
1/55

Basics Verification Extensions Complexity Isolines Concluding

Divisible load theory

Maciej Drozdowski
Maciej.Drozdowski@cs.put.poznan.pl

Institute of Computing Science, Poznań University of Technology,
Poznań, Poland

https://schedulingseminar.com/
23.X.2024

mailto:Maciej.Drozdowski@cs.put.poznan.pl
https://schedulingseminar.com

2/55

Basics Verification Extensions Complexity Isolines Concluding

Outline of the presentation

1 basic formulation of DLT

2 experimental verification of DLT

3 extending the model

4 computational complexity

5 performance visualization with isolines

3/55

Basics Verification Extensions Complexity Isolines Concluding

Divisible load theory

Divisible load theory (DLT) – is a performance and scheduling
model of data-parallel applications.

Load – is usually some data to be processed.

In DLT it is assumed that:

1 computations can be divided into parts of arbitrary sizes,

2 these parts can be processed independently in parallel.

4/55

Basics Verification Extensions Complexity Isolines Concluding

Divisible load theory

Consequently in divisible computations:
⇒ grain of parallelism is small,
⇒ data dependencies are negligible,
⇒ schedule optimization consists in partitioning the load according
to the speeds of communication, computation and other platform
features.

Examples of divisible applications:1

• distributed searching for patterns in text, audio, graphic etc. files,
• database, measurements, image processing,
• compression,
• some linear algebra algorithms, and simulation,
• MapReduce big data processing.

1more on the applications in the following

5/55

Basics Verification Extensions Complexity Isolines Concluding

Basic scheduling model

...P2
A2 Pm

A
mP1

A1

C1,S1 C2,S2 Cm,Sm

P0

• A single level tree (a.k.a. a star) interconnection
• P0 - originator, distributes load, does not compute
• P1, . . . ,Pm - processors (workers) receive and process the load
• V - load size (e.g. in bytes)
• Si + αCi - communication delay for sending load α to Pi

• Aiα - computation time for load α on Pi

For the simplicity of the exposition let us assume (for a moment)
that results return time is negligible.

6/55

Basics Verification Extensions Complexity Isolines Concluding

A schedule with negligible return times

0

P2

P3

P1

S + C1 1 1a

a1 1A

a2 2A

a3 3A

S + C2 2 2a S + C3 3 3aP0 comm

comp

comp

comp

Cmax

αi - size of load part sent to processor Pi

Cmax - schedule length

The challenge: choose αi s such that Cmax is as short as possible.

Optimality principle: since result return time is negligible, all
computations must finish at the same time.

7/55

Basics Verification Extensions Complexity Isolines Concluding

Solution by a system of linear equations

0

P2

P3

P1

S + C1 1 1a

a1 1A

a2 2A

a3 3A

S + C2 2 2a S + C3 3 3aP0 comm

comp

comp

comp

Cmax

αiAi = Si+1 + αi+1(Ci+1 + Ai+1) for i = 1, . . . ,m − 1 (1)
m∑
i=1

αi = V (2)

The above system of linear equations can be solved in O(m) time
due to its special structure:

8/55

Basics Verification Extensions Complexity Isolines Concluding

Closed form solution of a system of linear equations

αiAi = Si+1 + αi+1(Ai+1 + Ci+1) for i = 1, . . . ,m − 1
m∑
i=1

αi = V

αi can be expressed as a linear function kiαm + li of αm,

ki = ki+1(Ai+1 + Ci+1)/Ai for i = 1, . . . ,m − 1

li = Si+1/Ai + li+1(Ai+1 + Ci+1)/Ai for i = 1, . . . ,m − 1

km = 1, lm = 0,

Then we have αm =
V −

∑m
i=1 li∑m

i=1 ki
.

9/55

Basics Verification Extensions Complexity Isolines Concluding

Closed form solution – observations

Recall:

αm =
V −

∑m
i=1 li∑m

i=1 ki
li =

Si+1

Ai
+ li+1

Ai+1+Ci+1

Ai
i = 1, . . . ,m − 1

∀i , Si = 0 ⇒ ∀i , li = 0 and ∀i , αi > 0 for arbitrarily large m
(strange! unrealistic)

Si > 0 ⇒ a feasible solution (i.e. with ∀αi > 0) may not exist,
because load size V is too small to activate all processors.

