Learning-Augmented Online Algorithms for Scheduling and Routing

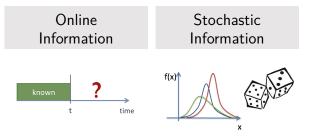
Nicole Megow

Faculty of Mathematics and Computer Science University of Bremen

June 2022

http://schedulingseminar.com

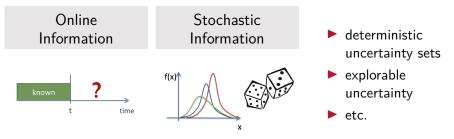
Different models for uncertain input



- deterministic uncertainty sets
- explorable uncertainty

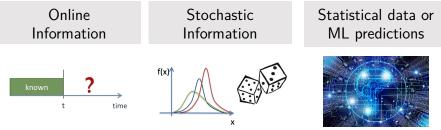
etc.

Different models for uncertain input



Different optimization frameworks: online optimization, stochastic optimization, robust optimization, explorable uncertainty, etc.

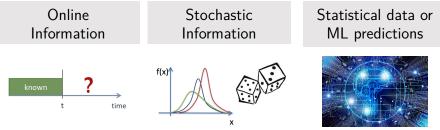
Different models for uncertain input



© pixabay

Different optimization frameworks: online optimization, stochastic optimization, robust optimization, explorable uncertainty, etc.

Different models for uncertain input



© pixabay

Different optimization frameworks: online optimization, stochastic optimization, robust optimization, explorable uncertainty, etc.

Can error-prone predictions improve upon performance guarantees?

- Algorithm with access to prediction
- No assumption on the quality of the prediction

© Adobe Stock

- Algorithm with access to prediction
- No assumption on the quality of the prediction

© Adobe Stock

Desired properties

- Consistency: better than worst case if the prediction errors are small
- Robustness: bounded worst-case for arbitrary predictions
- Error-dependency: ideally graceful degradation with the error

- Algorithm with access to prediction
- No assumption on the quality of the prediction

© Adobe Stock

Desired properties

- Consistency: better than worst case if the prediction errors are small
- Robustness: bounded worst-case for arbitrary predictions
- Error-dependency: ideally graceful degradation with the error

Line of research initiated by [Lykouris, Vassilvitskii, ICML 2018], and even earlier [Mahidan, Nazerzadeh, Saberi, EC 2007]

- Algorithm with access to prediction
- No assumption on the quality of the prediction

© Adobe Stock

Desired properties

- Consistency: better than worst case if the prediction errors are small
- Robustness: bounded worst-case for arbitrary predictions
- Error-dependency: ideally graceful degradation with the error

Line of research initiated by [Lykouris, Vassilvitskii, ICML 2018], and even earlier [Mahidan, Nazerzadeh, Saberi, EC 2007] — became an extremely vibrant area

- Algorithm with access to prediction
- No assumption on the quality of the prediction

© Adobe Stock

Desired properties

- Consistency: better than worst case if the prediction errors are small
- Robustness: bounded worst-case for arbitrary predictions
- Error-dependency: ideally graceful degradation with the error

Line of research initiated by [Lykouris, Vassilvitskii, ICML 2018], and even earlier [Mahidan, Nazerzadeh, Saberi, EC 2007] — became an extremely vibrant area

https://algorithms-with-predictions.github.io/

- Algorithm with access to prediction
- No assumption on the quality of the prediction

© Adobe Stock

Desired properties

- Consistency: better than worst case if the prediction errors are small
- Robustness: bounded worst-case for arbitrary predictions
- Error-dependency: ideally graceful degradation with the error

Line of research initiated by [Lykouris, Vassilvitskii, ICML 2018], and even earlier [Mahidan, Nazerzadeh, Saberi, EC 2007] — became an extremely vibrant area

https://algorithms-with-predictions.github.io/

Beyond worst case: competitive ratio (online alg.), running time, etc.

Roadmap

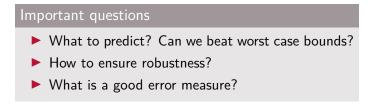
Prediction models and learning-augmented algorithms for

- 1. Online Scheduling: uncertain processing times
- 2. Online Routing: uncertain job arrival times and locations

Roadmap

Prediction models and learning-augmented algorithms for

- 1. Online Scheduling: uncertain processing times
- 2. Online Routing: uncertain job arrival times and locations



Online Scheduling

Joint work with Alexander Lindermayr, SPAA 2022.

Input: set of jobs with (unknown) processing requirements p_j

Input: set of jobs with (unknown) processing requirements *p_j*

Goal: schedule jobs (preemptively) on a single machine

Input: set of jobs with (unknown) processing requirements p_j

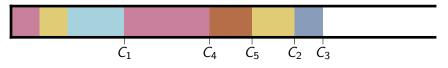
Goal: schedule jobs (preemptively) on a single machine

Input: set of jobs with (unknown) processing requirements p_j

Goal: schedule jobs (preemptively) on a single machine

Input: set of jobs with (unknown) processing requirements p_j

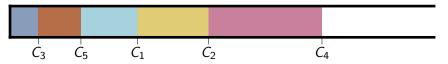
Goal: schedule jobs (preemptively) on a single machine



Objective: Minimize sum of completion times $\sum_j C_j$

Input: set of jobs with (unknown) processing requirements p_j

Goal: schedule jobs (preemptively) on a single machine



Objective: Minimize sum of completion times $\sum_i C_i$

Optimal Schedule: Shortest Processing Time first (SPT)

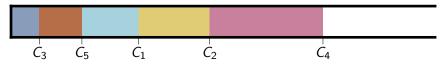
Input: set of jobs with (unknown) processing requirements p_j

Goal: schedule jobs (preemptively) on a single machine

Objective: Minimize sum of completion times $\sum_{j} C_{j}$ $\sum_{j} w_{j}C_{j}$ **Optimal Schedule:** Shortest Processing Time first (SPT) $\frac{w_{1}}{p_{1}} \ge \ldots \ge \frac{w_{n}}{p_{n}}$ (WSPT)

Input: set of jobs with (unknown) processing requirements p_j

Goal: schedule jobs (preemptively) on a single machine



Objective: Minimize sum of completion times $\sum_{j} C_{j}$ $\sum_{j} w_{j}C_{j}$ **Optimal Schedule:** Shortest Processing Time first (SPT) $\frac{w_{1}}{p_{1}} \geq \ldots \geq \frac{w_{n}}{p_{n}}$ (WSPT)

Processing times must be known (clairvoyant scheduling).

Input: set of jobs with (unknown) processing requirements p_j

Goal: schedule jobs (preemptively) on a single machine

Objective: Minimize sum of completion times $\sum_{j} C_{j}$ $\sum_{j} w_{j}C_{j}$ **Optimal Schedule:** Shortest Processing Time first (SPT) $\frac{w_{1}}{p_{1}} \geq \ldots \geq \frac{w_{n}}{p_{n}}$ (WSPT)

Processing times must be known (clairvoyant scheduling).

