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Divisible load theory

Divisible load theory (DLT) – is a performance and scheduling
model of data-parallel applications.

Load – is usually some data to be processed.

In DLT it is assumed that:

1 computations can be divided into parts of arbitrary sizes,

2 these parts can be processed independently in parallel.
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Divisible load theory

Consequently in divisible computations:
⇒ grain of parallelism is small,
⇒ data dependencies are negligible,
⇒ schedule optimization consists in partitioning the load according
to the speeds of communication, computation and other platform
features.

Examples of divisible applications:1

• distributed searching for patterns in text, audio, graphic etc. files,
• database, measurements, image processing,
• compression,
• some linear algebra algorithms, and simulation,
• MapReduce big data processing.

1more on the applications in the following
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Basic scheduling model

...P2
A2 Pm

A
mP1

A1

C1,S1 C2,S2 Cm,Sm

P0

• A single level tree (a.k.a. a star) interconnection
• P0 - originator, distributes load, does not compute
• P1, . . . ,Pm - processors (workers) receive and process the load
• V - load size (e.g. in bytes)
• Si + αCi - communication delay for sending load α to Pi

• Aiα - computation time for load α on Pi

For the simplicity of the exposition let us assume (for a moment)
that results return time is negligible.
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A schedule with negligible return times
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S + C2 2 2a S + C3 3 3aP0 comm

comp

comp

comp
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αi - size of load part sent to processor Pi

Cmax - schedule length

The challenge: choose αi s such that Cmax is as short as possible.

Optimality principle: since result return time is negligible, all
computations must finish at the same time.
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Solution by a system of linear equations

0

P2

P3

P1

S + C1 1 1a

a1 1A

a2 2A

a3 3A

S + C2 2 2a S + C3 3 3aP0 comm

comp

comp

comp

Cmax

αiAi = Si+1 + αi+1(Ci+1 + Ai+1) for i = 1, . . . ,m − 1 (1)
m∑
i=1

αi = V (2)

The above system of linear equations can be solved in O(m) time
due to its special structure:
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Closed form solution of a system of linear equations

αiAi = Si+1 + αi+1(Ai+1 + Ci+1) for i = 1, . . . ,m − 1
m∑
i=1

αi = V

αi can be expressed as a linear function kiαm + li of αm,

ki = ki+1(Ai+1 + Ci+1)/Ai for i = 1, . . . ,m − 1

li = Si+1/Ai + li+1(Ai+1 + Ci+1)/Ai for i = 1, . . . ,m − 1

km = 1, lm = 0,

Then we have αm =
V −

∑m
i=1 li∑m

i=1 ki
.
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Closed form solution – observations

Recall:

αm =
V −

∑m
i=1 li∑m

i=1 ki
li =

Si+1

Ai
+ li+1

Ai+1+Ci+1

Ai
i = 1, . . . ,m − 1

∀i , Si = 0 ⇒ ∀i , li = 0 and ∀i , αi > 0 for arbitrarily large m
(strange! unrealistic)

Si > 0 ⇒ a feasible solution (i.e. with ∀αi > 0) may not exist,
because load size V is too small to activate all processors.

⇒ communication startup Si is necessary as a practical
irreducible yardstick of time.2

2
or some other discrete element
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DLT validity

Is DLT correctly representing real-world applications?

Let us consider the following verification framework:

Measure system, and application parameters Ai ,Si ,Ci for
machines i = 1, . . . ,m.

Split the load size V into parts of sizes α1, . . . , αm according
the model formulas (1)-(2).

Calculate expected (theoretical) execution time CT
max .

Execute the application with the calculated work split
α1, . . . , αm and measure real schedule length CR

max .