⇒ communication startup Si is necessary as a practical
irreducible yardstick of time.2

2
or some other discrete element

10/55

Basics Verification Extensions Complexity Isolines Concluding

Outline of the presentation

1 basic formulation of DLT

2 experimental verification of DLT

3 extending the model

4 computational complexity

5 performance and isolines

11/55

Basics Verification Extensions Complexity Isolines Concluding

DLT validity

Is DLT correctly representing real-world applications?

Let us consider the following verification framework:

Measure system, and application parameters Ai ,Si ,Ci for
machines i = 1, . . . ,m.

Split the load size V into parts of sizes α1, . . . , αm according
the model formulas (1)-(2).

Calculate expected (theoretical) execution time CT
max .

Execute the application with the calculated work split
α1, . . . , αm and measure real schedule length CR

max .

How far is CR
max from CT

max?

12/55

Basics Verification Extensions Complexity Isolines Concluding

Representing returning of the results

A0a0

A1a1 A1a1

A2a2 A2a2

A3a3 A3a3

A0a0

S +C2 2 2a

S +C1 1 1a S +C1 1 1a

S +C2 2 2a

S +C3 3 3a S +C3 3 3a

a)

S +C ()2 2 2ba

S +C ()1 1 1ba S +C ()1 1 1ba

S +C ()2 2 2ba

S +C ()3 3 3b a S +C ()3 3 3b a

b)

Figure: a)LIFO, b)FIFO orders of returning results.

β(α) is the size of the results as a function of the input load size.

13/55

Basics Verification Extensions Complexity Isolines Concluding

Model relative error

1E-4

1E-3

1E-2

V

1E-1

1E0

0 2E5 4E5 6E5 8E5 1E6

Platform: Transputer system (ca. 1996)
Application: search for a pattern in a text file, LIFO
Error: < 1% feasible.

14/55

Basics Verification Extensions Complexity Isolines Concluding

Model relative error

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0 0.5E6 1.0E6 1.5E6 2.0E6 2.5E6

FIFO

LIFO

V

Platform: IBM SP2, PVM (ca. 1997)
Application: LZW compression
Error: 9− 13% feasible.

15/55

Basics Verification Extensions Complexity Isolines Concluding

Model relative error

0

0.1

0.2

0.3

0.4

0.5

0 1E5 2E5 3E5 4E5

LIFO

FIFO

V

Platform: Windows NT, MPI (ca. 1999)
Application: database join
Error: < 10% feasible.

16/55

Basics Verification Extensions Complexity Isolines Concluding

Model relative error

0
0

0.1

0.2

0.3

0.4

1E6 2E6 3E6 4E6 5E6 6E6

socket

shmem

RPC

PVM

MPI

V

Platform: Silicon Graphics Origin 3000, various communication
technologies (ca. 2003)
Application: search for pattern in a text file
Error: < 5% feasible.

17/55

Basics Verification Extensions Complexity Isolines Concluding

Conclusion on model accuracy

Conclusion:

overall accuracy of DLT model is good

accuracy improves with problem size V

DLT model is practical and relevant.

18/55

Basics Verification Extensions Complexity Isolines Concluding

Outline of the presentation

1 basic formulation of DLT

2 experimental verification of DLT

3 extending the model

4 computational complexity

5 performance and isolines

19/55

Basics Verification Extensions Complexity Isolines Concluding

Extending the model

Presented extensions:

multi-installment processing

interconnection networks

and time windows, and cost, and memory

also hierarchical memory

Default assumptions:

originator P0 is not computing, but only communicating

result return time is negligible and is not explicitly scheduled

worker processors can receive load and compute in parallel

set of used processors and communication sequence are given3

3
more on this in the complexity section

20/55

Basics Verification Extensions Complexity Isolines Concluding

Multiple Installments

Why multi-installment processing?

0

P2

P3

P1

S + C1 1 1a

a1 1A

a2 2A

a3 3A

S + C2 2 2a S + C3 3 3aP0 comm

comp

comp

comp

Cmax

6

long communication delay

Example:
m = 1 processor, V = 10,
C1 = 1,A1 = 1, S1 = 0,

1 installment:
Cmax = V (C1 + A1) = 20.

k = 10 installments:
Cmax = V (C1/k + A1) = 11.

⇒ Multi-installment processing allows to shorten the first
communication delay, start computations earlier4

Practical question: what should the number k of installments be?

