
Mixed-integer linear programming
for project scheduling
with resource-unit related constraints
Norbert Trautmann
University of Bern, Switzerland

Scheduling Seminar, www.schedulingseminar.com
December 4, 2024

www.schedulingseminar.com


2 Project scheduling with resource-unit related constraints Norbert Trautmann (University of Bern)

Thanks to all contributors

N. Ackermann
T. Bigler
M. Gnägi
N. Klein
T. Rihm
N. Saner
J. Stadler
L. Trotter
A. Zimmermann



3 Project scheduling with resource-unit related constraints Norbert Trautmann (University of Bern)

Overview: RCPSP

Resource-Constrained Project Scheduling Problem (RCPSP): devise
a schedule for execution of project activities such that

project duration (i.e., time-to-market) is minimized,
completion-start precedence between given pairs of activities is
respected, and
at no time total demand of the in-progress activities exceeds the
available capacity of the various resource types required for the
execution of the activities

In many applications: resource types represent pools of teams of
people with specific skills or equipment units

Well-known MILP formulations of the RCPSP
Discrete-time and continuous-time models
In general, consideration of resource-unit related constraints

All images: Flaticon.com
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Overview: RCPSP variants considered here

Novel RCPSP variants: additional resource-unit related constraints
1. Multi-site resource-constrained project scheduling

Particular site must be selected for execution of each activity
Some resource units available only at a particular site
Other resource units can be moved between sites, requiring
some transportation time

2. Workload balancing in resource-constrained project scheduling
Foster team productivity and cohesion by balancing workload
across team

For both variants: continuous-time assignment-based MILP
formulation

All images: Flaticon.com
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Outline

Part I: MILP formulations of the RCPSP

Part II: Multi-site resource-constrained project scheduling

Part III: Workload balancing in resource-constrained project scheduling

Part IV: Conclusions
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Outline I: MILP Formulations

Modeling approaches

Continuous-time assignment-based MILP formulation

Computational results
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MILP models from the literature

Illustrative example
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Outline I: MILP formulations

Modeling approaches

Continuous-time assignment-based MILP formulation

Computational results
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Planning situation: RCPSP

Given:
Set of activities V = {0, 1, . . . , n, n+ 1}
Activity i ∈ V : duration pi ≥ 0

Set of precedence relations E ⊂ V × V
among activities
Set of resource types R; for each
resource type k ∈ R

Resource capacity Rk

Required number of units rik for
executing activity i ∈ V

Illustrative Example
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Planning situation: RCPSP

Sought: activity start times so that
project duration minimized
all precedence relations considered
resource capacity never exceeded

Illustrative Example
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CTAB formulation: notation

Si Start time of activity i

ruik


= 1, if activity i is assigned to unit u
of resource k
= 0, otherwise

yij


= 1, if activity i must be completed
before the start of j
= 0, otherwise

TE Transitive closure of E
T Planning horizon
ESi Earliest possible start time of activity i ∈ V
LSi Latest possible start time of activity i ∈ V

Illustrative example

0 2 4 6 8 10 12 14 16 18

3 2

2 4

5 2 4

3 6 4

t
8

k = 1
u = 1

k = 1
u = 2

k = 1
u = 3

k = 1
u = 4



12 Part I: MILP formulations Norbert Trautmann (University of Bern)

CTAB formulation: notation

Si Start time of activity i

ruik


= 1, if activity i is assigned to unit u
of resource k
= 0, otherwise

yij


= 1, if activity i must be completed
before the start of j
= 0, otherwise

TE Transitive closure of E
T Planning horizon
ESi Earliest possible start time of activity i ∈ V
LSi Latest possible start time of activity i ∈ V

Illustrative example

0 2 4 6 8 10 12 14 16 18

3 2

2 4

5 2 4

3 6 4

t

k = 1
u = 1

k = 1
u = 2

k = 1
u = 3

k = 1
u = 4



12 Part I: MILP formulations Norbert Trautmann (University of Bern)

CTAB formulation: notation

Si Start time of activity i

ruik


= 1, if activity i is assigned to unit u
of resource k
= 0, otherwise

yij


= 1, if activity i must be completed
before the start of j
= 0, otherwise

TE Transitive closure of E
T Planning horizon
ESi Earliest possible start time of activity i ∈ V
LSi Latest possible start time of activity i ∈ V