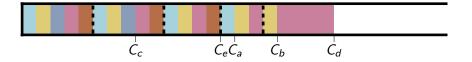
We assume unknown processing times (non-clairvoyant scheduling).

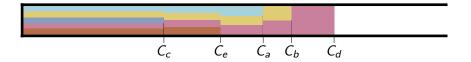
Competitive analysis (worst-case analysis)

An online algorithm is ρ -competitive if it achieves, for any input instance, a solution of cost within a factor ρ of the optimal cost:

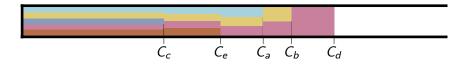
 $ALG(I) \le \rho \cdot OPT(I)$, for any input *I*.







Round-Robin (RR) is 2-competitive for minimizing $\sum C_j$ on a singlemachine, and this is best-possible.[Motwani, Phillips, Torng 1994]



Further **Time-Sharing** algorithms for more general problems:

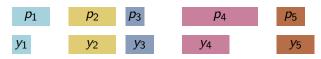
- Individual job weights: Weighted Round-Robin (2-competitive) [Kim, Chwa 2003]
- Identical machines: Weighted Dynamic Equipartition (2-comp.)

[Beaumont, Bonichon, Eyraud-Dubois, Marchal 2012]

Unrelated machines: Proportional Fairness (128-competitive) [Im, Kulkarni, Munagala 2018]

Predict job lengths y_j

[Kumar, Purohit, Svitkina 2018] [Wei, Zhang 2020], [Im, Kumar, Qaem, Purohit 2021]

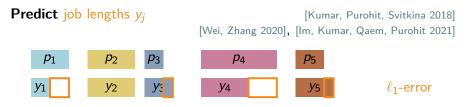


Predict job lengths yj [Kumar, Purohit, Svitkina 2018] [Wei, Zhang 2020], [Im, Kumar, Qaem, Purohit 2021] P1 P2 P3 P4 P5 Y1 Y2 Y3 Y4 Y5 ℓ₁-error

Error: $\ell_1 = \sum_{j=1}^n |p_j - y_j|$

Error: $\ell_1 = \sum_{j=1}^n |p_j - y_j|$

Natural algorithm: run shortest predicted job first (SPF). ("Follow the prediction": SPT on y_i)

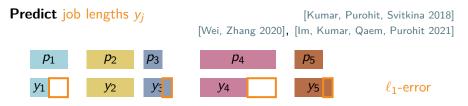


Error: $\ell_1 = \sum_{j=1}^n |p_j - y_j|$

Natural algorithm: run shortest predicted job first (SPF). ("Follow the prediction": SPT on y_i)

Lemma [Kumar, Purohit, Svitkina 2018]

SPF achieves scheduling cost $SPF(y_j, p_j) \leq OPT(p_j) + n \cdot \ell_1$.



Error: $\ell_1 = \sum_{j=1}^n |p_j - y_j|$

Natural algorithm: run shortest predicted job first (SPF). ("Follow the prediction": SPT on y_i)

Lemma [Kumar, Purohit, Svitkina 2018]

SPF achieves scheduling cost $SPF(y_j, p_j) \leq OPT(p_j) + n \cdot \ell_1$.

Consistent but not robust (against bad predictions).

[Kumar, Purohit, Svitkina 2018]

Input:

- prediction-clairvoyant alg. \mathcal{A}^{C} ("follow the prediction") with some error-dependent competitive ratio
- non-clairvoyant alg. \mathcal{A}^N with error-independent competitive ratio
- confidence parameter $\lambda \in (0,1)$

[Kumar, Purohit, Svitkina 2018]

Input:

- prediction-clairvoyant alg. \mathcal{A}^{C} ("follow the prediction") with some error-dependent competitive ratio
- non-clairvoyant alg. \mathcal{A}^N with error-independent competitive ratio
- confidence parameter $\lambda \in (0, 1)$

Preferential Time Sharing $(\lambda, \mathcal{A}^{C}, \mathcal{A}^{N})$

$$\underbrace{\begin{array}{c} \mathcal{A}^{c} \ \mathcal{A}^{N} \ \mathcal{A}^{C} \ \mathcal$$

[Kumar, Purohit, Svitkina 2018]

Input:

- prediction-clairvoyant alg. \mathcal{A}^{C} ("follow the prediction") with some error-dependent competitive ratio
- non-clairvoyant alg. \mathcal{A}^N with error-independent competitive ratio
- confidence parameter $\lambda \in (0,1)$

Preferential Time Sharing $(\lambda, \mathcal{A}^{C}, \mathcal{A}^{N})$

$$\begin{array}{c} (1-\lambda) \\ \lambda \end{array} \begin{cases} \mathcal{A}^{C} \\ \mathcal{A}^{N} \end{cases} \end{array}$$

Motivation: \mathcal{A}^{C} gives consistency, \mathcal{A}^{N} gives robustness, trade-off by λ

[Kumar, Purohit, Svitkina 2018]

Input:

- prediction-clairvoyant alg. \mathcal{A}^{C} ("follow the prediction") with some error-dependent competitive ratio
- non-clairvoyant alg. \mathcal{A}^N with error-independent competitive ratio
- confidence parameter $\lambda \in (0,1)$

Preferential Time Sharing $(\lambda, \mathcal{A}^{C}, \mathcal{A}^{N})$

$$\begin{array}{c} (1-\lambda) \\ \lambda \end{array} \begin{cases} \mathcal{A}^{C} \\ \mathcal{A}^{N} \end{cases} \end{array}$$

Motivation: \mathcal{A}^{C} gives consistency, \mathcal{A}^{N} gives robustness, trade-off by λ **Monotone algorithms**: if p_{j} 's shrink, completion times do not increase

[Kumar, Purohit, Svitkina 2018]

Theorem

$$\mathsf{PTS}(\lambda, \mathcal{A}^{\mathcal{C}}, \mathcal{A}^{\mathcal{N}})$$
 has competitive ratio min $\left\{\frac{1}{1-\lambda}\left(\alpha + \frac{\eta}{\mathsf{OPT}}\right), \frac{\beta}{\lambda}\right\}$, if

- \mathcal{A}^{C} is monotone and $\left(\alpha + \frac{\eta}{\text{OPT}}\right)$ -competitive and
- \mathcal{A}^N is monotone and β -competitive.

[Kumar, Purohit, Svitkina 2018]

Theorem

$$\mathsf{PTS}(\lambda, \mathcal{A}^{C}, \mathcal{A}^{N})$$
 has competitive ratio min $\left\{\frac{1}{1-\lambda}\left(\alpha + \frac{\eta}{\mathsf{OPT}}\right), \frac{\beta}{\lambda}\right\}$, if

- $\mathcal{A}^{\mathcal{C}}$ is monotone and $\left(\alpha + \frac{\eta}{\text{OPT}}\right)$ -competitive and
- \mathcal{A}^N is monotone and β -competitive.