4
also a method to respect processor limited memory

21/55

Basics Verification Extensions Complexity Isolines Concluding

Multiple Installments - calculating partitions
Partial view of a schedule for multi-installment processing in a star

... ...

... ...

...

...

...
... ...

...

...

Pi

Pm

P1

P0 S +C1 1 11a S+Ci i ija S+Ci i i ja , +1

A1 11a A1 1 +1a jA1 1a j

S +Cm mja S +C1 1, +1a j

Am mjaAm mja , -1

Ai ija Ai i ja , +1
...

6 6

System of linear equations to calculate installments sizes αij ,

i = 1, . . . ,m — processors, j = 1, . . . , k — installments:

αijAi =
m∑

ℓ=i+1

(Sℓ + Cℓαℓ,j) +
i∑

ℓ=1

(Sℓ + Cℓαℓ,j+1)

for i = 1, . . . ,m, j = 1, . . . , k (3)

V =
k∑

j=1

m∑
i=1

αij (4)

22/55

Basics Verification Extensions Complexity Isolines Concluding

Interconnection Networks – Chain

0

P2 P3 Pi+1
Ai+1

Pi

P2

A2 A3 Ai

P3

P4

Pm
A

m

P1

P1

A1

C1,S1

S+ V C1 1 1(-)a

a1 1A

a2 2A

a3 3A

a4 4A

S + V C2 2 2(-)a-a1

S + C3 4 3a

C2,S2 Ci,Si

aa

bb

Cmax

comm

comm

comm

comp

comp

comp

... ...

Load partition calculation:

αiAi = Si + Ci

m∑
j=i+1

αj + αi+1Ai+1 for i = 1, . . . ,m − 1 (5)

m∑
i=1

αi = V (6)

23/55

Basics Verification Extensions Complexity Isolines Concluding

Interconnection Networks – 2D-Mesh

1

1 1

12

2

2

2

2

2

2

2

34

4

4

4

4

4

4

4

4

4

4

5

5 5

5

5

5

5

6

6 6

65 4

3

3

3

3

3

3

3

3 3

3

3

0

Challenge: find a load scattering algo-
rithm in a mesh!

Problem: this solution has asymmetry in
layer processor connectivity

Observation: this scattering method as-
sumes communication delay dependence
on distance (which needs not be true)

Observation: there are packet routing
technologies with weak dependence on
distance (e.g. circuit switching, worm-
hole routing)

Conclusion: load scattering should be
done differently

24/55

Basics Verification Extensions Complexity Isolines Concluding

Interconnection Networks – 2D-Mesh

1

1

1

0

22 2

2 2 2 2

222

2 2

22 2 2

2 2

2

1

Innovation: scattering with p = 4 simul-
taneously used processor ports

Observation: it works because commu-
nication delay only weakly depends on
distance ⇒ it is advantageous to dis-
tribute far away and then locally

Problem/Question: can this be done
with other numbers of ports p?

Problem/Question: can this be done in
other number of mesh dimensions?

25/55

Basics Verification Extensions Complexity Isolines Concluding

Interconnection Networks – Mesh

1

1

1

1

0

0

0

0

2

2

2

22

2

2

2

2

2

3

3

33

11

2

2 2 2

2 2

3 3

3 3 3

3

3

333

333

3

3 3

3

3

Example: scattering with p = 1, 2 ports
in 2D-, 3D-meshes, but it can be gener-
alized to p = 1, . . . , 2 ∗ dimensions.

Observation: actually we are embedding
some kind of a tree in a communication
network

Conclusion: actually we use p+1-nomial
heap

26/55

Basics Verification Extensions Complexity Isolines Concluding

p + 1-nomial heap mode of operation

distance from the originator

step 1

step 2

step 3

0

0

0

1

1

1

2

2

2

2

2

2

2

2

3

3 3

3

3

3

3

3

3

3

3

3

3
3

3 3

33
2

2

2

2

1

1

1

Example: p = 2, 3-nomial heap

layer – a set of processors activated in
the same scattering step, hence, on the
same level of p + 1-nomial heap

Observations:
• (p + 1)i processors are active and
computing after step i = 0, . . . , h
• in each step p times new processors
are activated
• p(p + 1)i processors are activated in
step i = 0, . . . , h − 1

27/55

Basics Verification Extensions Complexity Isolines Concluding

Processing in a network with p + 1-nomial heap embedded

0

a1A

a2A

a0A

ahA

Cmax

comm

layer 1

layer 2

layer h

comm

comp

comp

layer 0

Load partition calculation:
α0A = Sh + C (p + 1)h−1αh + αhA (7)