Illustrative example

0 2 4 6 8 10 12 14 16 18

3 2

2 4

5 2 4

3 6 4

t

k = 1
u = 1

k = 1
u = 2

k = 1
u = 3

k = 1
u = 4



12 Part I: MILP formulations Norbert Trautmann (University of Bern)

CTAB formulation: notation

Si Start time of activity i

ruik


= 1, if activity i is assigned to unit u
of resource k
= 0, otherwise

yij


= 1, if activity i must be completed
before the start of j
= 0, otherwise

TE Transitive closure of E
T Planning horizon
ESi Earliest possible start time of activity i ∈ V
LSi Latest possible start time of activity i ∈ V

Illustrative example

0 2 4 6 8 10 12 14 16 18

3 2

2 4

5 2 4

3 6 4

t

k = 1
u = 1

k = 1
u = 2

k = 1
u = 3

k = 1
u = 4

0

1

2

3

4

5 6

7



13 Part I: MILP formulations Norbert Trautmann (University of Bern)

CTAB model formulation

Min. Sn+1

Rk∑
u=1

r
u
ik = rik (i ∈ V ; k ∈ R) (1)

r
u
ik + r

u
jk ≤ 1 + yij + yji (i, j ∈ V ; k ∈ R;

u = 1, . . . , Rk : i < j, (i, j) ̸∈ TE) (2)

Si + pi ≤ Sj ((i, j) ∈ E) (3)

Si + pi ≤ Sj + T (1 − yij)

(i, j ∈ V : i ̸= j, (i, j) ̸∈ TE) (4)

yij + yji ≤ 1 (i, j ∈ V : i ̸= j, (i, j) ̸∈ TE) (5)

ESi ≤ Si ≤ LSi (i ∈ V ) (6)
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(OF) objective is to minimize the project
makespan
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(1) number of units of resource type k assigned
to activity i must match the required number
of units
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(2) if the same resource unit is assigned to two
activities i and j, then a sequencing is
enforced between these two activities
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(3) precedence relations
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(4) link of the the start time variables to the
sequencing variables
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(5) either activity i precedes j, j precedes i, or i
and j are processed in parallel
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(6) each activity start between its earliest and
latest start times
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Outline I: MILP Formulations

Modeling approaches

Continuous-time assignment-based MILP formulation

Computational results
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Experimental design

Models compared:

Abbrev. DT/CT Source

DT DT Pritsker et al. (1969)
DDT DT Christofides et al. (1987)
FCT CT Artigues et al. (2003)
OOE CT Kone et al. (2011)
SEQ CT Klein et al. (2024)
CTAB CT Gnägi et al. (2018)
CTAB_EXT CT Gnägi et al. (2018)

Models implemented in
Python 3.8

Gurobi 9.1.2, limited to
2 threads

Intel(R) CPU 3.10GHz,
128 GB RAM

Time limit per instance:
500 sec.

Test set J30 (PSPLIB;
Kolisch & Sprecher, 1996)

30 activities
4 renewable resources
480 instances
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Computational results

Model # Feas # Opt # Best GapUB∗−CPM Time

DT 480 443 462 13.59% 54.16
DDT 479 437 451 13.66% 67.89
FCT 480 458 473 13.45% 40.21
OOE 480 0 302 15.50% 501.08
SEQ 480 471 478 13.43% 15.28
CTAB 480 376 426 14.06% 120.77
CTAB_EXT 480 422 454 13.60% 71.45
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Outline

Part I: MILP formulations of the RCPSP

Part II: Multi-site resource-constrained project scheduling

Part III: Workload balancing in resource-constrained project
scheduling

Part IV: Conclusions
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Multi-site resource-constrained project
scheduling
Subject

Project distributed among multiple sites
Alternative sites for the execution of the activities
Some resource units mobile, others non-mobile
Transportation times between sites

Objective: minimize project duration (NP-hard problem)

Sample applications
Pooling of personnel in health care or R&D (cf. Laurent et al. 2017)
Distributed make-to-order production in supply chains

Contribution
CT MILP formulation

Matheuristic based on continuous-time MILP formulation

All images: Flaticon.com
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Outline II: Multi-site project scheduling

Planning situation

CTAB-based MILP formulation

Relax-optimize-and-fix matheuristic

Computational results
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Planning problem

Given:
Set of activities V = {0, 1, . . . , n, n+ 1} with
duration pi (i ∈ V )

