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Approximate makespan minimization on uniform machines
Introduction
Our result in context
A recursive EPTAS for Q||Cmax

Q||Cmax (makespan minimization on uniform machines)
Input:

N jobs
(with processing

times pj ∈ N)
M machines
(with processing

speeds si ∈ N)

Output:

Schedule σ
(minimizing

makespan OPT)

Q||Cmax is NP-hard.

Goal: compute
(1 + ε)-approximation
efficiently

p1 = 1 p2 = 2 p3 = 3

p4 = 3 p5 = 4

s1 = 1 s2 = 2 s3 = 2

T

p1 p2 p3

p4p5

s1 s2 s3

OPT = 3

(1 + ε) OPT
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Conference dinner on time
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Introduction
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Problem context

P||Cmax (important special case with processing speeds
s1 = . . . = sm):

Jansen, Rohwedder (2018):

Berndt et al. (2021):

Few constraints ILP algorithm

→ Small column norm constraint

matrix

2O(1/ε log2(1/ε)) +O(N)

2O(1/ε log(1/ε) log(log(1/ε))) +
O(N)

Q||Cmax (arbitrary processing speeds s1 ≤ . . . ≤ sm):

Jansen et al. (2016):

Our result (2023):

Few constraints MILP algo-

rithm

→ Small column norm constraint

matrix

2O(1/ε log4(1/ε)) +O(N)

2O(1/ε log3(1/ε) log(log(1/ε)))+
O(N)

Matthias Mnich (TU Hamburg) ILP support sizes and Q||Cmax
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Run times to compute (1 + ε)-approximate schedules for
Q||Cmax

authors year run time

Hochbaum, Shmoys 1988 NO(1/ε2 log(1/ε))

Azar, Epstein 1998 NO(1/ε2)

Jansen 2010 2O(1/ε2 log3(1/ε)) + NO(1)

Jansen, Robenek 2012 2O(1/ε2 log3(1/ε)) + NO(1)

Jansen et al. 2016 2O(1/ε log
4(1/ε)) + NO(1)

Our result 2023 2O(1/ε log
3(1/ε) log(log(1/ε))) +O(N)

Special case P||Cmax: all machines have speed s1 = . . . = sm = 1

Jansen, Rohwedder 2019 2O(1/ε log2(1/ε)) +O(N)

Berndt et. al. 2021 2O(1/ε log(1/ε) log(log(1/ε))) +O(N)

Matthias Mnich (TU Hamburg) ILP support sizes and Q||Cmax
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Main result: faster (1 + ε)-approximation for Q||Cmax

instance I
preprocessing

binary search objective

MILP setup

feasibility test

schedule construction

schedule σ

“Recursive configurations”

Simulate a new machine as
an additional job on a faster
machine

⇒ MILP formulation with
Amax ∈ O(log(1/ε))
(instead of O(1/ε)).

Theorem (Linearized support
bound)

Any feasible bounded ILP with m
constraints and largest column
1-norm Amax has an optimal
solution x with
supp(x) ≤ 2m log(1.46Amax).

Matthias Mnich (TU Hamburg) ILP support sizes and Q||Cmax
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Further results

Q|HM|Cmax :
(high multiplicity input of jobs and machines)

No known approximation
scheme

→ Our result (2023):

2O(1/ε log3(1/ε)) log(log(1/ε))) ·
⟨I⟩O(1)

RKQ||Cmax :
(K types of machines, each with uniform speeds)

Jansen, Maack (2019):

→ Our result (2023):

2O(K log(K)·1/ε3 log5(1/ε)) +

(K · N)O(1)

2O(K log(K)·1/ε log3(1/ε)) log(log(1/ε)))+

O(K · N)

Matthias Mnich (TU Hamburg) ILP support sizes and Q||Cmax



7/22

Approximate makespan minimization on uniform machines
Introduction
Our result in context
A recursive EPTAS for Q||Cmax

Further results

Q|HM|Cmax :
(high multiplicity input of jobs and machines)

No known approximation
scheme

→ Our result (2023):

2O(1/ε log3(1/ε)) log(log(1/ε))) ·
⟨I⟩O(1)

RKQ||Cmax :
(K types of machines, each with uniform speeds)

Jansen, Maack (2019):

→ Our result (2023):

2O(K log(K)·1/ε3 log5(1/ε)) +

(K · N)O(1)

2O(K log(K)·1/ε log3(1/ε)) log(log(1/ε)))+

O(K · N)

Matthias Mnich (TU Hamburg) ILP support sizes and Q||Cmax



7/22

Approximate makespan minimization on uniform machines
Introduction
Our result in context
A recursive EPTAS for Q||Cmax

Further results

Q|HM|Cmax :
(high multiplicity input of jobs and machines)