αiA = S(i − 1) + C (p + 1)i−2αi−1 + αi−1A

for i = h, . . . , 2 (8)

V = α0 + p
h∑

i=1

(p + 1)i−1αi (9)

28/55

Basics Verification Extensions Complexity Isolines Concluding

And include also time windows, and memory, and cost

Assumptions:

[ri , di] – processor Pi availability window,

Bi – processor Pi memory limit,

pi – processor Pi computation startup time,

fi + ℓiα – cost of processing load α on Pi ,

minimize makespan T subject to cost limit K , because this is
bi-criterion problem,

plus the previous default assumptions: single level tree (star),
originator P0 is only communicating, result return time is
negligible, set of used processors and communication sequence
are given.

29/55

Basics Verification Extensions Complexity Isolines Concluding

And include also time windows, and memory, and cost

LPtime(K) : minT (10)

s.t.
i∑

k=1

(Sk + Ckαk) + (pi + Aiαi) ≤ T , i = 1, . . . ,m, (11)

ri + (pi + Aiαi) ≤ T , i = 1, . . . ,m, (12)
i∑

k=1

(Sk + Ckαk) + (pi + Aiαi) ≤ di , i = 1, . . . ,m, (13)

ri + (pi + Aiαi) ≤ di , i = 1, . . . ,m, (14)

0 ≤ αi ≤ Bi , i = 1, . . . ,m, (15)
m∑
i=1

(fi + ℓiαi) ≤ K , (16)

m∑
i=1

αi = V . (17)

30/55

Basics Verification Extensions Complexity Isolines Concluding

Hierarchical Memory and Energy Cost

• Contemporary computers have hierarchical memory.

• Out of core memory is virtually unlimited,

• but it is 1-2 orders of magnitude slower.

1E0

1E1

1E2

1E3

 0 200 400 600 800 1000

ti
m

e
 [

s]

size [MB]

measured
fit - in RAM

fit - out of core

P
en

ti
u
m

IV
@
2
.8

G
H
z,

1
G
B

R
A
M
@
2
6
6

M
H
z,

H
D
D

C
a
vi
ar

W
D
4
0
0
,F
re
eB

S
D

9
.0
,
im

a
g
e
ed

g
e
d
et
ec
ti
o
n
,

ca
2
0
1
8

30/55

Basics Verification Extensions Complexity Isolines Concluding

Hierarchical Memory and Energy Cost

• Contemporary computers have hierarchical memory.

• Out of core memory is virtually unlimited,

• but it is 1-2 orders of magnitude slower.

1E1

1E2

1E3

1E4

1E5

 0 200 400 600 800 1000

en
er

g
y
 [

J]

size [MB]

measured
fit - in RAM

fit - out of core

P
en

ti
u
m

IV
@
2
.8

G
H
z,

1
G
B

R
A
M
@
2
6
6

M
H
z,

H
D
D

C
a
vi
ar

W
D
4
0
0
,F
re
eB

S
D

9
.0
,
im

a
g
e
ed

g
e
d
et
ec
ti
o
n
,

ca
2
0
1
8

30/55

Basics Verification Extensions Complexity Isolines Concluding

Hierarchical Memory and Energy Cost

• Contemporary computers have hierarchical memory.

• Out of core memory is virtually unlimited,

• but it is 1-2 orders of magnitude slower.

1E1

1E2

1E3

1E4

1E5

 0 200 400 600 800 1000

en
er

g
y
 [

J]

size [MB]

measured
fit - in RAM

fit - out of core

Energy and time may be represented as piece-
wise linear functions with two segments

P
en

ti
u
m

IV
@
2
.8

G
H
z,

1
G
B

R
A
M
@
2
6
6

M
H
z,

H
D
D

C
a
vi
ar

W
D
4
0
0
,F
re
eB

S
D

9
.0
,
im

a
g
e
ed

g
e
d
et
ec
ti
o
n
,

ca
2
0
1
8

31/55

Basics Verification Extensions Complexity Isolines Concluding

Hierarchical Memory and Energy Cost

LPcost(T) : minEnergy =
m∑

1=1

Ei (18)

s.t.

core :
i∑

k=1

(Sk + Ckαk) + (A1iαi) ≤ T , i = 1, . . . ,m, (19)

out of core :
i∑

k=1

(Sk + Ckαk) + (p2i + A2iαi) ≤ T , i = 1, . . . ,m, (20)

. . .

core : ℓ1iαi ≤ Ei , i = 1, . . . ,m, (21)

out of core : f2i + ℓ2iαi ≤ Ei , i = 1, . . . ,m, (22)

. . .