Set of precedence relations E ⊆ V × V among
activities

Set of sites L; transportation time δll′
between sites l, l′ ∈ L× L

Set of resource types R; for each resource
type k ∈ R

Available number of units Rk

Required number of units rik for executing
activity i ∈ V
Indicator Mku for unit u ∈ {1, . . . , Rk}: = 1
mobile; = 0 else
Site locku of non-mobile unit u ∈ {1, . . . , Rk}

Sought: start time and site for each activity s.t.
project duration is minimal,

all precedence relationships are taken into account,

resource usage never exceeds the prescribed
resource availabilities, and

transportation times between sites are taken into
account
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Planning problem: illustrative example
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Outline II: Multi-site project scheduling
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MILP model: decision variables

Si Start time of activity i

sil
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= 1, if activity i is executed at site l
= 0, otherwise
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= 1, if activity i is assigned to unit u
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= 1, if activity i must be completed

before the start of activity j
= 0, otherwise
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of resource type k
= 0, otherwise

yij


= 1, if activity i must be completed

before the start of activity j
= 0, otherwise
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MILP model: notation

V Set of activities
(V = {0, 1, . . . , n+ 1})

V̇ Set of real activities
(V̇ = {1, 2, . . . , n})

E Set of precedence relations
TE Transitive closure of E
R Set of resource types
pi Duration of activity i ∈ V

Rk Available number of units of
resource type k ∈ R

rik Required number of units of
resource type k ∈ R for
executing activity i ∈ V

L Set of sites
δll′ Transportation time between

sites l, l′ ∈ L× L

locku Site for non-mobile unit u ∈ {1, . . . , Rk}
of resource type k ∈ R

Mku


= 1, if unit u ∈ {1, . . . , Rk}

of resource type k ∈ R is mobile
= 0, otherwise

δmax Longest transportation time between
all pairs of sites
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MILP model

Minimize project duration:

Min. Sn+1

Each real activity is executed at exactly one site:∑
l∈L

sil = 1 (i ∈ V̇ ) (7)

For each resource type, required number of units are assigned:
Rk∑
u=1

ruik = rik (i ∈ V̇ ; k ∈ R : rik > 0) (8)

Precedence relations among real activities:

Si + pi + (sil + sjl′ − 1)δll′ ≤ Sj (i, j ∈ V̇ × V̇ : (i, j) ∈ E; l, l′ ∈ L× L) (9)
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MILP model

Real activities must be processed sequentially if assigned to at least one common resource unit:

ruik + rujk ≤ yij + yji + 1

(i, j ∈ V̇ × V̇ ; k ∈ R; u ∈ {1, . . . , Rk} : i < j, (i, j) /∈ TE, rik > 0, rjk > 0) (10)

Si + pi + (sil + sjl′ − 1)δll′ ≤ Sj + (
∑
i∈V

pi + nδmax)(1− yij)

(i, j ∈ V̇ × V̇ : i ̸= j, (i, j) /∈ TE; l, l′ ∈ L × L) (11)

No real activity completed after project completion:

Si + pi ≤ Sn+1 (i ∈ V̇ ∪ {0}) (12)

Fixed site-assignments of non-mobile resource units:

ruik ≤ si,locku (i ∈ V̇ ; k ∈ R; u = 1, . . . , Rk : Mku = 0, rik > 0) (13)
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Outline II: Multi-site project scheduling

Planning situation

CTAB-based MILP formulation

Relax-optimize-and-fix matheuristic

Computational results
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Relax-optimize-and-fix matheuristic

Main idea: iteratively schedule a subset of
activities by solving a relaxation of MILP model

Overview

1) Apply priority rule and select subset of c
activities with highest priorities

2) Relax binary sequencing variables for
non-selected activities

3) Optimize resulting relaxation of MILP

4) Fix values of sequencing variables for s ≤ c
activities with highest priorities

5) Select s activities not scheduled yet, impose
binary sequencing variables for them and go
to 3); if all activities scheduled, stop
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Outline II: Multi-site project scheduling

Planning situation

CTAB-based MILP formulation

Relax-optimize-and-fix matheuristic

Computational results
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Computational results: experimental design

Analyzed exact approaches

CT: novel continuous-time model
DT: discrete-time model of Laurent et
al. (2017)

Analyzed heuristic approaches:

MH: novel matheuristic
LS, SA, ILS LS and ILS SA: four
metaheuristics of Laurent et al. (2017)