Corollary. PTS(λ , SPF, RR) achieves for non-clairvoyant $1|pmtn| \sum C_j$ with length predictions, for any $\lambda \in (0, 1)$, a competitive ratio of

$$\min\left\{\frac{1}{1-\lambda}\left(1+\frac{n\cdot\ell_1}{\mathrm{OPT}}\right),\frac{2}{\lambda}\right\}.$$

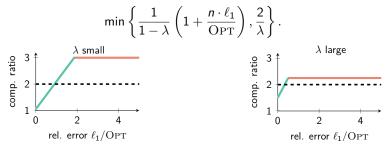
[Kumar, Purohit, Svitkina 2018]

Theorem

$$\mathsf{PTS}(\lambda, \mathcal{A}^{\mathsf{C}}, \mathcal{A}^{\mathsf{N}})$$
 has competitive ratio min $\left\{\frac{1}{1-\lambda}\left(\alpha + \frac{\eta}{\mathsf{OPT}}\right), \frac{\beta}{\lambda}\right\}$, if

- \mathcal{A}^{C} is monotone and $\left(\alpha + \frac{\eta}{\text{OPT}}\right)$ -competitive and
- \mathcal{A}^N is monotone and β -competitive.

Corollary. PTS(λ , SPF, RR) achieves for non-clairvoyant $1|pmtn| \sum C_j$ with length predictions, for any $\lambda \in (0, 1)$, a competitive ratio of



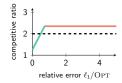
(Informal) Theorem [Lindermayr and M., 2022]

The PTS theorem can be generalized to scheduling settings with unrelated machines, release dates and weights.

(Informal) Theorem [Lindermayr and M., 2022]

The PTS theorem can be generalized to scheduling settings with unrelated machines, release dates and weights.

$$\begin{array}{c} (1-\lambda) \\ \lambda \end{array} \left\{ \begin{array}{c} \mathcal{A}^{\mathsf{C}} \\ \mathcal{A}^{\mathsf{N}} \end{array} \right.$$



(Informal) Theorem [Lindermayr and M., 2022]

The PTS theorem can be generalized to scheduling settings with unrelated machines, release dates and weights.

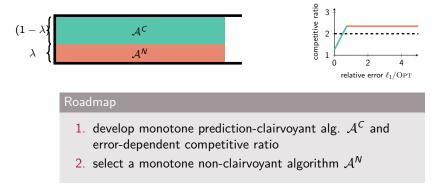
0

коаатар

- 1. develop monotone prediction-clairvoyant alg. \mathcal{A}^{C} and error-dependent competitive ratio
- 2. select a monotone non-clairvoyant algorithm \mathcal{A}^N

(Informal) Theorem [Lindermayr and M., 2022]

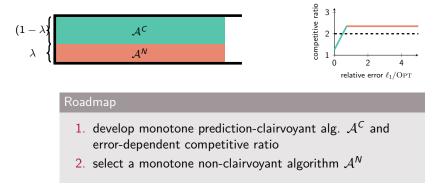
The PTS theorem can be generalized to scheduling settings with unrelated machines, release dates and weights.



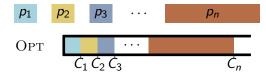
Obstacle: Proving error-dependent bounds seems difficult with ℓ_1 -error (linear error vs. quadratic objective)

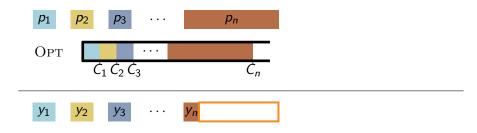
(Informal) Theorem [Lindermayr and M., 2022]

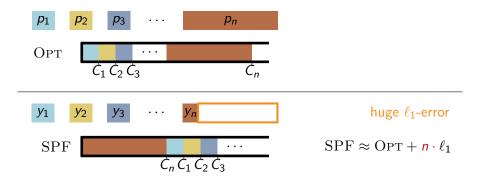
The PTS theorem can be generalized to scheduling settings with unrelated machines, release dates and weights.



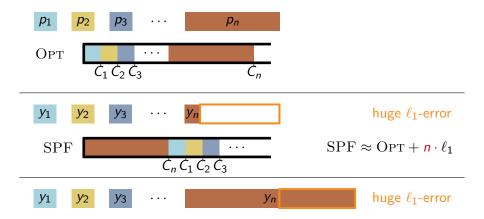
Obstacle: Proving error-dependent bounds seems difficult with ℓ_1 -error (linear error vs. quadratic objective) \longrightarrow What is a "good" error measure?

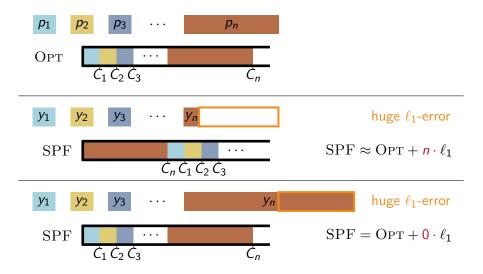






 ℓ_1 -error cannot distinguish well between "good" and "bad" predictions





Length Predictions and ν -error [Im, Kumar, Qaem, Purohit 2021]

Alternative error: $\nu = OPT(\{\max\{p_i, y_i\}\}_i) - OPT(\{\min\{p_i, y_i\}\}_i)$

Length Predictions and ν -error

Alternative error: $\nu = OPT(\{\max\{p_j, y_j\}\}_j) - OPT(\{\min\{p_j, y_j\}\}_j)$

Error-tracker algorithm: min $\left\{ (1 + \epsilon) \operatorname{OPT} + \mathcal{O}\left(\frac{1}{\epsilon^3} \log \frac{1}{\epsilon}\right) \nu, \frac{2}{\epsilon} \operatorname{OPT} \right\}$ for $1|pmtn| \sum C_j$

Length Predictions and ν -error

Alternative error: $\nu = OPT(\{\max\{p_j, y_j\}\}_j) - OPT(\{\min\{p_j, y_j\}\}_j)$

Error-tracker algorithm: min $\left\{ (1 + \epsilon) \operatorname{OPT} + \mathcal{O}\left(\frac{1}{\epsilon^3} \log \frac{1}{\epsilon}\right) \nu, \frac{2}{\epsilon} \operatorname{OPT} \right\}$ for $1|pmtn| \sum C_j$ (seems challenging to generalize)

Length Predictions and ν -error

Alternative error: $\nu = OPT(\{\max\{p_j, y_j\}\}_j) - OPT(\{\min\{p_j, y_j\}\}_j)$

Error-tracker algorithm: min $\left\{ (1 + \epsilon) \operatorname{OPT} + \mathcal{O}\left(\frac{1}{\epsilon^3} \log \frac{1}{\epsilon}\right) \nu, \frac{2}{\epsilon} \operatorname{OPT} \right\}$ for $1 | pmtn | \sum C_j$ (seems challenging to generalize)