32/55

Basics Verification Extensions Complexity Isolines Concluding

Hierarchical Memory and Energy Cost

3.4E5

3.6E5

3.8E5

4.0E5

4.2E5

4.4E5

4.6E5

4.8E5

5.0E5

 300 400 500 600 700 800 900

E
n

er
g

y
 [

J]

time [s]

R
A

M

M
IX

E
D

COLD

HDD

LB

Time and energy cost of processing fixed amount of data when starting from various
energy saving modes.

33/55

Basics Verification Extensions Complexity Isolines Concluding

Outline of the presentation

1 basic formulation of DLT

2 experimental verification of DLT

3 extending the model

4 computational complexity

5 performance and isolines

34/55

Basics Verification Extensions Complexity Isolines Concluding

Computational complexity of DLT

case: makespan for Si = 0, pi = 0

fixed parameter tractability

first NP-hardness proof

NP-hardness for linear communication, computation times
and cost

Default assumptions:

single level tree (star), originator is not computing, result return time is
negligible

availability windows, memory limits, and other features and cost criterion are
not binding if not explicitly mentioned

35/55

Basics Verification Extensions Complexity Isolines Concluding

Computational complexity of DLT

The challenges (i.e. scheduling decisions):

1 choose the subset of active processors P ′ ⊆ P, i.e.
performing computation;

2 choose the sequence of activating processors in P ′

3 calculate load chunk sizes αi for Pi ∈ P ′

36/55

Basics Verification Extensions Complexity Isolines Concluding

Complexity – case Si = pi = 0, min. T (makespan)

all processors take part in the computation

communication sequence – activate processors in the order
of non-increasing communication speed: C1 ≤ C2 ≤ · · · ≤ Cm

proof: by interchange argument.

It is rather counterintuitive that:
1) all processors can take part in the computation,
2) processor speed plays no role.

37/55

Basics Verification Extensions Complexity Isolines Concluding

Complexity – fixed parameter tractability for m

In order to:

1 choose the subset of active processors P ′ ⊆ P – enumerate
all possible 2m subsets,

2 choose the sequence of activating processors – enumerate all
possible m! permutations,

3 calculate load chunk sizes αi by using a linear program with m
variables (αi for i = 1, . . . ,m) and O(m) constraints.

4 Hence, for fixed m computational complexity is
O(2mm!LP(m,O(m)).

38/55

Basics Verification Extensions Complexity Isolines Concluding

Complexity – 1st NP-hardness proof makespan, 2 fixed overheads

Theorem

Divisible load scheduling with memory constraints is NP-hard.

Proof: Reduction from Partition:
Given set E = {e1, . . . , eq} decide if there set E ′ ⊂ E , satisfying∑

j∈E ′ ej =
∑

j∈E−E ′ ej =
1
2

∑q
j=1 ei = L exists.

Without loss of generality we assume that ∀j∈Dej > 1.

Divisible load scheduling instance: m := q + 1, V = L6 + L,
C1 . . .Cm := 0, Si := ei , Ai :=

L
ei
,Bi := ei for i := 1, . . . , q,

Sm := L,Cm := 0, Am := 1
L6
,Bm := L6 for i := 1, . . . , q.

Is possible to process load V in time at most 2L+ 1?

39/55

Basics Verification Extensions Complexity Isolines Concluding

Complexity – 1st NP-hardness proof makespan, 2 fixed overheads

Divisible load scheduling instance: m := q + 1, C1 . . .Cm := 0, Si := ei ,
Ai :=

L
ei
,Bi := ei for i := 1, . . . , q, Sm := L,Cm := 0, Am := 1

L6
,Bm := L6 for

i := 1, . . . , q.

Is possible to process volume V = L6 + L of load on the above network in time

at most 2L+ 1?

...

...
L

time
processing on Pm

processing on Pj

communications

S1 S2 Sj Sm

a1 1A =L

a2 2A =L

am mA

L 1

■

40/55

Basics Verification Extensions Complexity Isolines Concluding

Complexity – Si = pi = fi = 0 makespan, cost, NO fixed overheads

Theorem

Divisible load scheduling for a given makespan and minimum cost
is NP-hard even for strictly linear processor communication,
computation times and cost.