Test sets MSj30 and MSj60

Generated by Laurent et al. (2017)
Adapting well-known single-site RCPSP
instances j30 and j60 (Kolisch &
Sprecher 1996)
1,920 instances: n = {30, 60} activities
and |L| = {2, 3} sites

HP workstation: Intel Xeon CPU with
2.20GHz, 128 GB RAM

Implementation in Python 3.7

Gurobi 9.1 as solver; default settings
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Computational results: exact approaches

All MSj30 instances

#Act #Sites Model #Feas #Opt GapCP (%) CPU (s)

30 2 CT 480 327 25.86 112.00
DT 455 272 34.93 159.44

30 3 CT 480 284 33.92 138.40
DT 444 224 51.80 190.93

MSj30 instances with
feasible solution for both
models

#Act #Sites Model #Feas #Opt GapCP (%) CPU (s)

30 2 CT 455 323 22.04 102.92
DT 455 272 34.93 151.71

30 3 CT 444 279 28.51 127.50
DT 444 224 51.80 182.08
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Computational results: heuristic approaches

All MSj30 instances

#Act #Sites Approach GapCP (%) #MH+ #MH− CPU (s)

30 2

MH 25.02 0 0 61.86
LS 29.72 258 61 55.50
SA 26.50 178 93 55.51
ILS LS 25.86 153 103 70.35
ILS SA 26.04 152 110 70.80

30 3

MH 32.35 0 0 61.32
LS 37.65 276 89 60.17
SA 34.11 219 119 60.44
ILS LS 33.42 180 142 76.53
ILS SA 33.37 192 152 76.42
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Computational results: heuristic approaches

All MSj60 instances

#Act #Sites Approach GapCP (%) #MH+ #MH− CPU (s)

60 2

MH 24.99 0 0 123.18
LS 27.95 231 133 128.97
SA 26.19 211 168 130.26
ILS LS 26.41 198 163 168.71
ILS SA 26.57 197 161 168.68

60 3

MH 35.42 0 0 137.08
LS 38.29 289 123 142.76
SA 35.51 235 172 143.66
ILS LS 36.03 242 172 185.79
ILS SA 36.43 249 149 185.98
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Outline

Part I: MILP formulations of the RCPSP

Part II: Multi-site resource-constrained project scheduling

Part III: Workload balancing in resource-constrained project
scheduling

Part IV: Conclusions
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Workload-Balancing Constraints in a Continuous-Time Integer Programming
Formulation for the Resource-Constrained Project Scheduling Problem

N. Ackermann, T. Bigler, N. Trautmann
Department of Business Administration, University of Bern, 3012 Bern, Switzerland

email: nina.ackermann@unibe.ch, tamara.bigler@unibe.ch, norbert.trautmann@unibe.ch

Abstract—In project management, the resource allocation
problem consists of determining a schedule for the set of
project activities that are related to each other by prescribed
precedence relations and that require some time and some
scarce resources to complete. In general, the goal is to mini-
mize the project duration or time-to-market. In many cases,
each resource represents a team of people with specific skills,
such as engineering or marketing specialists. To promote team
productivity and cohesion, it is often desirable to balance the
workload within the team, i.e. among the resource units. We
analyze two alternative approaches to formulate appropri-
ate workload-balancing constraints in a mixed-binary linear
optimization problem. In the first approach, the maximum
deviation of each unit’s workload from the average workload
is bounded, and in the second approach, the maximum
workload difference between any pair of units is bounded.
Our computational results for a standard test set from the
literature show that balanced workloads can generally be
achieved without increasing project duration; moreover, the
second approach provides more flexibility, resulting in fewer
instances for which no feasible solution exists.

Keywords—Project Management, Workload Balancing, Op-
erations Research, Mathematical Programming

I. INTRODUCTION

Scheduling refers to the allocation of available resources,
i.e. machines or people, over time to perform a given set of
activities or tasks. In applications such as staff scheduling
or parallel machine scheduling, the workload should often
be distributed as evenly as possible among the resources
(see, for example, [1]). Depending on the application,
workload balancing may be the objective criterion to be
optimized or, more often, an additional constraint to be
considered.