Issue: Underestimates true difficulty of the following instance

$$p_1 = y_1 = \ldots = p_{n-1} = y_{n-1} = 1$$
, but $p_n = n^2$ and $y_n = 0$.

$$\nu = n^2 + n = \Theta(n^2)$$
 vs $\operatorname{SPF}(y_j, p_j) - \operatorname{OPT}(p_j) = \Omega(n^3)$

Permutation predictions: predict an order of jobs: $\hat{\sigma} : [n] \rightarrow [n]$

Motivation: knowing WSPT order is often sufficient for good approximations:

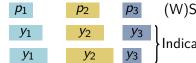
- optimal for $1|(pmtn)|\sum w_j C_j$
- 2-competitive for $P|r_j, pmtn| \sum w_j C_j$
- 5.83-competitive for $R|r_j, pmtn|\sum w_j C_j$

[Smith 1956]

[M. & Schulz 2004]

[Lindermayr & M. 2022]

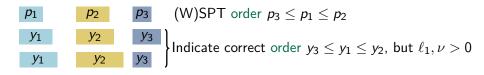
Permutation predictions: predict an order of jobs: $\hat{\sigma} : [n] \rightarrow [n]$



(W)SPT order
$$p_3 \leq p_1 \leq p_2$$

Indicate correct order $y_3 \leq y_1 \leq y_2$, but $\ell_1, \nu > 0$

Permutation predictions: predict an order of jobs: $\hat{\sigma} : [n] \rightarrow [n]$



Error measure: quantifies effect of inversions \mathcal{I} between $\hat{\sigma}$ and true WSPT order on list scheduling according to predicted order:

$$\eta^{S} = \sum_{(i,j)\in\mathcal{I}} (w_i p_j - w_j p_i)$$

Permutation predictions: predict an order of jobs: $\hat{\sigma} : [n] \rightarrow [n]$

$$\begin{array}{c|cccc} p_1 & p_2 & p_3 & (W) SPT \text{ order } p_3 \leq p_1 \leq p_2 \\ \hline y_1 & y_2 & y_3 \\ \hline y_1 & y_2 & y_3 \end{array} \right\} \text{Indicate correct order } y_3 \leq y_1 \leq y_2, \text{ but } \ell_1, \nu > 0 \\ \end{array}$$

Error measure: quantifies effect of inversions \mathcal{I} between $\hat{\sigma}$ and true WSPT order on list scheduling according to predicted order:

$$\eta^{S} = \sum_{(i,j)\in\mathcal{I}} (w_i p_j - w_j p_i)$$

• For $1|\sum w_j C_j$ this is exactly $\eta^S = OPT(\hat{\sigma}) - OPT(\sigma)$.

Permutation predictions: predict an order of jobs: $\hat{\sigma} : [n] \rightarrow [n]$

$$\begin{array}{c|cccc} p_1 & p_2 & p_3 & (W) SPT \text{ order } p_3 \leq p_1 \leq p_2 \\ \hline y_1 & y_2 & y_3 \\ \hline y_1 & y_2 & y_3 \end{array} \right\} \text{Indicate correct order } y_3 \leq y_1 \leq y_2, \text{ but } \ell_1, \nu > 0 \\ \end{array}$$

Error measure: quantifies effect of inversions \mathcal{I} between $\hat{\sigma}$ and true WSPT order on list scheduling according to predicted order:

$$\eta^{S} = \sum_{(i,j)\in\mathcal{I}} (w_i p_j - w_j p_i)$$

For 1||∑ w_jC_j this is exactly η^S = OPT(σ̂) - OPT(σ).
 η^S captures structure instead of irrelevant numerical values.

Permutation predictions: predict an order of jobs: $\hat{\sigma} : [n] \rightarrow [n]$

$$\begin{array}{c|cccc} p_1 & p_2 & p_3 & (W) SPT \text{ order } p_3 \leq p_1 \leq p_2 \\ \hline y_1 & y_2 & y_3 \\ \hline y_1 & y_2 & y_3 \end{array} \right\} \text{Indicate correct order } y_3 \leq y_1 \leq y_2, \text{ but } \ell_1, \nu > 0 \\ \end{array}$$

Error measure: quantifies effect of inversions \mathcal{I} between $\hat{\sigma}$ and true WSPT order on list scheduling according to predicted order:

$$\eta^{S} = \sum_{(i,j)\in\mathcal{I}} (w_i p_j - w_j p_i)$$

- For $1|\sum w_j C_j$ this is exactly $\eta^S = OPT(\hat{\sigma}) OPT(\sigma)$.
- \blacktriangleright $\eta^{\rm S}$ captures structure instead of irrelevant numerical values.
- Permutation predictions are efficiently PAC-learnable w.r.t. η^{S} .

PTS for weighted jobs on a single machine $1|pmtn| \sum w_j C_j$

▶ prediction-clairvoyant \mathcal{A}^{C} : WSPT (monotone optimal) [Smith 1956]

Schedule jobs in WSPT order

3 4 2 1 1

$$\min\left\{\frac{1}{1-\lambda}\cdot\left(\begin{array}{cc} & \\ \end{array}\right),\frac{1}{\lambda}\cdot\end{array}\right\}$$

PTS for weighted jobs on a single machine $1|pmtn| \sum w_j C_j$

▶ prediction-clairvoyant \mathcal{A}^{C} : WSPT (monotone optimal) [Smith 1956]

Schedule jobs in **predicted** order $\hat{\sigma}$

3 4 2 1 1

$$\min\left\{\frac{1}{1-\lambda}\cdot\left(1+\frac{\eta^{5}}{\text{Opt}}\right),\frac{1}{\lambda}\cdot\right\}$$

PTS for weighted jobs on a single machine $1|pmtn| \sum w_j C_j$

▶ prediction-clairvoyant \mathcal{A}^{C} : WSPT (monotone optimal) [Smith 1956]

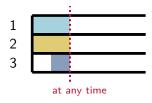
Schedule jobs in **predicted** order $\hat{\sigma}$

▶ non-clairvoyant \mathcal{A}^N : WRR (monotone 2-competitive) [Kim, Chwa 2003]

$$\min\left\{\frac{1}{1-\lambda}\cdot\left(1+\frac{\eta^{\mathsf{S}}}{\mathrm{OPT}}\right),\frac{1}{\lambda}\cdot 2\right\}$$

PTS for *m* identical machines and release dates $P|r_j, pmtn| \sum w_j C_j$

prediction-clairvoyant A^C: P-WSPT (monotone 2-competitive) [M. and Schulz 2004]



$$\min\left\{\frac{1}{1-\lambda}\cdot \begin{pmatrix} & & \\ & & \end{pmatrix}, \frac{1}{\lambda}\cdot \\ & & \end{pmatrix}\right\}$$

PTS for *m* identical machines and release dates $P|r_j, pmtn| \sum w_j C_j$

▶ prediction-clairvoyant \mathcal{A}^{C} : P-WSPT (monotone 2-competitive)

