New Support Size Bounds for Integer Programming, Applied to Makespan Minimization on Uniformly Related Machines

> S. Berndt¹, H. Brinkop², K. Jansen², <u>M. Mnich³</u>, and T. Stamm³.

> > 29 May 2024

¹University of Lübeck, Institute for Theoretical Computer Science, Lübeck, Germany

²Kiel University

³Hamburg University of Technology, Institute for Algorithms and Complexity, Hamburg, Germany

$Q||C_{\max}$ (makespan minimization on uniform machines)

Input:

Output:

$Q||C_{\max}$ (makespan minimization on uniform machines)

• *N* jobs (with processing

times $p_j \in \mathbb{N}$)

Output:

- N jobs (with processing times $p_j \in \mathbb{N}$)
- *M* machines (with processing speeds s_i ∈ ℕ)

Output:

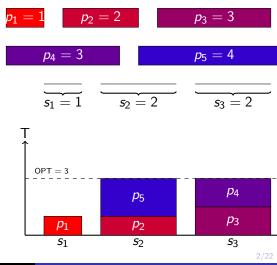
$p_1 = 1$ $p_2 = 2$	<i>p</i> ₃ = 3
$p_4 = 3$	<i>p</i> ₅ = 4
$\overbrace{s_1=1}^{\overbrace{s_1=1}}$ $\overbrace{s_2=1}^{\overbrace{s_2=1}}$	$= 2$ $\overbrace{s_3} = 2$

- N jobs

 (with processing times p_j ∈ ℕ)
- *M* machines (with processing speeds s_i ∈ ℕ)

Output:

 Schedule σ (minimizing makespan OPT)



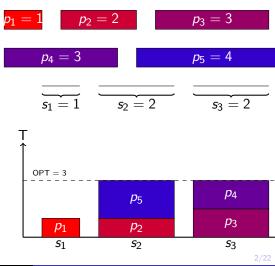
- N jobs

 (with processing times p_j ∈ ℕ)
- *M* machines
 (with processing speeds s_i ∈ ℕ)

Output:

 Schedule σ (minimizing makespan OPT)

 $Q||C_{\max}$ is NP-hard.



- N jobs

 (with processing times p_j ∈ ℕ)
- *M* machines (with processing speeds s_i ∈ ℕ)

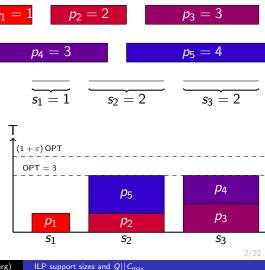
Output:

 Schedule σ (minimizing makespan OPT)

 $Q||C_{\max}$ is NP-hard.

Goal: compute $(1 + \varepsilon)$ -approximation

Matthias Mnich (TU Hamburg)



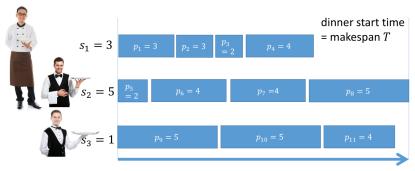
Approximate makespan minimization on uniform machines

Introduction Our result in context A recursive EPTAS for $Q||C_{max}$

Conference dinner on time

An application of $Q||C_{\max}|$

m waiters serve n participants of a banquet their food as quickly as possible



Problem context

 $P||C_{\max}$ (important special case with processing speeds $s_1 = \ldots = s_m$):

Jansen, Rohwedder (2018): Few constraints ILP algorithm

 $2^{\mathcal{O}(1/\varepsilon \log^2(1/\varepsilon))} + \mathcal{O}(N)$

Problem context

 $P||C_{\max}$ (important special case with processing speeds $s_1 = \ldots = s_m$):

Jansen, Rohwedder (2018): Few constraints ILP algorithm

 $2^{\mathcal{O}(1/\varepsilon \log^2(1/\varepsilon))} + \mathcal{O}(N)$

Berndt et al. (2021):

 $\begin{array}{l} \text{Small column norm constraint} \\ \text{matrix} \\ 2^{\mathcal{O}(1/\varepsilon \log(1/\varepsilon) \log(\log(1/\varepsilon)))} + \\ \mathcal{O}(N) \end{array}$

 \rightarrow

Introduction

Problem context

 $P||C_{max}$ (important special case with processing speeds $s_1 = \ldots = s_m$):