41/55

Basics Verification Extensions Complexity Isolines Concluding

Complexity – Si = pi = fi = 0 makespan, cost, NO fixed overheads

Proof: Reduction from Even-Odd Partition:
Given set E = {e1, . . . , e2q} decide if set E ′ ⊂ E , satisfying∑

j∈E ′ ej =
∑

j∈E−E ′ ej =
1
2

∑q
j=1 ei = L and such that E ′ contains

exactly one element from pair e2i−1, e2i , for i = 1, . . . , n exists.

For some arbitrary makespan T > 0, divisible load scheduling
instance for i = 1, . . . , q:

A2i−1 = C2i−1 =
T

22i−1 (Lq−i+2 + e2i−1)
,

ℓ2i−1 =
e2i−1

Lq−i+2 + e2i−1
,

A2i = C2i =
T

22i−1 (Lq−i+2 + e2i)
,

ℓ2i =
e2i

Lq−i+2 + e2i
.

(23)

42/55

Basics Verification Extensions Complexity Isolines Concluding

Complexity – Si = pi = fi = 0 makespan, cost, NO fixed overheads

communication

T/2

P11

P12

P21

P22

P31

P32

T/2

T/22

T/23
T/23

T/24

T_
26

T_
25

T_
25

T/24

T/22

communication

comm.

comm.

computation

computation

comp.

comp.

Is there a schedule of cost K ≤ 3
2L for load V = 3

2

∑q+1
i=1 Li? ■

43/55

Basics Verification Extensions Complexity Isolines Concluding

Outline of the presentation

1 basic formulation of DLT

2 experimental verification of DLT

3 extending the model

4 computational complexity

5 performance and isolines

44/55

Basics Verification Extensions Complexity Isolines Concluding

Isoline maps examples – in meteorology

Figure: Isotherms France on 27.VI.2019

45/55

Basics Verification Extensions Complexity Isolines Concluding

Isoline maps examples – in thermodynamics

Figure: Enthalpy-entropy chart for water and steam

46/55

Basics Verification Extensions Complexity Isolines Concluding

Why isoefficiency maps? Motivation

• Such visualizations proved effective in building understanding of
sensitivities and relationships of complex phenomena in many areas
of science and technology (isotherms, isobars, isogons, . . .) We
want to do the same!

• Isoefficiency maps are visual representations of the system
parameter interactions by use of isolines, i.e. set of points of equal
parallel efficiency in 2D projection of system parameters.

• Thus DLT becomes an analytical performance model.

47/55

Basics Verification Extensions Complexity Isolines Concluding

Basic Performance Measures

Classically:
• speedup:

S(m) =
T (1)

T (m)
(24)

• efficiency:

E(m) =
S
m

=
T (1)

m × T (m)
, (25)

where T (i) is execution time on i machines.

In the DLT model:
• Efficiency:

E(m,A,C , S ,V) =
T (1,A,C ,S ,V)

m × T (m,A,C ,S ,V)
.

48/55

Basics Verification Extensions Complexity Isolines Concluding

Isoefficiency Map Construction

• Isoefficiency line:

I (e,X ,Y) = {(x , y) : E(m,A,C ,S ,V) = e,

∀p ∈ Param \ {X ,Y } p = const,

x ∈ X , y ∈ Y }. (26)

where:
e – efficiency level
X ,Y – a pair of interesting parameters to be presented in a 2D
map
(x , y) – a pair of particular values of parameters X ,Y
Param – set of all model parameters: m,A,C , S ,V
p = const – constant value of one particular parameter p in the set
Param \ {X ,Y }

49/55

Basics Verification Extensions Complexity Isolines Concluding

Isoefficiency map: V vs m

1E-01

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+00 1E+01 1E+02 1E+03

E=0.9 E=0.8

E=0.7

A

C

S

E=0.4

E=0.5 E=0.3

E=0.2E=0.6 E=0

m

infeasible

V

A
=

1
,
C

=
0
.0
2
,
S

=
1

When m grows, also V should grow for constant efficiency. But not all machine numbers m can be feasibly used even
for very large V (because S > 0).