How far is CR
max from CT

max?
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Representing returning of the results

A0a0

A1a1 A1a1

A2a2 A2a2

A3a3 A3a3

A0a0

S +C2 2 2a

S +C1 1 1a S +C1 1 1a

S +C2 2 2a

S +C3 3 3a S +C3 3 3a

a)

S +C ( )2 2 2ba

S +C ( )1 1 1ba S +C ( )1 1 1ba

S +C ( )2 2 2ba

S +C ( )3 3 3b a S +C ( )3 3 3b a

b)

Figure: a)LIFO, b)FIFO orders of returning results.

β(α) is the size of the results as a function of the input load size.



13/55

Basics Verification Extensions Complexity Isolines Concluding

Model relative error

1E-4
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Platform: Transputer system (ca. 1996)
Application: search for a pattern in a text file, LIFO
Error: < 1% feasible.
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Model relative error
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Platform: IBM SP2, PVM (ca. 1997)
Application: LZW compression
Error: 9− 13% feasible.
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Model relative error
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Platform: Windows NT, MPI (ca. 1999)
Application: database join
Error: < 10% feasible.
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Model relative error

0
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Platform: Silicon Graphics Origin 3000, various communication
technologies (ca. 2003)
Application: search for pattern in a text file
Error: < 5% feasible.
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Conclusion on model accuracy

Conclusion:

overall accuracy of DLT model is good

accuracy improves with problem size V

DLT model is practical and relevant.
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Extending the model

Presented extensions:

multi-installment processing

interconnection networks

and time windows, and cost, and memory

also hierarchical memory

Default assumptions:

originator P0 is not computing, but only communicating

result return time is negligible and is not explicitly scheduled

worker processors can receive load and compute in parallel

set of used processors and communication sequence are given3

3
more on this in the complexity section
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Multiple Installments

Why multi-installment processing?

0

P2

P3

P1

S + C1 1 1a

a1 1A

a2 2A

a3 3A

S + C2 2 2a S + C3 3 3aP0 comm

comp

comp

comp

Cmax

6

long communication delay

Example:
m = 1 processor, V = 10,
C1 = 1,A1 = 1, S1 = 0,

1 installment:
Cmax = V (C1 + A1) = 20.

k = 10 installments:
Cmax = V (C1/k + A1) = 11.

⇒ Multi-installment processing allows to shorten the first
communication delay, start computations earlier4

Practical question: what should the number k of installments be?

4
also a method to respect processor limited memory
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Multiple Installments - calculating partitions
Partial view of a schedule for multi-installment processing in a star

... ...

... ...

...

...

...
... ...

...

...

Pi

Pm

P1

P0 S +C1 1 11a S+Ci i ija S+Ci i i ja , +1

A1 11a A1 1 +1a jA1 1a j

S +Cm mja S +C1 1, +1a j

Am mjaAm mja , -1

Ai ija Ai i ja , +1
...

6 6

System of linear equations to calculate installments sizes αij ,

i = 1, . . . ,m — processors, j = 1, . . . , k — installments:

αijAi =
m∑

ℓ=i+1

(Sℓ + Cℓαℓ,j) +
i∑

ℓ=1

(Sℓ + Cℓαℓ,j+1)

for i = 1, . . . ,m, j = 1, . . . , k (3)

V =
k∑

j=1

m∑
i=1

αij (4)
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Interconnection Networks – Chain

0

P2 P3 Pi+1
Ai+1

Pi

P2

A2 A3 Ai

P3

P4

Pm
A

m

P1

P1

A1

C1,S1

S+ V C1 1 1( - )a

a1 1A

a2 2A

a3 3A

a4 4A

S + V C2 2 2( - )a-a1

S + C3 4 3a

C2,S2 Ci,Si

aa

bb

Cmax

comm

comm

comm

comp

comp

comp

... ...

Load partition calculation:

αiAi = Si + Ci

m∑
j=i+1

αj + αi+1Ai+1 for i = 1, . . . ,m − 1 (5)

m∑
i=1

αi = V (6)
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Interconnection Networks – 2D-Mesh
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Challenge: find a load scattering algo-
rithm in a mesh!

