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Tournament Design

 There Is a long history of research on tournament
design in both the operations research and economics
literatures.

* But, perhaps surprisingly, it 1s not an easy or “well
solved” problem.

* |n fact, some impossibility results show that several
reasonable performance criteria cannot be achieved
simultaneously or even individually.

* Even beyond that issue, there are various randomly
occurring deficiencies in tournament design.



Objectives of Tournaments

* Provide the players with equally fair
opportunities (measurable in several ways)

 Select among the players, rank them, and reward
them according to their performance

 Provide an appealing event for spectators, to
make the tournament financially successful

* Motivate the players to perform well at all times.



Tournament Type

« Qur focus Is on tournaments that include:

- A preliminary stage (sometimes called a “group stage’) that determines a
ranking or seeding for a subset of the players who continue to later rounds.

- Followed by two or more rounds of single elimination play, organized using
Information from this ranking.

Examples include:

- Playoffs in U.S. major professional sports (NFL, MLB, NBA, NHL, MLYS)
- NCAA men’s and women’s basketball championships

- ATP men’s and women’s tennis tournaments

- FIFA World Football Cup, ICC World Cricket Cup

- Various tournaments outside of sports (bridge, chess, ...).



Definitions

« Since our work applies to both individual and team
tournaments, we use player to describe either an individual
player or a team.

 The preliminary or group stage may extend over an entire
season to establish a ranking.

* Alternatively, a ranking may be based on a statistical
measure or a committee decision.

 The definition of single elimination Is that defeat
Immediately eliminates a player from the tournament, but
there can be multiple games (e.g., the NBA playoffs and the
MLB World Series are both single elimination).



Conventional Single Elimination
Tournament Design
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This is a binary tree
that Is symmetric
(without byes), or a
bracket. But many
other brackets are
possible. For
example, swap
games [8,9] and
[2,15]. Each bracket
or “seeding” has
different measures of
fairness, for example
tournament win
probabilities for
different players:



Impossibility Results for Tournament
Design Performance (1 of 3)

 Fairness Under Medium Ranking Condition: If the players
can be ranked such that each player ranks all the lower ranked
players in the same sequence according to probability of
beating them, then Player i (who Is expected to beat Player j)
should have a tournament win probability at least as high as
Player j does.

* Intuitively, each row of the pairwise win probability matrix is
nondecreasing.

* For a tournament with eight players, no bracket achieves this
fairness measure for an arbitrary pairwise win probability
matrix (Horen and Riezman 1985). [Proof by finding a
counterexample matrix for all 315 available brackets.]




Impossibility Results for Tournament
Design Performance (2 of 3)

* General Fairness Under Strong Ranking Condition: If for
each pair of Players i and j>i, 1 has a higher probability of
beating every other player than j does, then i should have a
tournament win probability at least as high as j does.

* Intuitively, each row of the pairwise win probability matrix
IS nondecreasing and each column is nonincreasing
(“Player | dominates Player j.”)

 For a tournament with eight or more players, no bracket
achieves this fairness measure for an arbitrary pairwise win
probability matrix (Vu and Shoham 2011). [ Theoretical
proof.]



Impossibility Results for Tournament
Design Performance (3 of 3)

 Elimination of Shirking: Players should have a
nonnegative incentive to win every game. For a
tournament with fixed groupings at the following
round, allowing exactly one player to continue
from each group is both necessary and sufficient
to eliminate shirking (or, “tanking™), i.e.
deliberately failing to win (Mong 2017). [Note that
this solution would frustrate spectators and reduce
Interest in the tournament.]




Deficiencies in Tournament Design

* Top ranked players may randomly incur “bad matchups”
against other players, which introduces an unnecessary element
of luck.

 Being ranked very highly after the preliminary round does not
provide any particular advantage.

* The use of a conventional fixed bracket fails to allow players
to take into account information that develops during the
tournament, such as injuries to other players.

* The design encourages shirking at the preliminary round, In
order to achieve an easier path through the tournament.

We propose a new tournament design to address these issues.



Shirking

* Diminishes the prestige, credibility and profitability of the
tournament (and perhaps the players), and in some cases
national pride.

 Due to substantial amounts of gambling, for example $1.8b
on the 2018 FIFA World Football Cup, shirking raises the
possibility of legal liability.

« Since shirking i1s more likely to be used by top players,
disqualifying them is a poor solution.

* Prevents the tournament from providing an unbiased
ranking of the players for public interest and for use at
future events.



