Martin Skutella
(joint work with Sven J&ger)

May 12, 2021

schedulingseminar. com

Berlin Mathematics Research Center

MATH#+*



A simple proof of the Moore-Hodgson Algorithm for minimizing the
number of late jobs

Joseph Cheriyan®'* R. Ravi®?, Martin Skutella®?

@ CE&O0 Dept., University of Waterloo, Waterloo, ON, Canada N2L 3G1
b Tepper School of Business, Carnegie Mellon University, Pittsburgh, USA
¢ Institute of Mathematics, Technische Universitat Berlin, Germany

Abstract

The Moore-Hodgson Algorithm minimizes the number of late jobs on a single machine. That is, it
finds an optimal schedule for the classical problem 1 | | 37 U;. Several proofs of the correctness of this
algorithm have been published. We present a new short proof.
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find optimal solution at the cost of an exponential
worst-case running time; sometimes work well in practice;

Dynamic Programming, Integer Programming, Constraint
Programming, Branch and Bound, ...

work well in practice but usually do not come with a
worst-case performance guarantee or running time bound;

local search, simulated annealing, genetic algorithms, greedy
heuristics, machine learning, ...

find in polynomial time a feasible solution with
an a priori bound on the quality of the computed solution;
combinatorial algorithms, LP-based, primal-dual, greedy, local
search, iterative rounding, ...



An a-approximation algorithm for a minimization problem finds in
polynomial time a feasible solution whose value is within a factor of «
of the optimum. The factor o > 1 is called

A family of (1 4 €)-approximation algorithms for each ¢ > 0 is a

A PTAS whose running time is polynomial in the input size and /= is
a

Scheduling identical parallel machines with makespan objective: P | | Cpax
List scheduling is a 2-approximation algorithm

List scheduling in order of non-increasing job sizes is a
4/3-approximation algorithm

FPTAS for fixed number of machines m
PTAS



njobs j =1,...,n, processing times p; > 0, weights w; > 0

schedule jobs on a single machine; minimize 3, w;C;
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Sequencing jobs in order of non-increasing ratios %j/p; is optimal.



Proof of WSPT Rule via Two-Dimensional Gantt Charts

Eastman, Even & lsaacs 1964; Goemans & Williamson 2000

p3 time

w;/p; = diagonal slope of rectangle representing job j
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njobs j =1,...,n, processing times p; > 0, weights w; > 0

schedule jobs on m parallel machines; minimize _; w; C;
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weakly NP-hard for two machines

strongly NP-hard if m part of input

FPTAS for fixed number of machines m

PTAS



Optimal if w; =1 for all j (or: p;j = 1 for all j).
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Tight performance ratio: 5= ~ 1.207




Fast Single Machine Lower Bound

Lemma (Eastman, Even & Isaacs 1964).
5 (OPT1—3 3%, wip;) < OPTm—333;wip;

weight

1 -
Etlme



5 (OPT1—3 3%, wip;) < OPTm—333;wip;

WSPT start times < single machine start times

Thus:
WSPT, < L(OPTy— 537, wip)) + 35; wip)

<OPT,+3>;wp < 30PT,




WSPT has performance ratio exactly HT‘E ~ 1.207

explicit construction of worst-case instance (for m — o0)
considerably simplified proof (but same idea)

construction of worst-case instance

w; = p; for all j
at most m — 1 large jobs and many tiny jobs
all large jobs are extra-large

all extra-large jobs have same size
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Objective Function in Terms of Machine Loads (for w; = p))

weight one machine /:
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m-machine schedule:

n

3

PG = 3) LP+3) pf
1

j= i=1 j=1

notice:
— » ik = )b (fixed)
Ly Ly Lytme > S0 L2 minimal if Ly = - = L,




dpG=3) LP+3) pf
J ,- J

WSPT:

3. L;? remains unchanged

Zj pj2 decreased by 6 > 0

OPT:

S Li? unchanged or decreases

ZJ- pj2 decreased by same § > 0

I ti'me — WSPT

Lemin OPT unchanged or increased
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Increase in objective:
IS+ yi)?+ v — (1 +x)* = x?)
=22 (% = x?) as i xi = Yi

Z;(%’Q - Xi2) >0

N =
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Increase in objective:
iz +22 - (1+y) -y  Xi(@*-y?) <0

= Zi(zi2 - yiz) as ) zi=..Yi
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distributions of independent random processing times p; > 0

Prlp; > t]
1LI—th 1i 1t

t

\

find m-machine scheduling policy minimizing E[Z WJCJ]

scheduling policy must be non-anticipative, i.e., decision made at
time t may only depend on the information known at time t

0 t t time



List scheduling in order of non-increasing w;/ E[p;].

WSEPT is optimal for single machine

WSEPT has performance ratio 1+ 3(1+ A) with A > f [] Bl for all J

WSEPT has no constant performance ratio.

WSEPT has performance ratio 1+ 3(v2 — 1)(1 + A).



jobs arrive one by one; must be immediately assigned to machines

on each machine, assigned jobs are optimally sequenced (WSPT)

assign job to machine minimizing increase of current objective value

MinIncrease has competitive ratio 5 — 5.

If jobs arrive in order of non-increasing or non-decreasing wj/p;, then
Minlncrease achieves competitive ratio (1 + v/2).

MinIncrease has competitive ratio 3(1+/2).



J. Bruno, E. G. Coffman, Jr., and R. Sethi: Scheduling independent tasks to reduce mean
finishing time, Commun. ACM 17(7):382-387, 1974

W. L. Eastman, S. Even, and |. M. Isaacs: Bounds for the Optimal Scheduling of n Jobs on
m Processors, Management Science 11(2):268-279, 1964

M. X. Goemans and D. P. Williamson: Two-Dimensional Gantt Charts and a Scheduling
Algorithm of Lawler, SIAM J. Discrete Math. 13(3):281-294, 2000

S. Jager: Approximation in Deterministic and Stochastic Machine Scheduling, PhD thesis,
TU Berlin, 2021

S. Jager, M. Skutella: Generalizing the Kawaguchi-Kyan Bound to Stochastic Parallel
Machine Scheduling, STACS 2018: 43:1-43:14

T. Kawaguchi and S. Kyan: Worst Case Bound of an LRF Schedule for the Mean
Weighted Flow-time Problem, SIAM J. Comput. 15(4):1119-1129, 1986

N. Megow, M. Uetz, and T. Vredeveld: Models and Algorithms for Stochastic Online
Scheduling, Math. Oper. Res. 31(3):513-525, 2006

R.H. Mé&hring, A.S. Schulz, and M. Uetz: Approximation in Stochastic Scheduling: The
Power of LP-Based Priority Policies, J. ACM 46(6):924-942, 1999

M. H. Rothkopf: Scheduling with random service times, Man. Sci. 12(9): 707-713, 1966
S. K. Sahni: Algorithms for Scheduling Independent Tasks, J. ACM 23(1):116-127, 1976
U. Schwiegelshohn: An Alternative Proof of the Kawaguchi-Kyan Bound for the
Largest-Ratio-First Rule, Oper. Res. Lett. 39:255-259, 2011

M. Skutella and G. J. Woeginger: A PTAS for Minimizing the Total Weighted Completion
Time on Identical Parallel Machines, Math. Oper. Res. 25(1):63-75, 2000

W. E. Smith: Various Optimizers for Single-stage Production, Naval Res. Logist. Quart.
3(1-2):59-66, 1956