[M. and Schulz 2004]

unfinished released jobs in WSPT order

$$\min\left\{\frac{1}{1-\lambda}\cdot\left(\begin{array}{cc} & \\ \end{array}\right),\frac{1}{\lambda}\cdot\end{array}\right\}$$

PTS for *m* identical machines and release dates $P|r_j, pmtn| \sum w_j C_j$

▶ prediction-clairvoyant \mathcal{A}^{C} : P-WSPT (monotone 2-competitive)

1 2 3 4 any time

$$\min\left\{\frac{1}{1-\lambda}\cdot\left(\begin{array}{cc} & \\ \end{array}\right),\frac{1}{\lambda}\cdot\end{array}\right\}$$

[M. and Schulz 2004]

PTS for *m* identical machines and release dates $P|r_j, pmtn| \sum w_j C_j$

▶ prediction-clairvoyant \mathcal{A}^{C} : P-WSPT (monotone 2-competitive)

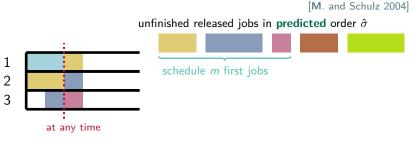
[M. and Schulz 2004]

unfinished released jobs in predicted order $\hat{\sigma}$

$$\min\left\{\frac{1}{1-\lambda}\cdot\left(2+\frac{\eta^{S}}{m\cdot\operatorname{OPT}}\right),\frac{1}{\lambda}\cdot\right\}$$

PTS for *m* identical machines and release dates $P|r_j, pmtn| \sum w_j C_j$

▶ prediction-clairvoyant \mathcal{A}^{C} : P-WSPT (monotone 2-competitive)



▶ non-clairvoyant \mathcal{A}^N : WDEQ (monotone 3-competitive)

[Beaumont, Bonichon, Eyraud-Dubois and Marchal 2012]

$$\min\left\{\frac{1}{1-\lambda}\cdot\left(2+\frac{\eta^{S}}{m\cdot\operatorname{OPT}}\right),\frac{1}{\lambda}\cdot\mathbf{3}\right\}$$

PTS on *m* unrelated machines $R|r_j, pmtn| \sum w_j C_j$:

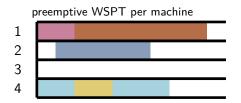
Predict machine allocation and permutation for each machine $\hat{\sigma}_1, \ldots, \hat{\sigma}_m$

PTS on *m* unrelated machines $R|r_j, pmtn| \sum w_j C_j$:

Predict machine allocation and permutation for each machine $\hat{\sigma}_1, \ldots, \hat{\sigma}_m$

▶ prediction-clairvoyant \mathcal{A}^{C} : MinIncrease+WSPT (mon. 5.83-comp.)

[Lindermayr and M. 2022]



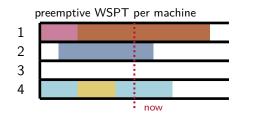
$$\min\left\{\frac{1}{1-\lambda}\cdot\left(\begin{array}{cc} \\ \end{array}\right),\frac{1}{\lambda}\cdot \\ \end{array}\right\}$$

PTS on *m* unrelated machines $R|r_j, pmtn| \sum w_j C_j$:

Predict machine allocation and permutation for each machine $\hat{\sigma}_1, \ldots, \hat{\sigma}_m$

▶ prediction-clairvoyant \mathcal{A}^{C} : MinIncrease+WSPT (mon. 5.83-comp.)

[Lindermayr and M. 2022]



$$\min\left\{\frac{1}{1-\lambda}\cdot\left(\begin{array}{cc} \\ \end{array}\right),\frac{1}{\lambda}\cdot \\ \end{array}\right\}$$

PTS on *m* unrelated machines $R|r_j, pmtn| \sum w_j C_j$:

Predict machine allocation and permutation for each machine $\hat{\sigma}_1, \ldots, \hat{\sigma}_m$

▶ prediction-clairvoyant \mathcal{A}^{C} : MinIncrease+WSPT (mon. 5.83-comp.)

[Lindermayr and M. 2022]

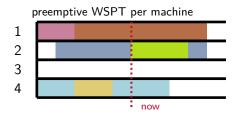
$$\min\left\{\frac{1}{1-\lambda}\cdot\left(\begin{array}{cc} \\ \end{array}\right),\frac{1}{\lambda}\cdot \\ \end{array}\right\}$$

PTS on *m* unrelated machines $R|r_j, pmtn| \sum w_j C_j$:

Predict machine allocation and permutation for each machine $\hat{\sigma}_1, \ldots, \hat{\sigma}_m$

▶ prediction-clairvoyant \mathcal{A}^{C} : MinIncrease+WSPT (mon. 5.83-comp.)

[Lindermayr and M. 2022]



$$\min\left\{\frac{1}{1-\lambda}\cdot\left(5.8284+\frac{\eta^R}{\text{OPT}}\right),\frac{1}{\lambda}\cdot\right.$$

Nicole Megow

PTS on *m* unrelated machines $R|r_j, pmtn| \sum w_j C_j$:

Predict machine allocation and permutation for each machine $\hat{\sigma}_1, \ldots, \hat{\sigma}_m$

▶ prediction-clairvoyant \mathcal{A}^{C} : MinIncrease+WSPT (mon. 5.83-comp.)

[Lindermayr and M. 2022]



assign job j to predicted machine ii.e. $i \in [m]$ s.t. $j \in \hat{\sigma}_i$

$$\min\left\{\frac{1}{1-\lambda}\cdot\left(5.8284+\frac{\eta^R}{\text{OPT}}\right),\frac{1}{\lambda}\cdot\right.$$

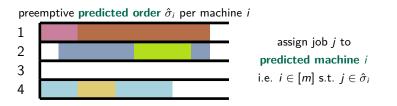
Nicole Megow

PTS on *m* unrelated machines $R|r_j, pmtn| \sum w_j C_j$:

Predict machine allocation and permutation for each machine $\hat{\sigma}_1, \ldots, \hat{\sigma}_m$

▶ prediction-clairvoyant \mathcal{A}^{C} : MinIncrease+WSPT (mon. 5.83-comp.)

[Lindermayr and M. 2022]



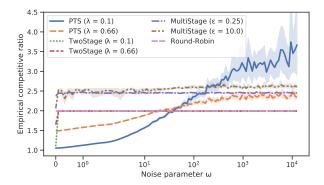
non-clairvoyant A^N: Proportional Fairness (mon. 128-competitive) [Im, Kulkarni and Munagala 2018]

$$\min\left\{\frac{1}{1-\lambda}\cdot\left(5.8284+\frac{\eta^{R}}{\text{OPT}}\right),\frac{1}{\lambda}\cdot128\right\}$$

Nicole Megow

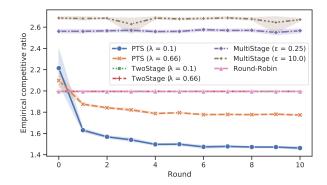
Sensitivity Experiments

 Single machine, unweighted jobs (PTS equals algorithm in [KPS18])
 Synthetic instances sampled from Pareto-distribution with shape 1.1 Many small jobs and few very large jobs!