We address the problem of workload balancing in the
context of project scheduling (cf. [2]). We consider a single
project consisting of a set of activities. Given pairs of these
activities are related by a completion-start precedence.
Each activity takes some time to perform; during this time,
given amounts of different resource types are required. A
given number of units of each resource type is available
for the execution of the project. What is sought is a
project schedule, i.e. a start time for each activity, such that
the project duration (or the time-to-market) is minimized,
the sequence of the activities is in accordance with the
prescribed precedence relations, at no time more units of
any resource type are required than are available, and the
workload imbalance among the individual units of each
resource type does not exceed a prescribed value.

To the best of our knowledge, workload balancing has
not been discussed in the extensive literature on project

scheduling (see [3]). For an overview of the state of the
art in workload balancing in parallel machine scheduling
and workforce scheduling, see [1] and [4]. [5] show that
in a parallel machine environment, a makespan-minimal
schedule does not necessarily have a balanced workload,
and vice versa.

In this paper, we analyze two alternative approaches to
considering workload balancing as an additional constraint
in the planning situation described above. The first ap-
proach is to bound, for each resource type, the maximum
deviation of a unit’s workload from the average workload
of all units of that resource type. In contrast, the second
approach is to bound, for each resource type, the maximum
difference in unit workload among all pairs of units. To
compare these two approaches, we present how to extend
the formulation of the described planning situation without
workload balancing as a mixed binary linear optimiza-
tion problem presented in [6] by respective additional
constraints. In an experimental performance analysis, we
applied the resulting formulations to the standard test-
set J30 (cf. [7]) widely used in the project scheduling
literature. The results of our analysis show that, in general,
balanced workloads can be achieved without increasing
project duration; moreover, under the second approach,
which provides more flexibility, a feasible solution exists
for more problem instances of the test set.

This paper is organized as follows. In Section II, we
provide an example to illustrate the planning situation
and the two alternative workload balancing approaches
considered in the following. In Section III, we present
the basic MIP formulation and its alternative extensions
by workload balancing constraints. In Section IV, we
summarize the results of our experimental performance
analysis. In Section V, we draw some conclusions and
provide some possible future research directions.

II. ILLUSTRATIVE EXAMPLE

In this section, we illustrate, by means of an example
project, the two alternative workload-balancing approaches
outlined in Section I.

The project consists of n = 6 activities i = 1, . . . , 6, and
two resource types k = 1 and k = 2 are available to execute
them, where resource k = 1 consists of R1 = 4 units and
resource k = 2 consists of R2 = 2 units. As usual, we
represent the start and completion of the project by two
fictitious activities i = 0 and i = 7, both of which have a
duration of 0 and require no resources. Set V := {0, . . . , 7}
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Subject and Contribution

Subject

Single-site RCPSP

Frequently, resource types represent teams of people with specific skills

Workload of a unit: total duration of assigned activities

Foster team productivity and cohesion (cf., e.g., Hoegl & Gmuenden 2001) by
balancing workload across team

Contribution

Analysis of two alternative approaches to considering workload balancing

Formulation of additional constraints in CTAB

Computational results: balanced workloads can generally be achieved without
significantly increasing project duration

All images: Flaticon.com
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Outline III: Workload balancing in project
scheduling

Planning situation

CTAB-based MILP formulation

Computational results
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Planning situation: project information

Given:

Set of activities V = {0, 1, . . . , n, n+ 1}
Activity i ∈ V : duration pi ≥ 0

Set of precedence relations E ⊂ V × V
among activities

Set of resource types R; for each resource
type k ∈ R

Resource capacity Rk

Required number of units rik for
executing activity i ∈ V

Illustrative Example
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Resource capacities: R1 = 4, R2 = 2
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Planning situation: RCPSP

Sought: activity start times so that

project duration minimized

all precedence relations considered

resource capacity never exceeded

Consideration of workload balancing

Illustrative Example
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Planning situation: RCPSP

Sought: activity start times so that

project duration minimized

all precedence relations considered

resource capacity never exceeded

Consideration of workload balancing
Without additional constraints

Minimum workload 5 + 3 = 8

Maximum workload 4 + 3 + 8 = 15

Illustrative Example
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Planning situation: MaxDev approach

Sought: activity start times so that

project duration minimized

all precedence relations considered

resource capacity never exceeded

Consideration of workload balancing
MaxDev approach: limit deviation of each unit’s
workload from average unit workload

Average workload 48
4

= 12

E.g., maximum deviation of 3

Minimum workload 5 + 3 + 1 = 9

Maximum workload 4 + 3 + 8 = 15

Illustrative Example
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Planning situation: MaxDiff approach