Jansen, Rohwedder (2018):

$$2^{\mathcal{O}(1/\varepsilon \log^2(1/\varepsilon))} + \mathcal{O}(N)$$

Berndt et al. (2021):

Few constraints ILP algorithm \rightarrow Small column norm constraint matrix $2^{\mathcal{O}(1/\varepsilon \log(1/\varepsilon) \log(\log(1/\varepsilon)))}$ + $\mathcal{O}(N)$

 $Q||C_{\max}$ (arbitrary processing speeds $s_1 \leq \ldots \leq s_m$):

Jansen et al. (2016): Few constraints MILP algorithm $2^{\mathcal{O}(1/\varepsilon \log^4(1/\varepsilon))} + \mathcal{O}(N)$

Introduction

Problem context

 $P||C_{max}$ (important special case with processing speeds $s_1 = \ldots = s_m$):

Jansen, Rohwedder (2018): Few constraints ILP algorithm \rightarrow Small column norm constraint

$$2^{\mathcal{O}(1/\varepsilon \log^2(1/\varepsilon))} + \mathcal{O}(N)$$

matrix $2^{\mathcal{O}(1/\varepsilon \log(1/\varepsilon) \log(\log(1/\varepsilon)))}$ + $\mathcal{O}(N)$

 $Q||C_{\max}$ (arbitrary processing speeds $s_1 \leq \ldots \leq s_m$):

Jansen et al. (2016): Our result (2023): Few constraints MILP algo- \rightarrow Small column norm constraint rithm matrix $2^{\mathcal{O}(1/\varepsilon \log^4(1/\varepsilon))} + \mathcal{O}(N)$ $\mathcal{O}(1/\varepsilon \log^3(1/\varepsilon) \log(\log(1/\varepsilon)))_+$ $\mathcal{O}(N)$

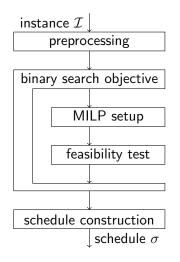
Run times to compute $(1 + \varepsilon)$ -approximate schedules for $Q || C_{\max}$

authors	year	run time
Hochbaum, Shmoy	s 1988	$\mathcal{N}^{\mathcal{O}(1/arepsilon^2\log(1/arepsilon))}$
Azar, Epstein	1998	$N^{\mathcal{O}(1/arepsilon^2)}$
Jansen	2010	$2^{\mathcal{O}(1/arepsilon^2\log^3(1/arepsilon))} + \mathit{N}^{\mathcal{O}(1)}$
Jansen, Robenek	2012	$2^{\mathcal{O}(1/arepsilon^2\log^3(1/arepsilon))} + \textit{N}^{\mathcal{O}(1)}$
Jansen et al.	2016	$2^{\mathcal{O}\left(1/arepsilon\log^4(1/arepsilon) ight)} + \textit{N}^{\mathcal{O}(1)}$
Our result	2023	$2^{\mathcal{O}\left(1/\varepsilon \log^3(1/\varepsilon)\log(\log(1/\varepsilon)) ight)} + \mathcal{O}(N)$

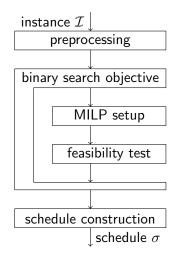
Run times to compute $(1 + \varepsilon)$ -approximate schedules for $Q || C_{\max}$

authors	year	run time		
Hochbaum, Shmoys	1988	$\mathcal{N}^{\mathcal{O}(1/arepsilon^2\log(1/arepsilon))}$		
Azar, Epstein	1998	$N^{\mathcal{O}(1/arepsilon^2)}$		
Jansen	2010	$2^{\mathcal{O}(1/arepsilon^2\log^3(1/arepsilon))} \ + \textit{N}^{\mathcal{O}(1)}$		
Jansen, Robenek	2012	$2^{\mathcal{O}(1/arepsilon^2\log^3(1/arepsilon))} + \textit{N}^{\mathcal{O}(1)}$		
Jansen et al.	2016	$2^{\mathcal{O}(1/\varepsilon \log^4(1/\varepsilon))} + N^{\mathcal{O}(1)}$		
Our result	2023	$2^{\mathcal{O}\left(1/\varepsilon \log^3(1/\varepsilon)\log(\log(1/\varepsilon)) ight)} + \mathcal{O}(N)$		
Special case $P C_{max}$: all machines have speed $s_1 = \ldots = s_m = 1$				
Jansen, Rohwedder	2019	$2^{\mathcal{O}(1/\varepsilon \log^2(1/\varepsilon))} + \mathcal{O}(N)$		
Berndt et. al.	2021	$2^{\mathcal{O}(1/\varepsilon \log(1/\varepsilon)\log(\log(1/\varepsilon)))} + \mathcal{O}(N)$		