Online Learning Experiments

- learn prediction from previous instances
- already after one round performance improves substantially
- such instances can be learned fast in practice (detect long jobs)



Non-clairvoyant scheduling with predictions

Discussion of length and permutation prediction and error measures

Non-clairvoyant scheduling with predictions

- Discussion of length and permutation prediction and error measures
- Powerful algorithmic framework that admits (blackbox) algorithms with certain properties (error-dependent comp. ratio, monotone)

Non-clairvoyant scheduling with predictions

- Discussion of length and permutation prediction and error measures
- Powerful algorithmic framework that admits (blackbox) algorithms with certain properties (error-dependent comp. ratio, monotone)
- First results for weights, release dates, multiple machine models

Non-clairvoyant scheduling with predictions

- Discussion of length and permutation prediction and error measures
- Powerful algorithmic framework that admits (blackbox) algorithms with certain properties (error-dependent comp. ratio, monotone)
- First results for weights, release dates, multiple machine models

Other scheduling results involving predictions

- ▶ load balancing [Lattanzi, Lavastida, Moseley, Vassilvitskii SODA 2020]
- flowtime minimization [Azar, Leonardi, Touitou STOC 2021, SODA 2022]
- speed scaling [Bamas, Maggiori, Rohwedder, Svensson NeurIPS 2020], [Antoniadis, Ganje, Shahkarami SWAT 2022]

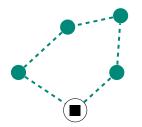
Online Routing Problems

more general online graph problems incl. network design

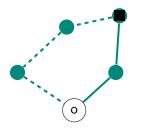
Joint work with Giulia Bernardini (Trieste), Alexander Lindermayr (Bremen), Alberto Marchetti-Spaccamela (Rome), Leen Stougie & Michelle Sweering (CWI).

- **Input:** Requests (x, r) arrive online at time r at location x
- **Task:** Determine a tour of minimum total length (makespan) visiting every request after its arrival and returning to the origin.

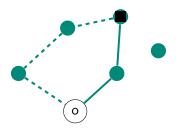
- **Input:** Requests (x, r) arrive online at time r at location x
- **Task:** Determine a tour of minimum total length (makespan) visiting every request after its arrival and returning to the origin.



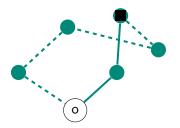
- **Input:** Requests (x, r) arrive online at time r at location x
- Task:Determine a tour of minimum total length (makespan)visiting every request after its arrival and returning to the origin.



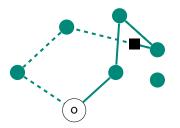
- **Input:** Requests (x, r) arrive online at time r at location x
- **Task:** Determine a tour of minimum total length (makespan) visiting every request after its arrival and returning to the origin.



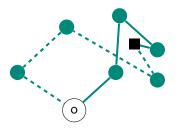
- **Input:** Requests (x, r) arrive online at time r at location x
- **Task:** Determine a tour of minimum total length (makespan) visiting every request after its arrival and returning to the origin.



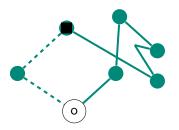
- **Input:** Requests (x, r) arrive online at time r at location x
- **Task:** Determine a tour of minimum total length (makespan) visiting every request after its arrival and returning to the origin.



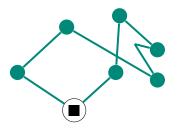
- **Input:** Requests (x, r) arrive online at time r at location x
- **Task:** Determine a tour of minimum total length (makespan) visiting every request after its arrival and returning to the origin.



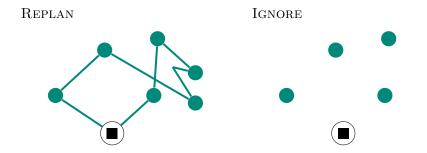
- **Input:** Requests (x, r) arrive online at time r at location x
- **Task:** Determine a tour of minimum total length (makespan) visiting every request after its arrival and returning to the origin.



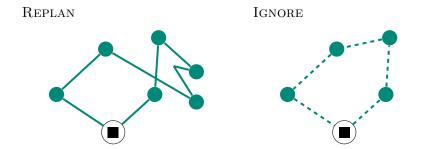
- **Input:** Requests (x, r) arrive online at time r at location x
- **Task:** Determine a tour of minimum total length (makespan) visiting every request after its arrival and returning to the origin.



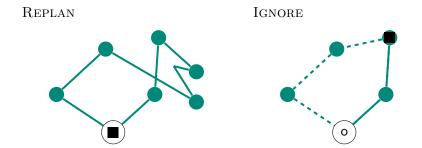
- **Input:** Requests (x, r) arrive online at time r at location x
- Task:Determine a tour of minimum total length (makespan)visiting every request after its arrival and returning to the origin.



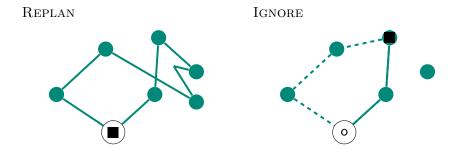
- **Input:** Requests (x, r) arrive online at time r at location x
- **Task:** Determine a tour of minimum total length (makespan) visiting every request after its arrival and returning to the origin.



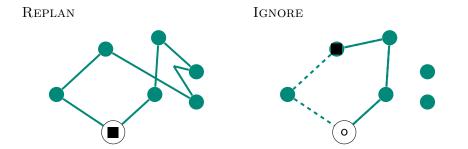
- **Input:** Requests (x, r) arrive online at time r at location x
- **Task:** Determine a tour of minimum total length (makespan) visiting every request after its arrival and returning to the origin.



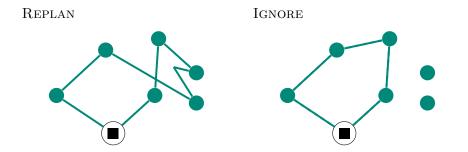
- **Input:** Requests (x, r) arrive online at time r at location x
- **Task:** Determine a tour of minimum total length (makespan) visiting every request after its arrival and returning to the origin.



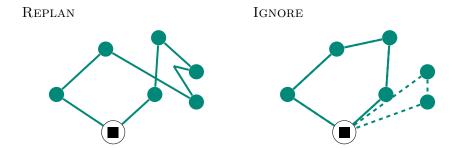
- **Input:** Requests (x, r) arrive online at time r at location x
- **Task:** Determine a tour of minimum total length (makespan) visiting every request after its arrival and returning to the origin.



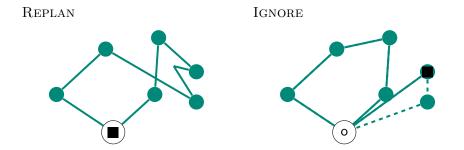
- **Input:** Requests (x, r) arrive online at time r at location x
- **Task:** Determine a tour of minimum total length (makespan) visiting every request after its arrival and returning to the origin.