Problem: this solution has asymmetry in
layer processor connectivity

Observation: this scattering method as-
sumes communication delay dependence
on distance (which needs not be true)

Observation: there are packet routing
technologies with weak dependence on
distance (e.g. circuit switching, worm-
hole routing)

Conclusion: load scattering should be
done differently
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Interconnection Networks – 2D-Mesh
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Innovation: scattering with p = 4 simul-
taneously used processor ports

Observation: it works because commu-
nication delay only weakly depends on
distance ⇒ it is advantageous to dis-
tribute far away and then locally

Problem/Question: can this be done
with other numbers of ports p?

Problem/Question: can this be done in
other number of mesh dimensions?
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Interconnection Networks – Mesh
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Example: scattering with p = 1, 2 ports
in 2D-, 3D-meshes, but it can be gener-
alized to p = 1, . . . , 2 ∗ dimensions.

Observation: actually we are embedding
some kind of a tree in a communication
network

Conclusion: actually we use p+1-nomial
heap
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p + 1-nomial heap mode of operation

distance from the originator

step 1

step 2

step 3
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33
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Example: p = 2, 3-nomial heap

layer – a set of processors activated in
the same scattering step, hence, on the
same level of p + 1-nomial heap

Observations:
• (p + 1)i processors are active and
computing after step i = 0, . . . , h
• in each step p times new processors
are activated
• p(p + 1)i processors are activated in
step i = 0, . . . , h − 1
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Processing in a network with p + 1-nomial heap embedded

0

a1A

a2A

a0A

ahA

Cmax

comm

layer 1

layer 2

layer h

comm

comp

comp

layer 0

Load partition calculation:
α0A = Sh + C (p + 1)h−1αh + αhA (7)

αiA = S(i − 1) + C (p + 1)i−2αi−1 + αi−1A

for i = h, . . . , 2 (8)

V = α0 + p
h∑

i=1

(p + 1)i−1αi (9)
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And include also time windows, and memory, and cost

Assumptions:

[ri , di ] – processor Pi availability window,

Bi – processor Pi memory limit,

pi – processor Pi computation startup time,

fi + ℓiα – cost of processing load α on Pi ,

minimize makespan T subject to cost limit K , because this is
bi-criterion problem,

plus the previous default assumptions: single level tree (star),
originator P0 is only communicating, result return time is
negligible, set of used processors and communication sequence
are given.
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And include also time windows, and memory, and cost

LPtime(K) : minT (10)

s.t.
i∑

k=1

(Sk + Ckαk) + (pi + Aiαi ) ≤ T , i = 1, . . . ,m, (11)

ri + (pi + Aiαi ) ≤ T , i = 1, . . . ,m, (12)
i∑

k=1

(Sk + Ckαk) + (pi + Aiαi ) ≤ di , i = 1, . . . ,m, (13)

ri + (pi + Aiαi ) ≤ di , i = 1, . . . ,m, (14)

0 ≤ αi ≤ Bi , i = 1, . . . ,m, (15)
m∑
i=1

(fi + ℓiαi ) ≤ K , (16)

m∑
i=1

αi = V . (17)
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Hierarchical Memory and Energy Cost

• Contemporary computers have hierarchical memory.

• Out of core memory is virtually unlimited,

• but it is 1-2 orders of magnitude slower.
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Hierarchical Memory and Energy Cost

• Contemporary computers have hierarchical memory.
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Hierarchical Memory and Energy Cost

LPcost(T ) : minEnergy =
m∑

1=1

Ei (18)

s.t.

core :
i∑

k=1

(Sk + Ckαk) + (A1iαi ) ≤ T , i = 1, . . . ,m, (19)

out of core :
i∑

k=1

(Sk + Ckαk) + (p2i + A2iαi ) ≤ T , i = 1, . . . ,m, (20)

. . .

core : ℓ1iαi ≤ Ei , i = 1, . . . ,m, (21)

out of core : f2i + ℓ2iαi ≤ Ei , i = 1, . . . ,m, (22)