Famous Examples of Shirking

« The 2005-06 L.A. Clippers lost late season games to avoid the Dallas
Mavericks, resulting in changes to NBA playoff design.

* In the 2006 Winter Olympics ice hockey competition, the Swedish coach
publicly discussed losing against Slovakia, to avoid playing the Czech
Republic or Canada later. Sweden lost 3-0 and won the gold medal.

At the 2012 Summer Olympics, the Chinese, Indonesian and S. Korean
women’s badminton teams were all disqualified for deliberately losing
their group stage matches.

At the 2018 FIFA World Football Cup, the winner of the last group
match between England and Belgium could face Brazil in the
quarterfinal. Both teams rested their top players, and Belgium played
their players out of position. Belgium won 1-0 but later beat Brazil.



England Score Big Win By Losing To Belgium
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In today’s crucial group stage match between England and Belgium, the Brits
narrowly managed to come out on top by coming out on bottom of a hard-
fought 1-0 loss. With this phenomenal loss, England won entry to the much
weaker side of the knockout round bracket, and now have a clear lane to the
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Even Worse Shirking

* In the 1998 Tiger Cup Asian football competition, the winner of
the last group game between Thailand and Indonesia would need
to travel to Hanol to play the hosts Vietnam in front of a hostile
crowd, whereas the loser could conveniently stay in Ho Chi
Minh City and play Singapore, which was perceived as a weaker
team.

* Here 1s what happened (Indonesia in white, Thailand 1n red) ...



Even Worse Shirking




Even Worse Shirking

* In the 1998 Tiger Cup Asian football competition, the winner
of the last group game between Thailand and Indonesia
would need to travel to Hanoi to play the hosts Vietnam in
front of a hostile crowd, whereas the loser could conveniently
stay in Ho Chi Minh City and play Singapore, which was
perceived as a weaker team.

* The Indonesian player Mursyid Effendi, who egregiously
scored for Thailand at the end of the video, was banned from

International soccer for life.




. Probability that Player
Literature i beats Player j

Horen and Riezman (1985) compare different brackets for single elimination
tournaments with four and eight players.

They assume t the N players’ pairwise win probability matrix satisfies:
(i) 0.5§pij§1f0r1§’i<j§N,

(ii)ngij§O.5f0r1§j<z’§N,

(111) pij —|—pﬂ =1 fOI' 1 S Z,j S N, and

(iv) pi; is nondecreasing in j for 1 <4,5 < N.

A pairwise win probability matrix that satisifies conditions (i) — (iv) is strongly
stochastically transitive (David 1963), or SST.

This is described above as a medium ranking condition.

Remark: if every pairwise win probability matrix was SST, then the tour-
nament design problem would be easier (but still not very easy) to solve!
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Literature

Horen and Riezman (1985) establish several reasonableness criteria for tourna-
ments with NV players. They assume that the win probability matrix is SST.

(i) does the design maximize the probability that the best player wins?
(ii) does it maximize the probability that the best two teams meet?

(iii) is it order preserving, i.e., no stronger player has a lower probability of
winning than a weaker player?

If N = 4, there are three distinct brackets, and the conventional bracket
matchup is the unique one that satisfies these criteria.

If N = 8, there are 315 distinct brackets. Criterion (i) is satisfied by eight
of them. However, for criterion (iii), no bracket is satisfactory.

This negative result motivates our study. We will apply the above three perfor-
mance criteria.
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SST or Not?

Djokovic has beaten Nadal
In 29 out of 55 matches.

R. Nadal R. Federer A. Murray
N. Djokovic || [29-26] .527 | [27-23] .540 | [25-11] .694
R. Nadal [24-16] .600 | [17-7] .708
R. Federer [14-11] .560

Win Probability Matrix: Men’s Professional Tennis Rivalries, 4 Players.
The above matrix 1s SST. But if we add a fifth player ...

R. Nadal R. Federer A. Murray J.M. Del Potro
N. Djokovic || [29-26] .527 | [27-23] .540 | [25-11] .694 116-4| .800
R. Nadal [24-16] .600 | [17-7] .708 [11-6] .647
R. Federer [14-11] .560 | [18-7] .720
A. Murray [7-3] .700

Win Probability Matrix: Men’s Professional Tennis Rivalries, 5 Players.

The last matrix iIs not SST. This is because Djokovic has a better record

against Del Potro than against Murray, but Nadal has the reverse.

This example provides insight about “bad matchups” — Del Potro is a

bad matchup for Nadal (relative to their overall levels of play).