Main result: faster $(1 + \varepsilon)$ -approximation for $Q || C_{\max}$

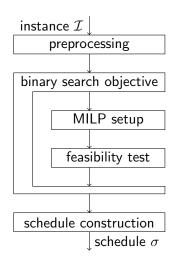


Main result: faster $(1 + \varepsilon)$ -approximation for $Q || C_{\max}$



- "Recursive configurations"
 - Simulate a new machine as an additional job on a faster machine

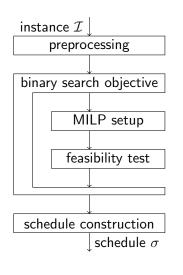
Main result: faster (1 + ε)-approximation for $Q||C_{\max}$



"Recursive configurations"

- Simulate a new machine as an additional job on a faster machine
- \Rightarrow MILP formulation with $A_{\max} \in \mathcal{O}(\log(1/\varepsilon))$ (instead of $\mathcal{O}(1/\varepsilon)$).

Main result: faster (1 + ε)-approximation for $Q||C_{\max}|$



"Recursive configurations"

- Simulate a new machine as an additional job on a faster machine
- \Rightarrow MILP formulation with $A_{\max} \in \mathcal{O}(\log(1/\varepsilon))$ (instead of $\mathcal{O}(1/\varepsilon)$).

Theorem (Linearized support bound)

Any feasible bounded ILP with m constraints and largest column 1-norm A_{max} has an optimal solution \mathbf{x} with $supp(\mathbf{x}) \leq 2m \log(1.46A_{max}).$

Further results

 $Q|HM|C_{max}$: (high multiplicity input of jobs *and* machines)

No known approximation scheme

Further results

 $Q|HM|C_{max}$: (high multiplicity input of jobs and machines)

No known approximation \rightarrow Our result (2023): scheme

 $\begin{array}{l} 2^{\mathcal{O}(1/\varepsilon\log^3(1/\varepsilon))\log(\log(1/\varepsilon)))} \\ \langle \mathcal{I} \rangle^{\mathcal{O}(1)} \end{array}$

Further results

 $Q|HM|C_{max}$: (high multiplicity input of jobs and machines)

No known approximation \rightarrow Our result (2023): scheme

$$\frac{2^{\mathcal{O}(1/\varepsilon \log^3(1/\varepsilon))\log(\log(1/\varepsilon)))}}{\langle \mathcal{I} \rangle^{\mathcal{O}(1)}}$$

Our result in context

 $R_{K}Q||C_{max}$: (K types of machines, each with uniform speeds)

```
\begin{array}{l} \mathsf{Jansen, Maack (2019):} \\ 2^{\mathcal{O}(K \log(K) \cdot 1/\varepsilon^3 \log^5(1/\varepsilon))} \\ + \\ (K \cdot N)^{\mathcal{O}(1)} \end{array} + \end{array}
```

Further results

 $Q|HM|C_{max}$: (high multiplicity input of jobs and machines)

No known approximation \rightarrow Our result (2023): scheme

$$\frac{2^{\mathcal{O}(1/\varepsilon \log^3(1/\varepsilon))\log(\log(1/\varepsilon)))}}{\langle \mathcal{I} \rangle^{\mathcal{O}(1)}}$$

Our result in context

 $R_{K}Q||C_{max}$: (K types of machines, each with uniform speeds)

 $\begin{array}{lll} \text{Jansen, Maack (2019):} & \to & \text{Our result (2023):} \\ 2^{\mathcal{O}(K \log(K) \cdot 1/\varepsilon^3 \log^5(1/\varepsilon))} & + & 2^{\mathcal{O}(K \log(K) \cdot 1/\varepsilon \log^3(1/\varepsilon)) \log(\log(1/\varepsilon)))} + \\ (K \cdot N)^{\mathcal{O}(1)} & & \mathcal{O}(K \cdot N) \end{array}$

Problem definition

Makespan minimization on uniformly related machines:

Given a set \mathcal{J} of N jobs with processing times $p_1, \ldots, p_n \in \mathbb{N}$, and a set \mathcal{M} of M machines with speeds $s_1, \ldots, s_m \in \mathbb{N}$, find a schedule $\sigma : \mathcal{J} \to \mathcal{M}$ which minimizes the makespan

$$C_{\max} := \max_{i \in \mathcal{M}} C_i = \max_{i \in \mathcal{M}} \sum_{j \in \sigma^{-1}(i)} \frac{p_j}{s_i}$$

Problem definition

Makespan minimization on uniformly related machines:

Given a set \mathcal{J} of N jobs with processing times $p_1, \ldots, p_n \in \mathbb{N}$, and a set \mathcal{M} of M machines with speeds $s_1, \ldots, s_m \in \mathbb{N}$, find a schedule $\sigma : \mathcal{J} \to \mathcal{M}$ which minimizes the makespan

$$C_{\max} := \max_{i \in \mathcal{M}} C_i = \max_{i \in \mathcal{M}} \sum_{j \in \sigma^{-1}(i)} \frac{p_j}{s_i}$$

Goal: efficient polynomial-time approximation scheme (EPTAS), which, for given $\varepsilon > 0$ and any instance \mathcal{I} in time $f(1/\varepsilon) + \langle \mathcal{I} \rangle^{\mathcal{O}(1)}$ computes a schedule of makespan $C_{\max} \leq (1 + \varepsilon)$ OPT.

Problem definition

Makespan minimization on uniformly related machines:

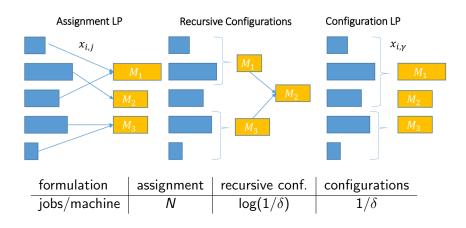
Given a set \mathcal{J} of N jobs with processing times $p_1, \ldots, p_n \in \mathbb{N}$, and a set \mathcal{M} of M machines with speeds $s_1, \ldots, s_m \in \mathbb{N}$, find a schedule $\sigma : \mathcal{J} \to \mathcal{M}$ which minimizes the makespan

$$C_{\max} := \max_{i \in \mathcal{M}} C_i = \max_{i \in \mathcal{M}} \sum_{j \in \sigma^{-1}(i)} \frac{p_j}{s_i}$$

Goal: efficient polynomial-time approximation scheme (EPTAS), which, for given $\varepsilon > 0$ and any instance \mathcal{I} in time $f(1/\varepsilon) + \langle \mathcal{I} \rangle^{\mathcal{O}(1)}$ computes a schedule of makespan $C_{\max} \leq (1 + \varepsilon) \text{OPT}$.

 \rightarrow EPTAS are fixed-parameter algorithms with parameter (1/ ε) \rightarrow M., van Bevern (2018): "Parameterized complexity of scheduling: 15 open problems"

Problem formulation overview



Approximate makespan minimization on uniform machines

Introduction Our result in context A recursive EPTAS for $Q||C_{max}$

An EPTAS design technique

Lemma

For any $\delta > 0$ and $\delta \rightarrow 0$ it holds that

$$(1+\mathcal{O}(\delta))^{\mathcal{O}(1)}=1+\mathcal{O}(\delta)+\mathcal{O}(\delta^2)+\ldots=1+\mathcal{O}(\delta)$$

.

Approximate makespan minimization on uniform machines

Introduction Our result in context A recursive EPTAS for $Q||C_{max}$

An EPTAS design technique

Lemma

For any $\delta > 0$ and $\delta \rightarrow 0$ it holds that

$$(1+\mathcal{O}(\delta))^{\mathcal{O}(1)}=1+\mathcal{O}(\delta)+\mathcal{O}(\delta^2)+\ldots=1+\mathcal{O}(\delta)$$

 \Rightarrow Can add errors of constant multiples of δ constantly many times, and have input independent constant c such that $\delta = \varepsilon/c$.