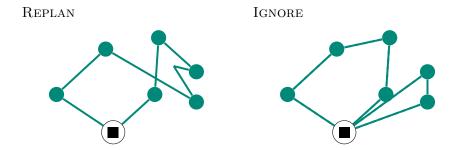
- **Input:** Requests (x, r) arrive online at time r at location x
- **Task:** Determine a tour of minimum total length (makespan) visiting every request after its arrival and returning to the origin.



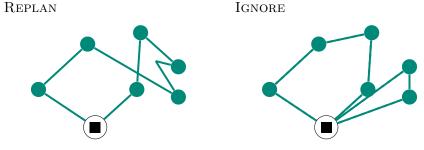
- **Input:** Requests (x, r) arrive online at time r at location x
- **Task:** Determine a tour of minimum total length (makespan) visiting every request after its arrival and returning to the origin.



- **Input:** Requests (x, r) arrive online at time r at location x
- **Task:** Determine a tour of minimum total length (makespan) visiting every request after its arrival and returning to the origin.

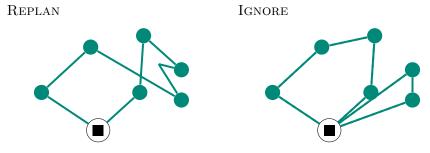


- **Input:** Requests (x, r) arrive online at time r at location x
- **Task:** Determine a tour of minimum total length (makespan) visiting every request after its arrival and returning to the origin.



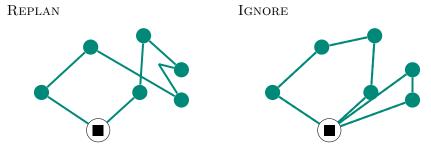
REPLAN and IGNORE: 2.5-competitive [Ausiello et al. 2001]

- **Input:** Requests (x, r) arrive online at time r at location x
- **Task:** Determine a tour of minimum total length (makespan) visiting every request after its arrival and returning to the origin.



- REPLAN and IGNORE: 2.5-competitive [Ausiello et al. 2001]
- SMARTSTART: 2-competitive, best possible [Ascheuer et al. 2000]

- **Input:** Requests (x, r) arrive online at time r at location x
- **Task:** Determine a tour of minimum total length (makespan) visiting every request after its arrival and returning to the origin.



REPLAN and IGNORE: 2.5-competitive [Ausiello et al. 2001]
 SMARTSTART: 2-competitive, best possible [Ascheuer et al. 2000]
 Generalization: Online Dial-a-Ride (tour for transportation requests)

Graph Problems with Predictions and Roadmap

Other works: graph problems with predictions

- Network design [Azar, Panigrahi, Touitou, SODA 2022], [Moseley, Xu, AAAI 2022]
- Graph exploration [Eberle, Lindermayr, Nölke, M., Schlöter, AAAI 2022]
- Minimum Spanning Tree with queries [Erlebach, de Lima, M., Schlöter, 2022]

Graph Problems with Predictions and Roadmap

Other works: graph problems with predictions

- Network design [Azar, Panigrahi, Touitou, SODA 2022], [Moseley, Xu, AAAI 2022]
- Graph exploration [Eberle, Lindermayr, Nölke, M., Schlöter, AAAI 2022]
- Minimum Spanning Tree with queries [Erlebach, de Lima, M., Schlöter, 2022]

Roadmap

- 1. Universal error measure for input predictions based on edge covers in suitably defined graphs
- 2. Algorithms with error-dependent competitive ratio
 - Online TSP (and Online Dial-a-Ride)
 - Online Steiner Tree (Online Facility Location, Steiner Forest)

Prediction: request sequence (release dates and points/nodes)

Prediction: request sequence (release dates and points/nodes)

Possible errors in:

(i) location, (ii) time, and (iii) length of sequence

Prediction: request sequence (release dates and points/nodes)

Possible errors in:

(i) location, (ii) time, and (iii) length of sequence

Goals of an error measure:

- distinguish "good" and "bad" predictions
- quantify the effect of a erroneous prediction on the objective value of an algorithm trusting the predictions

Prediction: request sequence (release dates and points/nodes)

Possible errors in:

(i) location, (ii) time, and (iii) length of sequence

Goals of an error measure:

- distinguish "good" and "bad" predictions
- quantify the effect of a erroneous prediction on the objective value of an algorithm trusting the predictions

Intuition for detour error:

Any "good" algorithm needs to trust predictions to some extent.

Prediction: request sequence (release dates and points/nodes)

Possible errors in:

(i) location, (ii) time, and (iii) length of sequence

Goals of an error measure:

- distinguish "good" and "bad" predictions
- quantify the effect of a erroneous prediction on the objective value of an algorithm trusting the predictions

- Any "good" algorithm needs to trust predictions to some extent.
- An unpredicted actual request arrives (unexpected).

Prediction: request sequence (release dates and points/nodes)

Possible errors in:

(i) location, (ii) time, and (iii) length of sequence

Goals of an error measure:

- distinguish "good" and "bad" predictions
- quantify the effect of a erroneous prediction on the objective value of an algorithm trusting the predictions

- Any "good" algorithm needs to trust predictions to some extent.
- An unpredicted actual request arrives (unexpected).

$$(\hat{x},\hat{r})$$
 (x,r)

Prediction: request sequence (release dates and points/nodes)

Possible errors in:

(i) location, (ii) time, and (iii) length of sequence

Goals of an error measure:

- distinguish "good" and "bad" predictions
- quantify the effect of a erroneous prediction on the objective value of an algorithm trusting the predictions

- Any "good" algorithm needs to trust predictions to some extent.
- An unpredicted actual request arrives (unexpected).

$$(\hat{x}, \hat{r}) \qquad (x, r)$$

$$\leq r - \hat{r} \qquad d(x, \hat{x})$$

Prediction: request sequence (release dates and points/nodes)

Possible errors in:

(i) location, (ii) time, and (iii) length of sequence

Goals of an error measure:

- distinguish "good" and "bad" predictions
- quantify the effect of a erroneous prediction on the objective value of an algorithm trusting the predictions

- Any "good" algorithm needs to trust predictions to some extent.
- An unpredicted actual request arrives (unexpected).

$$(\hat{x}, \hat{r}) \qquad (x, r)$$

$$\leq r - \hat{r} \qquad d(x, \hat{x})$$

Minimum-Cost Edge Cover

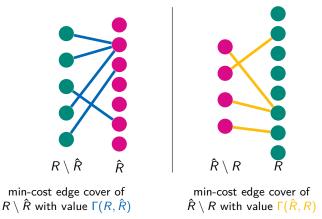
Idea: Model potential detours for serving unexpected requests as complete bipartite graph with edge cost $\gamma((x, r), (\hat{x}, \hat{r})) = (r - \hat{r})_+ + d(x, \hat{x})$.

min-cost edge cover of $R \setminus \hat{R}$ with value $\Gamma(R, \hat{R})$

Minimum-Cost Edge Cover

Idea: Model potential detours for serving unexpected requests as complete bipartite graph with edge cost $\gamma((x, r), (\hat{x}, \hat{r})) = (r - \hat{r})_+ + d(x, \hat{x})$.