More Extreme Bad Matchup

P2 | P3| P4
P1 1 1 0
P2 0 0
P3 1

Extreme Bad Matchup for Player P1.

A conventional bracket would match P1 and P4, to the disadvantage
of player P1.

The only matchup from which P1 can win the tournament is if it
plays P2, which enables P3 to eliminate P4.

This seems unfair to the highest ranked player, P1.

We have a proposal to address this problem ...
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We Propose an Alternative Design
to Solve this Problem

Let the players, in ranked order based on their
previous performance, choose their opponents

-from those still available, and

- assuming they were not themselves previously
chosen,

at each round!



How New Is This Design (1 of 3)?
Existing applications:

- Austrian Ice Hockey League (EBEL)

- Southern Professional Hockey League (U.S.).
- Canadian and U.S. Bridge Federations

- Chess PRO League

- Sailing

- Some e-games.



How New Is This Design (2 of 3)?

ns v Citiesv Q InSideH( @ )k

MLB Considering Controversial
Reality TV-Inspired Playoff
Expansion

MLB's new plan would allow higher-seeded wild-card teams to choose opponents [}

Sports News,
2020-02-11

The MLB logo on batting practice balls. (Jill Weisleder/MLB Photos via Getty)
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How New Is This Design (3 of 3)?

Existing literature:
- Apparently no published research work.

- November 2019 working paper by Julien Guyon
(Courant Institute, NYU): looks at the tournament s
objective of maximizing the number of home games
for players, provides an application to a 2020
European soccer competition, does not use any
pairwise win probability information or prove any
anti-shirking results.



Questions to Ask about the Proposed
Opponent Choice Design

- Does it resolve the random “bad matchup™
problem?

- Does it provide reasonable results for real world
sports data?

- Does It improve on the bracket design for the
three reasonableness criteria, under large sample
testing and sensitivity analysis?

- Does It reduce shirking?



Comments about this Design

1. Allowing opponent choice opens up a wide range of new
designs and related analysis in tournament design, and
our work is an early exploration of this range.

2. We will compare the tournament results under our
design, using the three reasonableness criteria discussed
above, with those under a conventional bracket.

3. The tournament design changes we are recommending
occur at the single elimination stage of the tournament;
however, they reduce the incentive for strategic behavior
such as shirking at the preliminary stage, thereby
potentially improving both stages.




Assumptions

The players have a ranking, or total order, based
on earlier performance or in some cases the
decisions of a seeding committee.

Each player has either full or partial knowledge of
the pairwise win probability matrix.

At every round, each player which can choose its
opponent does so with the objective of maximizing
Its tournament win probability.



Full Information Assumption

First, we will study a situation where each player
has complete and accurate information about the
pairwise win probability matrix.

This 1s most realistic where the players have
played each other frequently, as for example In
professional tennis.



Resolving Ties for Ranking

Our tournament design requires that the players enter the single elimination
stage of the tournament with an empirically determined ranking, without ties.

This ranking is weak, for example the matrix is in general not SST.

Major sports have detailed tie-breaking rules in place: the NFL uses 12 se-
quential performance-based rules, and the NBA uses a similar procedure.

Tournaments that use limited within-group performance information, includ-
ing the FIFA World Football Cup, could have more ties for ranking.

Tie-breaking options in that case include the use of a pre-tournament rank-
ing or more detailed group performance information.
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Addressing the Bad Matchup Problem

Let ¢;,i=1,..., N, P2 | P3| P4
denote the probability rLIpi2 | piz | 0
that Player ¢ P2 D23 | P24
wins the tournament. P3 D34

Example of One Difficult Opponent.

If P1 chooses P2, then q; = p12p34P13.

If P1 chooses P3, then q; = p13poapio.

Therefore, P1 chooses P iff p1op3ap13 = p13p2api2, OF p3s = Paa.

So, P1 lets the other player which has the better chance to beat P4 do so.

Remark: Player 1’s choice of player 2 or 3 as opponent is independent
of whether p15 or py3 is larger. Hence, a myopic strategy is not generally optimal,
even for N = 4.
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How Many Players Will Choose?

At the semifinal round, only one player chooses its opponent,
since this defines both the matches to be played.

At the quarterfinal round, only three players choose their
opponents, for the same reason.

At the round-of-16, only seven players choose their opponents,
for the same reason.

In general, for a tournament round with N players, the number of
players who choose their opponents is N/2 — 1.

Remark: Our tournament design allows flexibility for
(a) a smaller number of players to choose their opponents, or
(b) higher ranked players to be exempt from being chosen.