EPTAS overview

Preprocess the instance

- Remove negligible jobs and machines
- Binary search for the makespan
- Round the processing times and machine speeds
- Solving an MILP formulation
 - Construct an MILP
 - Find a feasible solution
- Onstructing a schedule
 - Round the configuration variables
 - Assign the jobs & configurations

Preprocessing

Introduction Our result in context <u>A recur</u>sive EPTAS for Q||C_{max}

1) Remove negligibly short jobs and slow machines:

$$p_i \geq p_{\mathsf{max}} \cdot \delta / N$$
 $s_i \geq s_{\mathsf{max}} \cdot \delta / N$

Preprocessing

1) Remove negligibly short jobs and slow machines:

$$p_i \ge p_{\max} \cdot \delta / N$$
 $s_i \ge s_{\max} \cdot \delta / N$

A recursive EPTAS for $Q||C_{max}$

2) Bound makespan T and perform binary search:

 $p_{\max}/s_{\max} \leq T \leq N \cdot p_{\max}/s_{\max}$

Preprocessing

1) Remove negligibly short jobs and slow machines:

$$p_i \ge p_{\max} \cdot \delta / N$$
 $s_i \ge s_{\max} \cdot \delta / N$

A recursive EPTAS for $Q||C_{max}$

2) Bound makespan T and perform binary search:

$$p_{
m max}/s_{
m max} \leq T \leq N \cdot p_{
m max}/s_{
m max}$$

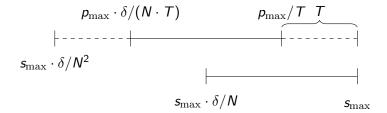
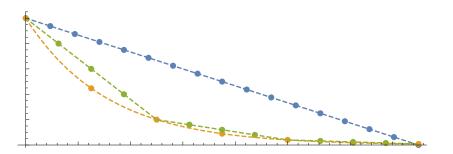


Figure: Overview on the range of parameters.

Introduction Our result in context A recursive EPTAS for *Q*||*C*_{max}

Rounding scheme



rounding	arithmetic	geometric	geo-arithmetic
points	$1/\delta^2$	$\log_{1+\delta}(1/\delta)$	$1/\delta \log(1/\delta)$
conf. size	2	$1/\delta$	$\log(1/\delta)$
variables	$\mathcal{O}(1/\delta^2)$	$2^{\mathcal{O}(1/\delta \log(1/\delta))}$	$2^{\mathcal{O}(\log^2(1/\delta))}$

Constructing an MILP

$$\sum_{\gamma \in \mathcal{C}_{i}} x_{i,\gamma} - \mu_{i} = \sum_{i'=1}^{\tau} \sum_{\gamma \in \mathcal{C}_{i'}} \gamma_{i} \cdot x_{i',\gamma} - \eta_{i} \ge 0 \qquad \text{for } i = 1, \dots, \tau$$
$$x_{i,\gamma} \ge 0 \text{ for } i = 1, \dots, \tau, \gamma \in \mathcal{C}_{i}$$
$$x_{i,\gamma} \in \mathbb{Z}_{\ge 0} \text{ for } i = 1, \dots, L, \gamma \in \mathcal{C}_{i} \qquad (\text{recursive-MILP})$$

 $x_{i,\gamma}$ number of configurations γ on machines of speed s_i .

- $\begin{aligned} \mathcal{C}_i &: \text{set of configurations for } s_i \\ \mu_i &: \# \text{machines of speed } s_i \\ \tau &\in \mathcal{O}(1/\delta \log(N/\delta)) \end{aligned}$
- $m{\gamma}$: a configuration vector $\eta_i \ \# \text{jobs of processing time } s_i$ $L \in \mathcal{O}(1/\delta \log(1/\delta))$

Support size bounds for ILPs

Classical result: (Eisenbrand, Shmonin 2004). Any feasible and bounded IP with *m* constraints admits a solution with support size $s \leq 2mlog(4m\Delta)$, where Δ is the largest absolute value of any entry in the constraint matrix *A*.

Support size bounds for ILPs

Classical result: (Eisenbrand, Shmonin 2004). Any feasible and bounded IP with *m* constraints admits a solution with support size $s \leq 2mlog(4m\Delta)$, where Δ is the largest absolute value of any entry in the constraint matrix *A*.

New main result: Any feasible bounded ILP with an *m*-row constraint matrix *A* has an optimal solution with support size $s \le m \cdot (\log(3A_{\max}) + \sqrt{\log(A_{\max})})$, where A_{\max} is the largest 1-norm of any column of *A*.

Support size bounds for ILPs

Classical result: (Eisenbrand, Shmonin 2004). Any feasible and bounded IP with *m* constraints admits a solution with support size $s \leq 2mlog(4m\Delta)$, where Δ is the largest absolute value of any entry in the constraint matrix *A*.