No known approximation
scheme

→ Our result (2023):

2O(1/ε log3(1/ε)) log(log(1/ε))) ·
⟨I⟩O(1)

RKQ||Cmax :
(K types of machines, each with uniform speeds)

Jansen, Maack (2019):

→ Our result (2023):

2O(K log(K)·1/ε3 log5(1/ε)) +

(K · N)O(1)

2O(K log(K)·1/ε log3(1/ε)) log(log(1/ε)))+

O(K · N)

Matthias Mnich (TU Hamburg) ILP support sizes and Q||Cmax



7/22

Approximate makespan minimization on uniform machines
Introduction
Our result in context
A recursive EPTAS for Q||Cmax

Further results

Q|HM|Cmax :
(high multiplicity input of jobs and machines)

No known approximation
scheme

→ Our result (2023):

2O(1/ε log3(1/ε)) log(log(1/ε))) ·
⟨I⟩O(1)

RKQ||Cmax :
(K types of machines, each with uniform speeds)

Jansen, Maack (2019): → Our result (2023):

2O(K log(K)·1/ε3 log5(1/ε)) +

(K · N)O(1)

2O(K log(K)·1/ε log3(1/ε)) log(log(1/ε)))+

O(K · N)

Matthias Mnich (TU Hamburg) ILP support sizes and Q||Cmax



8/22
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Introduction
Our result in context
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Problem definition

Makespan minimization on uniformly related machines:
Given a set J of N jobs with processing times p1, . . . , pn ∈ N, and
a set M of M machines with speeds s1, . . . , sm ∈ N, find a
schedule σ : J → M which minimizes the makespan

Cmax := max
i∈M

Ci = max
i∈M

∑
j∈σ−1(i)

pj
si

.

Goal: efficient polynomial-time approximation scheme (EPTAS),
which, for given ε > 0 and any instance I in time f (1/ε) + ⟨I⟩O(1)

computes a schedule of makespan Cmax ≤ (1 + ε)OPT.

→ EPTAS are fixed-parameter algorithms with parameter (1/ε)
→ M., van Bevern (2018): “Parameterized complexity of
scheduling: 15 open problems”

Matthias Mnich (TU Hamburg) ILP support sizes and Q||Cmax
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Problem formulation overview

formulation assignment recursive conf. configurations

jobs/machine N log(1/δ) 1/δ

Matthias Mnich (TU Hamburg) ILP support sizes and Q||Cmax



10/22

Approximate makespan minimization on uniform machines
Introduction
Our result in context
A recursive EPTAS for Q||Cmax

An EPTAS design technique

Lemma

For any δ > 0 and δ → 0 it holds that

(1 + O(δ))O(1) = 1 +O(δ) +O(δ2) + . . . = 1 +O(δ) .

⇒ Can add errors of constant multiples of δ constantly many
times, and have input independent constant c such that δ = ε/c .

Matthias Mnich (TU Hamburg) ILP support sizes and Q||Cmax
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EPTAS overview

1 Preprocess the instance

Remove negligible jobs and machines
Binary search for the makespan
Round the processing times and machine speeds

2 Solving an MILP formulation

Construct an MILP
Find a feasible solution

3 Constructing a schedule

Round the configuration variables
Assign the jobs & configurations

Matthias Mnich (TU Hamburg) ILP support sizes and Q||Cmax
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Preprocessing

1) Remove negligibly short jobs and slow machines:

pi ≥ pmax · δ/N si ≥ smax · δ/N

2) Bound makespan T and perform binary search:

pmax/smax ≤ T ≤ N · pmax/smax

T

smax · δ/N2

pmax · δ/(N · T )

smax · δ/N smax

pmax/T

Figure: Overview on the range of parameters.

Matthias Mnich (TU Hamburg) ILP support sizes and Q||Cmax
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Rounding scheme

rounding arithmetic geometric geo-arithmetic

points 1/δ2 log1+δ(1/δ) 1/δ log(1/δ)
conf. size 2 1/δ log(1/δ)

variables O(1/δ2) 2O(1/δ log(1/δ)) 2O(log2(1/δ))

Matthias Mnich (TU Hamburg) ILP support sizes and Q||Cmax
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Constructing an MILP

∑
γ∈Ci

xi ,γ − µi =
τ∑

i ′=1

∑
γ∈Ci′

γi · xi ′,γ − ηi ≥ 0 for i = 1, . . . , τ

xi ,γ ≥ 0 for i = 1, . . . , τ,γ ∈ Ci
xi ,γ ∈ Z≥0 for i = 1, . . . , L,γ ∈ Ci (recursive-MILP)

xi ,γ number of configurations γ on machines of speed si .