Our Tournament Design

Consider a generic tournament with n rounds and N = 2", n = 2,3, ..., players.
At any round, Player 1 freely chooses its opponent.

Then, the highest ranked unchosen player, i.e., 2 if not chosen by 1, or 3 other-
wise, makes its choice, and so on.

In total, in the first round N/2 — 1 players choose their opponents sequentially,
an (N/2 — 1)-stage Stackelberg game (Fudenberg and Tirole 1993).
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Static vs. Dynamic Ranking

In our tournament design, the ranking of the players is important, since it de-
termines the order of opponent choice at each round.

Under a static ranking, a player’s ranking remains the same as when it en-
tered the single elimination stage of the tournament.

Under a dynamic ranking, the winner of a game inherits the higher ranking
of the two players in that game for the next round.

Example: Suppose P8 beats P1 and P7 beats P2 at the same round. Then,
P8 is ranked first, and chooses its opponent first, at the next round.

More generally, various ranking rules can be adopted, for example interpolating

between the two models we consider, for example the Elo system (Wikipedia
2019) used to determine chess ratings.
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Algorithm Opponent Choice

Input
pij, fori,5 =1,...,N, N =2", 1 # j. Let §, denote the set of all the players.

Value Function

For a given set S of players with relative rankings 1, ..., |S| and respective orig-
inal rankings (1),...,(|S]), let Q(S) = {¢s,1),---,4s,(s))} denote the corre-
sponding tournament win probabilities of the players, given all players’ optimal
choices of opponents.

Boundary Condition

When |S§| = 2, i.e, only two players with relative rankings 1 and 2, we have
qs.(1) = P(1)(2) and gs 2y = P(2)(1), where (1) and (2) are the two players’ orig-
inal rankings. Hence we assume that, for any S € S,, |S| = 2,4,...,N/2, we
have found Q(S) = {gs,(1),---,qs,(s]) }-

Remark: The algorithm starts by enumerating all possible final rounds, then
all possible semifinal rounds, and so on. Within each round, subsets of players
are evaluated from smallest to largest. 3



Algorithm Opponent Choice

Recurrence Relation

Let set U contain all the players with undecided opponents, where player 7 has
the highest ranking in &/ and X U X' UU = S,. Then, player j chooses its
opponent to maximize its tournament win probability ¢; = ¢s, j, where:

Probability ~ l Probability
of 1Sq,5 = THAX Z bs qs’j\ of win
subset S SeQ(Xu{j},X'U{i}) given

where Q(X U {j}, X’ U {i}) is known by previous calculation. subset S

Theorem: Algorithm Opponent Choice finds the optimal sequence of oppo-
nent Choices for all N = 2™ players, and their tournament win probabilities, in

O@%i=2"" T[1, [[2_, (2! — 2h + 1))

Remark: For 16 players, as for smgle elimination at the FIFA World Foot-
ball Cup, the algorithm solves the problem in 12 hours on a laptop computer.



Real World Data Big Datal!

Sports Hub Data (2 men’s tournaments from 1991-2016.

Includes 95,360 tennis matches over 1,902 tournaments.

Focus on 28,534 matches potential matches between top-16 seeds (round-of-16
or later). There are 5,943 such matches, won by the higher (respectively, lower)
seeded player in 3,788 (resp., 2,155) instances.

Results of these 5,943 matches estimate win probabilities between all pairs of
seeded players, based on win frequency.

Example: No.l seeds have a 97-78 record against No.2 seeds, for an estimated
win probability for the No.1 seed of 97/175 = .554.

The win probability matrix is shown in the following table.
2 3 4 5) 6 7 8 9 10 11 12 13 14 15 16

1 .b54 .657 .665 .727 .713 763 .721 .763 .795 .783 .813 .806 .886 .813 .773
2 669 .690 .621 .630 .603 .670 .784 .650 .650 .844 .718 .833 817 .773
3 436 549 617 626 .B78  .650 438 .633 .548 .703 .B&3 .735 .690
4 .03 506  .667 636 .533 .750 412 538 733 .593 .607 815
5 484 607  .333 .512 667 .600 .634 .688 500 .667 .545
6 519 560 448 567 .596 .643 500 560 .643 722
7 409 583 .617  .5T9  .B65 .385 .545 .500 .583
8 483 532 643 379 385 455 .B83 .706
9 583 455 615 .500 .545 .583 .385
10 545  .706 .357 545 545 .H83
11 000  .Bb83 .B83 .385 .35H7
12 615  .667 667 .357
13 500 545 417
14 500 .500
15 583

Win Probability Matrix for Seeded Tennis Players. *



Example of the Algorithm (1 of 2)

We calculate seed No.1’s tournament win probability if it chooses to play against
seed No.7, which is its optimal choice.