New main result: Any feasible bounded ILP with an *m*-row constraint matrix *A* has an optimal solution with support size $s \le m \cdot (\log(3A_{\max}) + \sqrt{\log(A_{\max})})$, where A_{\max} is the largest 1-norm of any column of *A*.

Our result builds on determinant analysis and Siegel's Lemma (1929) from number theory.

.

Finding a feasible solution

Lemma (Lenstra, Kannan)

An MILP instance \mathcal{I} with n integral variables, s of which are non-zero, can be solved or proved infeasible with run time:

$$\binom{n}{s} \cdot s^{s} \cdot \langle \mathcal{I} \rangle^{\mathcal{O}(1)} = 2^{\mathcal{O}(s \log(n))} \cdot \langle \mathcal{I} \rangle^{\mathcal{O}(1)}$$

Finding a feasible solution

Lemma (Lenstra, Kannan)

An MILP instance \mathcal{I} with n integral variables, s of which are non-zero, can be solved or proved infeasible with run time:

$$\binom{n}{s} \cdot s^{s} \cdot \langle \mathcal{I} \rangle^{\mathcal{O}(1)} = 2^{\mathcal{O}(s \log(n))} \cdot \langle \mathcal{I} \rangle^{\mathcal{O}(1)}$$

We have $n \in 2^{\mathcal{O}(\log^2(1/\delta))}$ and $s \in \mathcal{O}(1/\delta \log(1/\delta) \log(\log(1/\delta)))$.

$$\Rightarrow 2^{\mathcal{O}(1/\delta \log^3(1/\delta) \log(\log(1/\delta)))} \cdot \log^{\mathcal{O}(1)}(N)$$

Constructing a schedule

- Make all $x_{i,\gamma}$ integral.
 - Use vertex solution of fractional part of recursive-MILP.
 - For a machine speed $\mathcal{O}(1/\delta \log(1/\delta))$ many pos. variables.
 - Round down, loss geometric sum, small on fastest machine.
- Recursively construct a schedule, resolving virtual machines.

Faster Schedule Construction

So far: EPTAS for $Q||C_{\max}$ with almost linear run time $2^{O(1/\varepsilon \log^3(1/\varepsilon) \log(\log(1/\varepsilon)))} + O(N \log^2(N)).$

Faster Schedule Construction

So far: EPTAS for $Q||C_{\max}$ with almost linear run time $2^{O(1/\varepsilon \log^3(1/\varepsilon) \log(\log(1/\varepsilon)))} + O(N \log^2(N)).$

Bottleneck with respect to N: transforming MILP solution to feasible schedule.

Faster Schedule Construction

So far: EPTAS for $Q||C_{\max}$ with almost linear run time $2^{O(1/\varepsilon \log^3(1/\varepsilon) \log(\log(1/\varepsilon)))} + O(N \log^2(N)).$

Bottleneck with respect to N: transforming MILP solution to feasible schedule.

- conventional MILP formulation (hybrid-MILP) using both configuration and assignment variables to improve the run time in *N*.
- First, transform solution of (recursive-MILP) into a solution of (hybrid-MILP) in sublinear time in N
- Then, we construct schedule from solution to (hybrid-MILP) in linear time.

Faster Schedule Construction

So far: EPTAS for $Q||C_{\max}$ with almost linear run time $2^{O(1/\varepsilon \log^3(1/\varepsilon) \log(\log(1/\varepsilon)))} + O(N \log^2(N)).$

Bottleneck with respect to N: transforming MILP solution to feasible schedule.

- conventional MILP formulation (hybrid-MILP) using both configuration and assignment variables to improve the run time in *N*.
- First, transform solution of (recursive-MILP) into a solution of (hybrid-MILP) in sublinear time in N
- Then, we construct schedule from solution to (hybrid-MILP) in linear time.

This transforms a solution of (recursive-MILP) into a valid schedule in time linear in N.

Hybrid-MILP _____

Introduction Our result in context A recursive EPTAS for $Q||C_{max}$

Then (hybrid-MILP) is has no recursive configurations.

Hybrid-MILP

Introduction Our result in context A recursive EPTAS for $Q||C_{max}$

Then (hybrid-MILP) is has no recursive configurations.

Variables:

configuration variables x_{i,γ} that indicate how often a configuration γ is used on machine i

Hybrid-MILP

Then (hybrid-MILP) is has no recursive configurations.

