kellerer H, Pferschy U, Pisinger D. Knapsack problems 2004
Pisinger D. Operations Research. 1997
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3 Important differences

Several papers in literature devoted specifically to hard problem
instances for the 0-1 knapsack problem

Theoretical
• Chvátal, 1980
• Gu, Nemhauser and

Savelsbergh, 1999
• Jukna and Schnitger, 2011

I Advance our understanding
I Coefficients extremely large

while algorithms are limited to
32 or 64 bits

Practical
• Pisinger, 2005
• Smith-Miles, Christiansen

and Muñoz, 2021
I 13 different problem instance

classes for which hardness is
empirically shown

I Theoretical motivation more
difficult to obtain
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3 Hard problem instances: why and how?

I Weaknesses and strengths of algorithms → better algorithms

I 0-1 knapsack problem: how to generate very hard problem
instances of modest size?

I → noisy multi-group exponential (NMGE) problem instances

I Theoretical and empirical support to indicate hardness
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3 Noisy multi-group exponential problem instances

I Problem instance generator: stochastic
• Input: 7 parameters n, c, g, f, ε, s, b
• Output: problem instance for 0-1 knapsack problem

I n, c, g, s, b are positive integers

I f, ε are positive real numbers

I In principle, any valid combination of these parameters will yield
valid problem instances, but careful choice yields hard problem
instances
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3 Important differences

I n items and knapsack with capacity c
I ”multi-group”: every item belongs to

precisely one of g different groups of
items
• First g − 1 groups: large, exponentially

decreasing profits and weights (base of
exponent = b)

• Last group (group g: very small profits
and weights (between 1 and s)

I Parameter f influences size of last group
I ”Noisy”: parameter ε introduces noise

Parameter Description
𝑛 Number of items
𝑐 Knapsack capacity
𝑔 Number of groups
𝑓 (Approximate) 

fraction in last group
𝜖 Noise parameter
𝑠 Small integer
𝑏 Base of exponent
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3 Noisy multi-group exponential problem instances

I First g − 1 groups
• group
i(1 ≤ i ≤ g−1) : #items = bn−bn∗fc

g−1 c
I Last group

• group g: # items =
n− (g − 1) ∗ b bn∗fcg−1 c(∼ n ∗ f)

Parameter Description
𝑛 Number of items
𝑐 Knapsack capacity
𝑔 Number of groups
𝑓 (Approximate) 

fraction in last group
𝜖 Noise parameter
𝑠 Small integer
𝑏 Base of exponent
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3 Noisy multi-group exponential problem instances

Generate two small random integers r1,j , r2,j between 1 and s for
every item j, 1 ≤ j ≤ n

I If item j belongs to group
i(1 ≤ i ≤ g − 1)
• pj = b( 1

bi + ε)cc+ r1,j

• wj = b( 1
bi + ε)cc+ r2,j

I If item j belongs to group g
• pj = r1,j

• wj = r2,j

Parameter Description
𝑛 Number of items
𝑐 Knapsack capacity
𝑔 Number of groups
𝑓 (Approximate) 

fraction in last group
𝜖 Noise parameter
𝑠 Small integer
𝑏 Base of exponent
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3 Noisy multi-group exponential problem instances
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3 Near-optimal solutions

I Two theorems explain why the proposed NMGE problem
instances are hard
• Main power: the theorems are statements about problem

instances; they are valid for all possible algorithms!
I If there are many near-optimal solutions, branch-and-bound

inspired algorithms may become slow, because such solutions are
hard to prune from the search space
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3 Inclusionwise maximal solutions

Solution xω,1, xω,2, . . . , xω,n is inclusionwise maximal relative to
problem instance ω

⇔
the solution is feasible and no item can be added without violating the
capacity constraint (6 ∃j : xω,j = 0 ∧ wω,j +

∑n
i=1 xω,jwω,j ≤ c)
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3 Inclusionwise maximal solutions are near-optimal

I (Imprecise version of) Theorem 1: if ω is an NMGE problem
instance, then any inclusionwise maximal solution
xω,1, xω,2, . . . , xω,n relative to ω is near-optimal (under certain
conditions)