Then, the other quarterfinal games, given optimal sequential selections by the
next highest ranked available players which are seeds Nos.2 and 3, respectively,
are (2,4),(3,6) and (5,8).

The probability that the winners of the four quarterfinal games are seeds Nos.1,
2, 3 and 5 is P17 X P24 X P3g X Psg = 763 x .690 x .617 x .333 = .108.

On the condition that the other semifinal round players are seeds Nos.2, 3 and
5, seed No.l has three choices:

Play seed No.2: g1 = .554[(.549 x .657) + (.451 x .727)] = 0.382.

Play seed No.3: g1 = .657[(.621 x .554) + (.379 x .727)] = 0.407. Best
Play seed No.5: ¢q1 = .727[(.669 x .554) + (.331 x .657)] = 0.427+—— choice

Since Algorithm Opponent Choice operates by backward recursion, these proba-
bilities are known to seed No.1 at the time of choosing its quarterfinal opponent.

In view of seed No.l’s objective of maximizing its tournament win probabil-
ity, it chooses to play seed No.5 at the semifinal round. -



Example of the Algorithm (2 of 2)

The probabilities of the eight possible semifinal configurations in which seed
No.1 is included appear in the third column of the table as p(s;).

The conditional probability for seed No.1 to win the tournament from each semi-
final appears in the fourth column as p(q1|s;).

The fifth column shows the joint probability p(q1,s;) = p(s;) * p(q1|s;) of the
semifinal configuration ¢ and seed No.l winning the tournament.

Finally, the probability of seed No.l winning the tournament appears at the
bottom of the fifth column, where ¢; = Z§:1 p(q1,5:)-

i S p(si) | plails:) | plai, s:i)

11(1,5,2,3) | .108 | .427 046

21(1,8,2,3) | 217 | 424 .092

3 (1,5,2,6) | .067 | .445 030

1] (1,8,2,6) | 134 | .442 059

51 (1,5,4,3) | .049 481 023

6| (1,8,4,3) | .097 | 477 046

71 (1,5,4,6) | .030 500 015

8| (1,8,4,6) | .060 | .496 030
Total 342

Tournament Win Probability of Seed No.1 if it Chooses Seed No.7.
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Results for Top Tennis Seeds

Seed 1 1 2 3 4
Opponent 1 4 3 2 1
qi 391 | 353 | 124 | 132

Tournament Win Probabilities for Seeded Tennis Players at Semifinal Round.

Our dynamic and static designs and the bracket
design all give the same results when N = 4.

Seed 17 1 2 3 4 5 6 7 8
Opponent 7 4 6 2 8 3 1 5
q_z 342 | 242 | 101 | .078 | .049 | .064 | .039 | .085
qz 342 | 242 | 107 | .078 | .050 | .064 | .037 | .080
q’ 315 | .201 | 121 | .109 | .081 | .072 | .044 | .056

Tournament Win Probabilities for Seeded Tennis Players at Quarterfinal Round.

Our dynamic and static designs both increase the tournament win
probabilities of seeds Nos.1 and 2 when N = 8, which is a desirable
feature and can be viewed as a reward for a high ranking.
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Results for Top Tennis Seeds

Seed i 1 3 4 5 6 7 8
Opponent 14 12 15 16 13 11 10 9
qz 337 | .223 | .086 | .080 | .056 | .047 | .031 | .036
q% 336 | .232 | .089 | .085 | .057 | .047 | .030 | .035
qr 313 | .228 | .073 | .079 | .056 | .050 | .035 | .037
Seed i 9 10 11 12 13 14 15 16
Opponent 8 7 6 2 5 1 3 4
qz 023 | .016 | .020 | .009 | .012 | .009 | .009 | .007
qZ .021 | .014 | .020 | .008 | .010 | .005 | .006 | .006
qP 025 | .017 | .021 | .013 | .013 | .011 | .010 | .018

Tournament Win Probabilities for Seeded Tennis Players at Round-of-16.

The main winner from our tournament design is the first-mover seed No.1.
Seeds Nos.3 and 4 benefit from our design under the dynamic ranking, and seeds
Nos.2, 3, 4 and 5 benefit from our design under the static ranking.