Sought: activity start times so that

project duration minimized

all precedence relations considered

resource capacity never exceeded

Consideration of workload balancing
MaxDiff approach: limit difference between
workload of any two units

E.g., maximum difference of 6

Minimum workload 5 + 4 + 1 = 10

Maximum workload 5 + 3 + 8 = 16

Illustrative Example
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Outline III: Workload balancing in project
scheduling

Planning situation

CTAB-based MILP formulation

Computational results
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Workload balancing: MaxDev approach

δ: allowed deviation from the average

Minimum/maximum unrounded workload

δk := (1− δ)
1

Rk

n∑
i=1

pirik (k ∈ R) (14)

δk := (1 + δ)
1

Rk

n∑
i=1

pirik (k ∈ R) (15)

Workload-balancing constraint

⌊δk⌋ ≤
∑
i∈V

pir
u
ik ≤ ⌈δk⌉

(k ∈ R; u = 1, . . . , Rk) (16)
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48

4
=

48

5
(6)

δ1 := (1 + 0.2)
48

4
=

72

5
(7)

9 ≤
∑
i∈V

pir
u
i1 ≤ 15 (u = 1, . . . , 4) (8)
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Workload balancing: MaxDiff approach

Auxiliary variables rk and rk

Additional constraints

rk ≤
∑
i∈V

pir
u
ik ≤ rk

(k ∈ R; u = 1, . . . , Rk) (9)

workload-balancing constraint

rk − rk ≤ ⌈δk⌉ − ⌊δk⌋ (k ∈ R) (10)
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Example for k = 1 and δ = 20%:

r1 ≤
∑
i∈V

pir
u
i1 ≤ r1 (u = 1, . . . , 4) (9)

r1 − r1 ≤ 15− 9 (10)
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Outline III: Workload balancing in project
scheduling

Planning situation

CTAB-based MILP formulation

Computational results
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Computational results: experimental design

Analyzed MILP models

CTAB model without workload-balancing
constraints

maxDev approach

maxDiff approach

Test set: J30 (Kolisch & Sprecher, 1996)

480 RCPSP instances

n = 30 activities

Test environment

Implementation in Python 3.10.6

Apple M1 Ultra 3.2 GHz CPU,
128 GB RAM

Gurobi 12.0 as solver (maximum 2 threads)

CPU time limit: 300 seconds per instance
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Computational results (preliminary)

δ = 0.1 δ = 0.15 δ = 0.2 δ = 0.25

0

100

200

300

400

500 480 480 480 480

429 429 429 429

#
fe
a
si
b
le

in
st
an

ce
s

noConstr

0

100

200

300

400

500

375
395

416
426

318

343
361

371

maxDev

0

100

200

300

400

500

380

409
429

447

320

351

377
393

maxDiff

notOpt
Opt

Feasibility

Imposing workload balancing
can lead to infeasibility

More feasible instances
under maxDiff approach

More feasible instances for
larger values of δ
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Computational results (preliminary)

δ = 0.1 δ = 0.15 δ = 0.2 δ = 0.25
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Model performance

Feasible solution to each
instance (if any)

Stable percentage of
instances solved to optimality

Impact on project duration

With workload balancing,
increase of minimal project
duration rather small and in
few instances only

Ex-post balancing often not
possible
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Outline

Part I: MILP formulations of the RCPSP

Part II: Multi-site resource-constrained project scheduling

Part III: Workload balancing in resource-constrained project
scheduling

Part IV: Conclusions
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Conclusions: multi-site project scheduling

Multi-site resource-constrained project scheduling

Alternative sites for the execution of the activities

Some resource units mobile, others non-mobile

Transportation times between sites

Continuous-time assignment-based MILP model

Iterative relax-optimize-and-fix matheuristic

Outperformance of state-of-the-art approaches

Future research

Eliminate symmetries in feasible region of MILP

Further analysis of benefits of resource pooling in project management

All images: Flaticon.com
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Conclusions: workload balancing

Consideration of workload balancing in project scheduling

maxDev approach: limit deviation from average unit workload

maxDiff approach: limit difference in workload of any two units

Continuous-time assignment-based MILP model

Workload-balanced schedules often have minimal project duration

Workload balancing often leads to infeasibility; maxDiff more flexible

Future research

Formulation of workload-balancing constraints as soft constraints

Consideration of application-specific constraints on workload-balancing
(e.g., green cloud computing)

All images: Flaticon.com
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