50/55

Basics Verification Extensions Complexity Isolines Concluding

Isoefficiency map: C vs m

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

1E+03

1E+04

1E+00 1E+01 1E+02 1E+03

m

C

E=0.9

E=0.8

E=0.4

E=0.2

E=0.6

E=0

A

S
V

infeasible

?

Increasing
communication
speed.

A
=

1
,
S

=
1
,
V

=
1
E
4

When m is small, even slow communication allows for good efficiency (left). In typical conditions speed of communi-
cation must increase (C decreases) to use big numbers of machines (center). Ultimately, arbitrarily large m cannot be
supported by increasing communication speed (because S > 0, right).

51/55

Basics Verification Extensions Complexity Isolines Concluding

Iso-Maps for other performance measures?

• Such a visualization method can be repeated for other HPC
performance indicators.

• For example, for energy – maps of equal energy consumption can
be constructed.

52/55

Basics Verification Extensions Complexity Isolines Concluding

Iso-Energy map: k vs m

1E0

1E1

1E2

1E3

1E4

1E5

1E0 1E1 1E2 1E3 1E4

k

m

infeasible

E=2.001E10

E=3E10

E=2.001E10
E=2.01E10

E=2.1E10
E=2.2E10
E=2.5E10

E=3E10
feasibility

A
=

1
E
−
3
,
C

=
1
E
−
8
,
S

=
1
0
0
,
V

=
1
E
1
1
,
P
C

=
2
0
0
,
P
N

=
5
0
.

6
More aggressive
energy saving,
harder techno-
logically.

k – reduction in electric power consumption when idle.
When increasing processor number m, we reduce overheads and energy consumption, this can be ”wasted” by less
effective machine idle states (k decreases, left). Yet, ultimately for large machine numbers, constant energy consump-
tion cannot be achieved by just more effective idle state (k is growing, right).

53/55

Basics Verification Extensions Complexity Isolines Concluding

Conclusions

DLT is an attractive scheduling model because:

DLT is comprehensive – many details of computing platform
can be represented in DLT,

DLT is a good compromise between complexity and accuracy,

to some extent DLT is computationally easy,

DLT is an analytical performance model used to build
iso-efficiency and iso-energy maps for understanding of
complex relationships between system and application
parameters.

54/55

Basics Verification Extensions Complexity Isolines Concluding

Thank you for your attention

A kind Request For Comments:
see https://arxiv.org/abs/2401.00947

and tell me what you think
Maciej.Drozdowski@cs.put.poznan.pl

https://arxiv.org/abs/2401.00947
mailto:Maciej.Drozdowski@cs.put.poznan.pl

55/55

Basics Verification Extensions Complexity Isolines Concluding

Further reading

M.Drozdowski, N.V.Shakhlevich, Scheduling divisible loads with time and cost constraints, Journal of
Scheduling, 24(5), 2021, 507-521, https://doi.org/10.1007/s10951-019-00626-6, summary of
complexity results, open access

T.Robertazzi, Divisible Load Scheduling, https://www.ece.stonybrook.edu/~tom/dlt.html#THEORY
a list of DLT publications up to approx. 2015

J.Marszalkowski, M.Drozdowski, G.Singh, Time-energy trade-offs in processing divisible loads on
heterogeneous hierarchical memory systems, Journal of Parallel and Distributed Computing, 144, 2020,
206-219, https://doi.org/10.1016/j.jpdc.2020.05.015 , a MIP and other algorithms for energy use
model with hierarchical memory, open access.

M.Drozdowski, J.M.Marszalkowski, J.Marszalkowski, Energy trade-offs analysis using equal-energy maps,
Future Generation Computer Systems, 36, 2014, 311-321,
http://dx.doi.org/10.1016/j.future.2013.07.004 , iso-energy maps for a simpler energy use model.

M.Drozdowski, Scheduling for Parallel Processing, Springer, 2009.
https://doi.org/10.1007/978-1-84882-310-5 , a book on scheduling in general for parallel systems

https://doi.org/10.1007/s10951-019-00626-6
https://www.ece.stonybrook.edu/~tom/dlt.html#THEORY
https://doi.org/10.1016/j.jpdc.2020.05.015
http://dx.doi.org/10.1016/j.future.2013.07.004
https://doi.org/10.1007/978-1-84882-310-5

	Basics of divisible load theory
	Experimental verification of DLT assumptions
	Extending the model
	Computational complexity
	Isoefficiency Maps
	Concluding