The tournament win probability of Seed No.14 reduces from .011 under the
bracket design to .005 under the static ranking, but only to 0.009 under the

dynamic ranking.
40



Computational Study

* \We study the results of our tournament design using the

three performance criteria established by Horen and
Riezman (1985):

- The probability that the top ranked player wins the
tournament

- The probability that the top two players meet

- Order preservation: the tournament win probabilities of
the players preserve their original ranking.



Sensitivity to Matrix Irregularity

We begin with a highly regular pairwise win probability matrix
with N = 2" players where p;; = .54 .05(j — i), for 1 <7< j < N.

Player 2 | Player 3 | Player 4
Player 1 .09 .60 .65
Player 2 .05 .60
Player 3 DD

Highly Regular Win Probability Matrix for N = 4.

Observe that this matrix has a strong ranking, where Player i
dominates Player j, for 1 <7< j3 < N.
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Sensitivity to Matrix Irregularity

We also introduce an amount of irregularity 6 by adding to each matrix entry
a randomly generated value d ~ U[—§, +6], for 6 = 0,.01,.02,...,.1.

We generate the value of d independently for each matrix entry. For the semi-
final and quarterfinal rounds with 0 > 0, we have 6 and 28 random variables,
respectively, and hence use a large sample size of 10,000 for each 9.

For the semifinal round, the dynamic and static rankings are the same in our

tournament design since only Player 1 can choose its opponent, whereas for the
quarterfinal round they are different.
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Semifinal Round: Player 1

Decreasing tournament win probability due to less dominance
as matrix irregularity increases. The largest benefit of our design
occurs at highest irregularity. y
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Semifinal Round: Player 2

Decreasing tournament win probability due to less dominance
as matrix irregularity increases. The largest benefit of our design
occurs at moderate irregularity, when Player 1 chooses Player 3.
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Semifinal Round: Player 3

Increasing tournament win probability due to less dominance
by the top players as matrix irregularity increases. Loses from
our design due to increased probability of being chosen by Player 1.
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Semifinal Round: Player 4

Increasing tournament win probability due to less dominance
by the top players as matrix irregularity increases. Gains slightly from
our design, due to decreased probability of being chosen by Player 1.
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71

Quarterfinal Round: Player 1

Decreasing tournament win probability due to less dominance
as matrix irregularity increases. Since Player 1 can never lose
Its top ranking while it remains in the tournament, the static and
dynamic rankings give identical outcomes.



o

Quarterfinal Round: Player 2

Decreasing tournament win probability due to less dominance
as matrix irregularity increases. If Player 1 loses at the
quarterfinal, 2 chooses first under the static ranking but not
under the dynamic ranking.



F3

Quarterfinal Round: Player 3

Increasing tournament win probability due to less dominance by

Players 1 and 2 as matrix irregularity increases. More benefit
comes from retaining high original ranking under the static ranking

design. 1



P4 o eeeamsnnitiss

Quarterfinal Round: Player 4

Unlikely to choose at the quarterfinal round, so the main benefit
comes from increasing their ranking dynamically.
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P5

Quarterfinal Round: Player 5

For moderate matrix irregularity, it benefits from the chance to
Increase its ranking. But for high irregularity, the limited size of its
choice set Is outweighed by the increased probability of being
chosen by a higher ranked player.



Pb

Quarterfinal Round: Player 6

Increasing tournament win probability due to less dominance
by other players. Never chooses under the static ranking, but
may do so under the dynamic ranking.
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Quarterfinal Round: Player 7

Increasing tournament win probability due to less dominance
by other players. Never chooses under the static ranking, but
may do so under the dynamic ranking.
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Quarterfinal Round: Player 8

Increasing tournament win probability due to less dominance
by other players. Never chooses under the static ranking, but
may do so under the dynamic ranking.
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Quarterfinal
Round
Results

with Full
Information
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Probability that the Top Two

Players Meet  Semifinal  Quarterfinal

Parameter || qpai12 | dpy1o | 48412 || Apsi12 | dpgas | 4812 | dssie | 4Bs12
0=20 0.358 | 0.000 | 0.358 0.257 | 0.000 | 0.257 | 0.000 | 0.258
= .01 0.356 | 0.000 | 0.356 0.256 | 0.000 | 0.256 | 0.000 | 0.256
= .02 0.354 | 0.000 | 0.354 0.254 | 0.000 | 0.254 | 0.000 | 0.254