I Intuition
• All items have a profit-weight ratio close to 1, except for very

small items in the last group
• Hence, optimal objective function value must be close to knapsack

capacity c
• Objective function value of inclusionwise maximal solution is also

close to c
I Proof, detail: see paper
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3 Impact of cores

I Recall from before: state-of-the-art algorithms for 0-1 knapsack
problem critically depend on idea of ”cores”
• Loosely speaking, if an optimal solution contains items with a

large variety of profit-weight ratios, cores tend to be big and
algorithms tend to be slow

I (Imprecise version of) Theorem 2: if ω is an NMGE problem
instance, then any inclusionwise maximal solution
xω,1, xω,2, . . . , xω,n relative to ω contains at least z items from
the last group (under certain conditions; the parameters of the
problem instance generator influence z)

I Last group has a wide variety of profit-weight ratios
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3 Experimental setup

I We generated a large dataset of problem instances using:
n ∈ {400, 600, 800, 1000, 1200}
c ∈ {106, 108, 1010}
g ∈ {2, 6, 10, 14}
f ∈ {0.1, 0.2, 0.3}
ε ∈ {0, 1, 10−5, 10−4, 10−3, 10−2, 10−1}
s ∈ {100, 200, 300}
b ∈ {2}

I Total number of instances 5× 3× 4× 3× 6× 3 = 3240

I Total runtime: 810 CPU hours

I Parameters s.t. most combinations meet the necessary conditions
for the theorems
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3 Preliminary experiment: which algorithm to use?

I Preliminary control experiment: compare runtime of Combo with
Expknap and Minknap on 100 randomly chosen NMGE problem
instances from our dataset

I Time limit of 2 hours per problem instance per algorithm, using
HPC

Algorithm # timeouts
Combo 6
Expknap 79
Minknap 34

» In the remaining experiments, runtime of Combo will be used to
empirically measure the hardness of the problem instances
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3 Comparison with other problem instances

I Our instances were compared with the 3000 hardest problem
instances from ”Where are the hard knapsack problems?”
(Pisinger) using Combo on cluster (total experiment time around
850 hours)

I PAR2 score = runtime, but penalized timeout by assigning score
of 2× 7200
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3 Comparison with other problem instances

I On average more than 1000 times more time needed for NMGE
problem instances

I Hardest NMGE problem instances require 60 times more time
than hardest instances from Chvátal 1980

I Even more remarkable, considering that our instances were a lot
smaller:

Problem instances Average 𝒏 Average 𝒄 Average PAR2
Our instances 800.0 3.37 ∗ 10! 1.24 ∗ 10"

Pisinger [13] 4022.0 1.52 ∗ 10#$ 1.15 ∗ 10$

Chvátal V. Hard knapsack problems. Operations Research. 1980 Dec;28(6):1402-11
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3 Problem instance space analysis

I We used MATILDA to
represent our problem
instances in a 2D-space and
compare with Smith-Miles et
al. 2021

I Our problem instances are
located near 2 previously
unfilled gaps
• (Z1, Z2) = (2.5, 2)
• (Z1, Z2) = (2.5, 0)

Smith-Miles, K., Christiansen, J., & Muñoz, M. A. (2021). Revisiting ”where are the hard knapsack problems?” via
instance space analysis.
Smith-Miles, K. (2019). MATILDA, https://matilda.unimelb.edu.au
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3 Problem instance hardness projection

Our problem instances near the second gap are hard:
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3 Projection of two features
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3 Impact problem instance generator parameters
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3 Impact problem instance generator parameters
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3 Impact problem instance generator parameters
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3 Impact problem instance generator parameters

83 https://schedulingseminar.com 11 May 2022

https://schedulingseminar.com


3 Conclusions

I In this work, we proposed a new class of hard problem instances
for the 0-1 knapsack problem

I We provided both theoretical and empirical support that these
problem instances are hard

I The analysis of the experiments revealed that our problem
instances were much harder than the previous hardest problem
instances, despite being smaller
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3 Several opportunities for further work

I Knapsack problem is closely connected to several other
optimization problems. Can our problem instances lead to a
series of hard problem instances for several other optimization
problems?

I The new problem instances pose a new challenge for algorithm
designers. Can the structure of our problem instances be
exploited and will this lead to better performing algorithms in
general?

I Are existing knapsack features sufficient to characterize the
proposed problem instances?
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