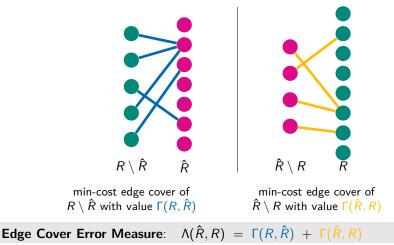
Similarly, absent predicted requests can be covered by predicted requests.



Minimum-Cost Edge Cover

Idea: Model potential detours for serving unexpected requests as complete bipartite graph with edge cost $\gamma((x, r), (\hat{x}, \hat{r})) = (r - \hat{r})_+ + d(x, \hat{x})$.

Similarly, absent predicted requests can be covered by predicted requests.



Learning-Augmented Algorithms

Common approach: combine online & offline algorithms in a clever way \rightarrow switching between algorithms might be expensive

Learning-Augmented Algorithms

Common approach: combine online & offline algorithms in a clever way \rightarrow switching between algorithms might be expensive

Algorithm DELAYEDTRUST

- $\hat{\tau}$: optimal tour on prediction; \hat{c} : its length; $\alpha > 0$ confidence param.
- (i) Follow blackbox online algorithm \mathcal{A} as long as for time t holds $t \leq \alpha \cdot \hat{\mathcal{C}} d(p(t), 0)$. (robustness)
- (ii) Move the server to the origin.

(iii) Follow \hat{T} and replan if actual unexpected request arrives. (consist.)

Learning-Augmented Algorithms

Common approach: combine online & offline algorithms in a clever way \rightarrow switching between algorithms might be expensive

Algorithm DELAYEDTRUST

- $\hat{\tau}$: optimal tour on prediction; \hat{c} : its length; $\alpha > 0$ confidence param.
 - (i) Follow blackbox online algorithm \mathcal{A} as long as for time t holds $t \leq \alpha \cdot \hat{\mathbf{C}} d(p(t), 0)$. (robustness)
- (ii) Move the server to the origin.

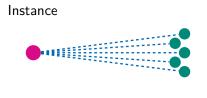
(iii) Follow \hat{T} and replan if actual unexpected request arrives. (consist.)

Theorem

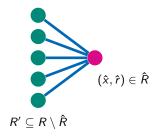
For every $\alpha > 0$ and ρ -competitive online algorithm \mathcal{A} , DELAYEDTRUST has a competitive ratio of at most

$$\min\left\{\left(1+lpha
ight)\left(1+rac{2\cdot\mathsf{A}}{\mathrm{OPT}}
ight),1+\left(1+rac{1}{lpha}
ight)\cdot
ho
ight\}.$$

Instance

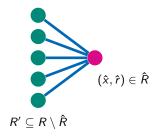


Edge cover bipartite graph

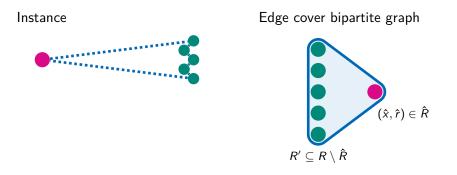


Instance

Edge cover bipartite graph

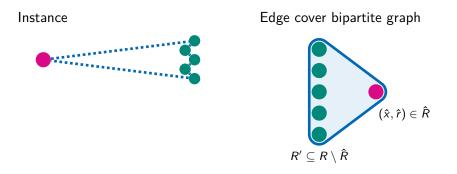


Refinement: Hyperedge Cover



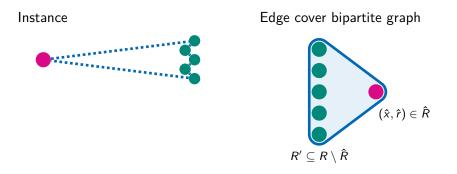
Hyperedge cost: length of opt. tour for R' which starts in \hat{x} at time \hat{r} .

Refinement: Hyperedge Cover



Hyperedge cost: length of opt. tour for R' which starts in \hat{x} at time \hat{r} . **Hyperedge cover error**: min-cost hyperedge cover using hyperedges of size at most k.

Refinement: Hyperedge Cover



Hyperedge cost: length of opt. tour for R' which starts in \hat{x} at time \hat{r} . **Hyperedge cover error**: min-cost hyperedge cover using hyperedges of size at most k.

 \rightarrow configurable, stronger, admits refined bounds for our algorithm

Further Applications

Universal hyperedge cover error for online graph (metric) problems

- captures error in # requests, location and time
- nice properties, configurable, seems to capture "true" error very well

Further Applications

Universal hyperedge cover error for online graph (metric) problems

- captures error in # requests, location and time
- nice properties, configurable, seems to capture "true" error very well

Bounds for (new and old) learning-augmented algorithms

- first framework for online TSP and Dial-a-Ride (online-time)
- new bounds for known algorithm for network design (online-list)

[Azar, Panigrahi, Touitou SODA 2022]

Setting	Problem	Algorithm	Error-dependency
online-time	TSP DARP	SmartTrust SmartTrust	$(1 + \alpha) \cdot \text{OPT} + 3 \cdot \Lambda_k$ $(1 + \alpha) \cdot \text{OPT} + 3 \cdot \Lambda_k$
online-list	Steiner Tree Steiner Forest Facility Location	АРТ АРТ АРТ	$\begin{array}{l} \mathcal{O}(1) \cdot \mathrm{OPT} + \mathcal{O}(\log(k)) \cdot \Lambda_k \\ \mathcal{O}(1) \cdot \mathrm{OPT} + \mathcal{O}(k) \cdot \Lambda_k \\ \mathcal{O}(1) \cdot \mathrm{OPT} + \mathcal{O}(\log(k)) \cdot \Lambda_k \end{array}$

This is a fascinating line of research with many open directions!

This is a fascinating line of research with many open directions!

Some further directions

▶ Universal error measure for input predictions - further applications?

This is a fascinating line of research with many open directions!

Some further directions

- Universal error measure for input predictions further applications?
- Formalize what constitutes a good error measure

This is a fascinating line of research with many open directions!

Some further directions

- Universal error measure for input predictions further applications?
- Formalize what constitutes a good error measure
- Prediction models: input vs. action, predict less

This is a fascinating line of research with many open directions!

Some further directions

- Universal error measure for input predictions further applications?
- Formalize what constitutes a good error measure
- Prediction models: input vs. action, predict less
- ▶ What is learnable? Integrate learning into algorithm design!

This is a fascinating line of research with many open directions!

Some further directions

- Universal error measure for input predictions further applications?
- Formalize what constitutes a good error measure
- Prediction models: input vs. action, predict less
- ▶ What is learnable? Integrate learning into algorithm design!

Thank you.