0 =.03 0.353 | 0.000 | 0.352 0.252 | 0.000 | 0.252 | 0.000 | 0.252
= .04 0.352 | 0.000 | 0.351 0.250 | 0.000 | 0.250 | 0.000 | 0.251
= .05 0.352 | 0.000 | 0.349 0.250 | 0.000 | 0.250 | 0.000 | 0.249

0 = .06 0.351 0.002 | 0.348 0.249 0.001 | 0.249 | 0.001 0.247
= .07 0.348 | 0.013 | 0.346 0.249 | 0.003 | 0.249 | 0.003 | 0.245

0 = .08 0.345 0.022 | 0.344 0.248 0.007 | 0.248 | 0.007 | 0.243
= .09 0.339 | 0.039 | 0.343 0.247 | 0.011 | 0.247 | 0.011 | 0.241

6 = .10 0.337 0.049 | 0.341 0.247 | 0.015 | 0.247 | 0.015 | 0.240
Mean 0.349 | 0.011 | 0.349 0.251 | 0.003 | 0.251 | 0.003 | 0.249

Probability of Player P1 Meeting Player P2.
In the semifinal round, when irregularity is very high (6 > .09), the chance for

these players to meet in the final under our design is slightly less, but is more
than compensated by the probability that they meet in the semifinal round.

However, in the quarterfinal round, even with increased probability for players
1 and 2 to meet in the semifinal round, our design still offers greater probability
for them to meet in the final than the bracket design does. %



Order Preservation

Parameter TD4 TBR4 TDS TSS TBS&
= .04 || 0.998 | 0.998 || 1.000 | 1.000 | 1.000
0=.051 0.990 | 0.989 || 0.999 | 0.999 | 1.000

= .06 || 0.970 | 0.970 || 0.996 | 0.997 | 0.999

= .07 || 0.945 | 0.947 || 0.991 | 0.991 | 0.996
0=.08 || 0.921 | 0.924 || 0.983 | 0.983 | 0.990
=.09 || 0.894 | 0.900 || 0.974 | 0.974 | 0.983

= .10 || 0.870 | 0.876 || 0.964 | 0.964 | 0.973
Mean || 0.941 | 0.943 || 0.987 | 0.987 | 0.991

Kendall Coefficient for Player Rankings.

Recall that order preservation is a desirable property of tournament design
(Horen and Riezman 1985, Vu and Shoham 2011).

When 0 < 0.03, all the coefficients are 1.000 for these randomly generated win
probability matrices.

With increasing irregularity o, our design achieves results that are only slightly
less consistent with the players’ ranking than the bracket design.

As irregularity increases, the player’s original ranking becomes a less accurate

measure of the players’ relative strength. .



Partial Information Assumption

Next, we will study a situation where each player has

(a) complete and accurate information about its own win probabilities
against every other player, and

(b) approximate information about win probabilities between all other
pairs of players:

- 1f the true probability is between 0 and 0.4, it is estimated as O,
- if the true probability is between 0.4 and 0.6, it is estimated as 0.5, and
- If the true probability is between 0.6 and 1.0, it is estimated as 1.0.

By studying this situation, we obtain an understanding of the robustness
of our tournament design to inaccurate estimation of win probabilities.
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Quarterfinal
Round Results
with Partial
Information

For players other than 2
and 7, their outcome
falls between those for
the bracket and the
dynamic choice design.

Player 2 benefits from
the less accurate choices
of Player 1. Player 7 is
less likely to be chosen
by Player 1 than under
full information.
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Shirking (1 of 5)

Remark: From Vong (2017), it is not possible to eliminate
shirking entirely without imposing on the tournament design
a severe restriction that may reduce the tournament’s appeal

to spectators.

Due to the above remark, we consider the final game at the
end of the preliminary round. It is in exactly this situation
that shirking 1s most likely (which includes the England —
Belgium and Indonesia — Thailand games).



Shirking (2 of 5)

First, we have a negative result.

Theorem: If the subset of players which continues to
the following round Is dependent on the result of the
final game, then it is not possible to eliminate shirking.

Proof: By example. Suppose that by winning the final
game, player P eliminates its opponent O but allows
Into the next round another player E which always
beats every continuing player including P. Then,
player P must avoid winning the game or lose the
tournament.



Shirking (3 of 5)

Suppose the subset of players which continues to the next round is independent of
the result of the last preliminary round game. This situation still includes the England
— Belgium and Indonesia — Thailand games.

Individual Strategic Behavior (1SB)

Theorem ISB:

a. If exactly one fixed player will continue to the next round, our tournament design
eliminates shirking by either player at the last preliminary round game.

b. If both players will continue to the next round, then our tournament design
eliminates shirking by either player at the last preliminary round game.