Variables:

- configuration variables $x_{i,\gamma}$ that indicate how often a configuration γ is used on machine *i*
- handle short jobs (with processing time ≤ δ/s_i on machine i) via assignment variables y_{i,j} indicating how many jobs of processing time p_j are assigned to machines of speed s_i.

Hybrid-MILP

Introduction Our result in context A recursive EPTAS for $Q||C_{max}|$

Then (hybrid-MILP) is has no recursive configurations.

Variables:

- configuration variables $x_{i,\gamma}$ that indicate how often a configuration γ is used on machine *i*
- handle short jobs (with processing time ≤ δ/s_i on machine i) via assignment variables y_{i,j} indicating how many jobs of processing time p_j are assigned to machines of speed s_i.

Constraints:

• First set of constraints enforce that every machine is assigned a configuration.

Hybrid-MILP

Introduction Our result in context A recursive EPTAS for $Q||C_{max}|$

Then (hybrid-MILP) is has no recursive configurations.

Variables:

- configuration variables $x_{i,\gamma}$ that indicate how often a configuration γ is used on machine *i*
- handle short jobs (with processing time ≤ δ/s_i on machine i) via assignment variables y_{i,j} indicating how many jobs of processing time p_j are assigned to machines of speed s_i.

Constraints:

- First set of constraints enforce that every machine is assigned a configuration.
- Second set of constraints guarantee that every job is scheduled somewhere.

Hybrid-MILP

Then (hybrid-MILP) is has no recursive configurations.

Variables:

- configuration variables $x_{i,\gamma}$ that indicate how often a configuration γ is used on machine *i*
- handle short jobs (with processing time ≤ δ/s_i on machine i) via assignment variables y_{i,j} indicating how many jobs of processing time p_j are assigned to machines of speed s_i.

Constraints:

- First set of constraints enforce that every machine is assigned a configuration.
- Second set of constraints guarantee that every job is scheduled somewhere.
- Third set constraints ensure that the speed used by short jobs is at most the speed left free by configurations.

Constructing a schedule from Hybrid-MILP

Step 1: Convert an optimal solution x^* of (recursive-MILP) into a feasible solution (x, y) of (hybrid-MILP) in time $2^{\mathcal{O}(1/\delta \log^2(1/\delta))} \log^{\mathcal{O}(1)}(N)$.

Step 1: Convert an optimal solution x^* of (recursive-MILP) into a feasible solution (x, y) of (hybrid-MILP) in time $2^{\mathcal{O}(1/\delta \log^2(1/\delta))} \log^{\mathcal{O}(1)}(N)$.

Step 2: From feasible solution of (hybrid-MILP), construct schedule with makespan at most $(1 + O(\delta))T$ in time $2^{O(1/\delta \log^2(1/\delta))} + O(N)$.

Step 1: Convert an optimal solution x^* of (recursive-MILP) into a feasible solution (x, y) of (hybrid-MILP) in time $2^{\mathcal{O}(1/\delta \log^2(1/\delta))} \log^{\mathcal{O}(1)}(N)$.

Step 2: From feasible solution of (hybrid-MILP), construct schedule with makespan at most $(1 + O(\delta))T$ in time $2^{O(1/\delta \log^2(1/\delta))} + O(N)$.

Key ideas:

 round configuration variables down and assign one configuration to a fastest machine for every rounded variable

Step 1: Convert an optimal solution x^* of (recursive-MILP) into a feasible solution (x, y) of (hybrid-MILP) in time $2^{\mathcal{O}(1/\delta \log^2(1/\delta))} \log^{\mathcal{O}(1)}(N)$.

Step 2: From feasible solution of (hybrid-MILP), construct schedule with makespan at most $(1 + O(\delta))T$ in time $2^{O(1/\delta \log^2(1/\delta))} + O(N)$.

Key ideas:

- round configuration variables down and assign one configuration to a fastest machine for every rounded variable
- by use of basic solutions, we construct a schedule with small multiplicative error at most $(1 + O(\delta))T$

Step 1: Convert an optimal solution x^* of (recursive-MILP) into a feasible solution (x, y) of (hybrid-MILP) in time $2^{\mathcal{O}(1/\delta \log^2(1/\delta))} \log^{\mathcal{O}(1)}(N)$.

Step 2: From feasible solution of (hybrid-MILP), construct schedule with makespan at most $(1 + O(\delta))T$ in time $2^{O(1/\delta \log^2(1/\delta))} + O(N)$.