Ci : set of configurations for si γ : a configuration vector
µi : #machines of speed si ηi #jobs of processing time si

τ ∈ O(1/δ log(N/δ)) L ∈ O(1/δ log(1/δ))

Matthias Mnich (TU Hamburg) ILP support sizes and Q||Cmax
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Support size bounds for ILPs

Classical result: (Eisenbrand, Shmonin 2004). Any feasible and
bounded IP with m constraints admits a solution with support size
s ≤ 2mlog(4m∆), where ∆ is the largest absolute value of any
entry in the constraint matrix A.

New main result: Any feasible bounded ILP with an m-row
constraint matrix A has an optimal solution with support size
s ≤ m · (log(3Amax) +

√
log(Amax)), where Amax is the largest

1-norm of any column of A.

Our result builds on determinant analysis and Siegel’s Lemma
(1929) from number theory.

Matthias Mnich (TU Hamburg) ILP support sizes and Q||Cmax
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Finding a feasible solution

Lemma (Lenstra, Kannan)

An MILP instance I with n integral variables, s of which are
non-zero, can be solved or proved infeasible with run time:(

n

s

)
· ss · ⟨I⟩O(1) = 2O(s log(n)) · ⟨I⟩O(1) .

We have n ∈ 2O(log2(1/δ)) and s ∈ O(1/δ log(1/δ) log(log(1/δ))).

⇒ 2O(1/δ log3(1/δ) log(log(1/δ))) · logO(1)(N)
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Constructing a schedule

Make all xi ,γ integral.

Use vertex solution of fractional part of recursive-MILP.
For a machine speed O(1/δ log(1/δ)) many pos. variables.
Round down, loss geometric sum, small on fastest machine.

Recursively construct a schedule, resolving virtual machines.
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Faster Schedule Construction

So far: EPTAS for Q||Cmax with almost linear run time

2O(1/ε log3(1/ε) log(log(1/ε))) + O(N log2(N)).

Bottleneck with respect to N: transforming MILP solution to
feasible schedule.

conventional MILP formulation (hybrid-MILP) using both
configuration and assignment variables to improve the run
time in N.

First, transform solution of (recursive-MILP) into a solution of
(hybrid-MILP) in sublinear time in N

Then, we construct schedule from solution to (hybrid-MILP)
in linear time.

This transforms a solution of (recursive-MILP) into a valid
schedule in time linear in N.
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Hybrid-MILP

Then (hybrid-MILP) is has no recursive configurations.

Variables:

configuration variables xi ,γ that indicate how often a
configuration γ is used on machine i

handle short jobs (with processing time ≤ δ/si on machine i)
via assignment variables yi ,j indicating how many jobs of
processing time pj are assigned to machines of speed si .

Constraints:

First set of constraints enforce that every machine is assigned
a configuration.

Second set of constraints guarantee that every job is
scheduled somewhere.

Third set constraints ensure that the speed used by short jobs
is at most the speed left free by configurations.
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Constructing a schedule from Hybrid-MILP

Step 1: Convert an optimal solution x⋆ of (recursive-MILP) into a
feasible solution (x , y) of (hybrid-MILP) in time

2O(1/δ log2(1/δ)) logO(1)(N).

Step 2: From feasible solution of (hybrid-MILP), construct
schedule with makespan at most (1 +O(δ))T in time

2O(1/δ log2(1/δ)) +O(N).
Key ideas:

round configuration variables down and assign one
configuration to a fastest machine for every rounded variable

by use of basic solutions, we construct a schedule with small
multiplicative error at most (1 +O(δ))T

assign any machine speed at most 2 fractional assignment
variables from short jobs, as variables only become fractional
when preceding or current group runs out of machine capacity

finally, pack all remaining (short) jobs greedily

Matthias Mnich (TU Hamburg) ILP support sizes and Q||Cmax
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Outlook: RKQ||Cmax

Definition (RKQ||Cmax - Jansen, Maack)

Given M machines M with speeds si , and type k and N jobs J
with processing times pi ,j , find a schedule σ : J → M minimizing:

Cmax := max
i∈M

Ci = max
i∈M

∑
j∈σ−1(j)

pi ,j
si

Theorem

There is an EPTAS for RKQ||Cmax with run time

2O(K log(K)1/δ log3(1/δ) log(log(1/δ))) +O(K · N) .
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Summary

Integer Linear Programming

Any feasible bounded ILP with an m-row constraint matrix A
has an optimal solution with support size
s ≤ m · (log(3Amax) +

√
log(Amax)), where Amax is the largest

1-norm of any column of A.

Q||Cmax results

support bound run time improvement
simple recursive configurations formulation
Rohwedder general MILP algorithms

RKQ||Cmax results

significant run time improvement
direct generalization of Q||Cmax

https://arxiv.org/abs/2305.08432
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