Proof: A higher ranking at the next round gives any player who will continue a
superset of choices against a fixed set of opponents with a fixed ranking - and
therefore a fixed sequence of opponent choices - relative to a lower ranking.

In both cases, our tournament design eliminates shirking that occurs under a
conventional bracket design.



Shirking (4 of 5)

Group Strategic Behavior (GSB) [Thanks to Chen Chen and Alessandro Agnetis for
raising this issue.]

Remark: All negative (pro-shirking) I1SB results continue under GSB.

Remark: GSB is most likely to occur where a tournament contains multiple teams
representing the same country, for example in tennis, table tennis, or badminton, at the
Olympics.

Theorem GSB [applying Theorem ISB to the GSB case]:

(i). [Exactly one player P continues.] The result in part (a) of the proof of Theorem ISB
partly fails under GSB. It remains true that player P will not shirk, but player O may shirk
to give player P a higher ranking at the next round.

(i1). [Both players continue.] The result in part (b) of the proof of Theorem ISB partly fails
under GSB. In a situation where one player’s ranking will not change depending on the
results of the game, but the other player’s ranking will change, then the former player (but
not the latter player) may shirk.



Shirking (5 of 5)

For GSB, we have a further negative result, which applies to games
where a draw is possible in preliminary round games (for example,
World Cup soccer). The players are P and O.

Theorem: Consider the last game of the preliminary round in a
tournament where a draw Is possible. Then, there exists no design
under GSB that prevents shirking by both players P and O.

Proof: By example. Consider a situation where only a draw between
players P and O will allow both to continue, which is the only way to
eliminate a third player E which always beats every continuing player
Including both P and O.



Summary (1 of 2)

 To resolve several deficiencies of conventional tournament
design, we propose a new design where players with a high
ranking can choose their opponents at each round of the single
elimination stage.

 This design is implemented for both static and dynamic
rankings of players.

* We describe a dynamic programming algorithm that computes,
for each player, the optimal sequence of opponents to choose
and the resulting tournament win probability.

 This algorithm is computationally tractable up to the round-of-
16.



Summary (2 of 2)

* Using data from 1,902 men’s professional tennis tournaments,
we demonstrate the reasonableness of our tournament design.

 Our design allows flexibility for static and dynamic rankings,
and the number of players who may choose their opponent(s).

« Compared to a conventional bracket design, our tournament
design eliminates some elements of luck, provides reasonably
Increased probability for the top ranked player to win and also for
the top two players to meet, and preserves ranking well.

* |t also reduces shirking, and enables developing information to
Influence the tournament.

 An additional advantage of our design is increased fan interest
from the unpredictability of later round matchups.



Future Research

« Situations where a player knows its own win probabilities, but has
no information about the win probabilities between any pair of
other players. Here, a player may use a myopic strategy: choose an
opponent which it can beat with highest probability. Our design
using such a strategy still reduces shirking and is easier to analyze.

» \WWe provide a related result.



Without Any Knowledge of Games
Between Other Players

Theorem: For any instance of an n-stage tournament, let Players 2,...,2" be
ordered such that p1o < p13 < -+ < pion.

Then, if player 1 chooses the lowest ranked available player at each round, this
strategy guarantees that ¢ > H?’:l p12i, and this bound is tight.

Proof: We prove the lower bound by induction on the number of rounds played.
Observe that, at round k41, whatever previous results have occurred there must
exist at least one remaining player with index of at least 27 .

Player 1 chooses that player as its opponent.

To show that the bound is tight, let p;; =1, for 2 <17 < j < 2™,

When k rounds remain to be played, the remaining 2% players are exactly
1,...,2F.

Therefore, there is no possibility for Player 1 to achieve a higher value of ¢;.
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Future Research

« Situations where a player knows its own win probabilities, but has
no information about the win probabilities between any pair of
other players. Here, a player may use a myopic strategy: choose an
opponent which it can beat with highest probability. Our design
using such a strategy still reduces shirking and is easier to analyze.

* Explore the application of our proposed tournament design to
empirically-based studies of various sports and competitions, for
example table tennis and chess.

« Study how the results of a particular round could be used to
modify the win probability matrix, and consequently the choices of
the players at later rounds.

 Allow players to have a different objective, for example
maximizing the probability of reaching a particular round.

 Allow the ranking of the players to be adjusted dynamically, based
on detailed performance within the tournament, as measured for
example by margin of victory.
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