Key ideas:

- round configuration variables down and assign one configuration to a fastest machine for every rounded variable
- by use of basic solutions, we construct a schedule with small multiplicative error at most $(1 + O(\delta))T$
- assign any machine speed at most 2 fractional assignment variables from short jobs, as variables only become fractional when preceding or current group runs out of machine capacity

Step 1: Convert an optimal solution x^* of (recursive-MILP) into a feasible solution (x, y) of (hybrid-MILP) in time $2^{\mathcal{O}(1/\delta \log^2(1/\delta))} \log^{\mathcal{O}(1)}(N)$.

Step 2: From feasible solution of (hybrid-MILP), construct schedule with makespan at most $(1 + O(\delta))T$ in time $2^{O(1/\delta \log^2(1/\delta))} + O(N)$.

Key ideas:

- round configuration variables down and assign one configuration to a fastest machine for every rounded variable
- by use of basic solutions, we construct a schedule with small multiplicative error at most $(1 + O(\delta))T$
- assign any machine speed at most 2 fractional assignment variables from short jobs, as variables only become fractional when preceding or current group runs out of machine capacity
- finally, pack all remaining (short) jobs greedily

Outlook: $R_K Q || C_{max}$

Definition $(R_{\kappa}Q||C_{\max} - Jansen, Maack)$

Given *M* machines \mathcal{M} with speeds s_i , and type *k* and *N* jobs \mathcal{J} with processing times $p_{i,j}$, find a schedule $\sigma : \mathcal{J} \to \mathcal{M}$ minimizing:

$$\mathcal{C}_{\mathsf{max}} := \max_{i \in \mathcal{M}} \mathcal{C}_i = \max_{i \in \mathcal{M}} \sum_{j \in \sigma^{-1}(j)} rac{p_{i,j}}{s_i}$$

Outlook: $R_K Q || C_{max}$

Definition $(R_{\kappa}Q||C_{\max} - Jansen, Maack)$

Given *M* machines \mathcal{M} with speeds s_i , and type *k* and *N* jobs \mathcal{J} with processing times $p_{i,j}$, find a schedule $\sigma : \mathcal{J} \to \mathcal{M}$ minimizing:

$$\mathcal{C}_{\mathsf{max}} := \max_{i \in \mathcal{M}} \mathcal{C}_i = \max_{i \in \mathcal{M}} \sum_{j \in \sigma^{-1}(j)} rac{p_{i,j}}{s_i}$$

Theorem

There is an EPTAS for $R_K Q || C_{max}$ with run time

$$2^{\mathcal{O}(K\log(K)1/\delta\log^3(1/\delta)\log(\log(1/\delta)))} + \mathcal{O}(K \cdot N)$$
 .

Summary

- Integer Linear Programming
 - Any feasible bounded ILP with an *m*-row constraint matrix A has an optimal solution with support size $s \le m \cdot (\log(3A_{\max}) + \sqrt{\log(A_{\max})})$, where A_{\max} is the largest 1-norm of any column of A.
- $Q||C_{\max}$ results
 - support bound run time improvement
 - simple recursive configurations formulation
 - Rohwedder general MILP algorithms

Introduction Our result in context A recursive EPTAS for Q||C_{max}

Summary

- Integer Linear Programming
 - Any feasible bounded ILP with an *m*-row constraint matrix A has an optimal solution with support size $s \le m \cdot (\log(3A_{\max}) + \sqrt{\log(A_{\max})})$, where A_{\max} is the largest 1-norm of any column of A.
- $Q||C_{\max}$ results
 - support bound run time improvement
 - simple recursive configurations formulation
 - Rohwedder general MILP algorithms
- $R_K Q || C_{max}$ results
 - significant run time improvement
 - direct generalization of $Q||C_{\max}|$

Summary

Introduction Our result in context A recursive EPTAS for $Q||C_{max}$

- Integer Linear Programming
 - Any feasible bounded ILP with an *m*-row constraint matrix A has an optimal solution with support size $s \le m \cdot (\log(3A_{\max}) + \sqrt{\log(A_{\max})})$, where A_{\max} is the largest 1-norm of any column of A.
- $Q||C_{max}$ results
 - support bound run time improvement
 - simple recursive configurations formulation
 - Rohwedder general MILP algorithms
- $R_K Q || C_{max}$ results
 - significant run time improvement
 - direct generalization of $Q||C_{\max}$

https://arxiv.org/abs/2305.08432