. . .
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Hierarchical Memory and Energy Cost
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Computational complexity of DLT

case: makespan for Si = 0, pi = 0

fixed parameter tractability

first NP-hardness proof

NP-hardness for linear communication, computation times
and cost

Default assumptions:

single level tree (star), originator is not computing, result return time is
negligible

availability windows, memory limits, and other features and cost criterion are
not binding if not explicitly mentioned



35/55

Basics Verification Extensions Complexity Isolines Concluding

Computational complexity of DLT

The challenges (i.e. scheduling decisions):

1 choose the subset of active processors P ′ ⊆ P, i.e.
performing computation;

2 choose the sequence of activating processors in P ′

3 calculate load chunk sizes αi for Pi ∈ P ′
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Complexity – case Si = pi = 0, min. T (makespan)

all processors take part in the computation

communication sequence – activate processors in the order
of non-increasing communication speed: C1 ≤ C2 ≤ · · · ≤ Cm

proof: by interchange argument.

It is rather counterintuitive that:
1) all processors can take part in the computation,
2) processor speed plays no role.
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Complexity – fixed parameter tractability for m

In order to:

1 choose the subset of active processors P ′ ⊆ P – enumerate
all possible 2m subsets,

2 choose the sequence of activating processors – enumerate all
possible m! permutations,

3 calculate load chunk sizes αi by using a linear program with m
variables (αi for i = 1, . . . ,m) and O(m) constraints.

4 Hence, for fixed m computational complexity is
O(2mm!LP(m,O(m)).
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Complexity – 1st NP-hardness proof makespan, 2 fixed overheads

Theorem

Divisible load scheduling with memory constraints is NP-hard.

Proof: Reduction from Partition:
Given set E = {e1, . . . , eq} decide if there set E ′ ⊂ E , satisfying∑

j∈E ′ ej =
∑

j∈E−E ′ ej =
1
2

∑q
j=1 ei = L exists.

Without loss of generality we assume that ∀j∈Dej > 1.

Divisible load scheduling instance: m := q + 1, V = L6 + L,
C1 . . .Cm := 0, Si := ei , Ai :=

L
ei
,Bi := ei for i := 1, . . . , q,

Sm := L,Cm := 0, Am := 1
L6
,Bm := L6 for i := 1, . . . , q.

Is possible to process load V in time at most 2L+ 1?
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Complexity – 1st NP-hardness proof makespan, 2 fixed overheads

Divisible load scheduling instance: m := q + 1, C1 . . .Cm := 0, Si := ei ,
Ai :=

L
ei
,Bi := ei for i := 1, . . . , q, Sm := L,Cm := 0, Am := 1

L6
,Bm := L6 for

i := 1, . . . , q.

Is possible to process volume V = L6 + L of load on the above network in time

at most 2L+ 1?

...

...
L

time
processing on Pm

processing on Pj

communications

S1 S2 Sj Sm

a1 1A =L

a2 2A =L

am mA

L 1

■
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Complexity – Si = pi = fi = 0 makespan, cost, NO fixed overheads

Theorem

Divisible load scheduling for a given makespan and minimum cost
is NP-hard even for strictly linear processor communication,
computation times and cost.
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Complexity – Si = pi = fi = 0 makespan, cost, NO fixed overheads

Proof: Reduction from Even-Odd Partition:
Given set E = {e1, . . . , e2q} decide if set E ′ ⊂ E , satisfying∑

j∈E ′ ej =
∑

j∈E−E ′ ej =
1
2

∑q
j=1 ei = L and such that E ′ contains

exactly one element from pair e2i−1, e2i , for i = 1, . . . , n exists.

For some arbitrary makespan T > 0, divisible load scheduling
instance for i = 1, . . . , q:

A2i−1 = C2i−1 =
T

22i−1 (Lq−i+2 + e2i−1)
,

ℓ2i−1 =
e2i−1

Lq−i+2 + e2i−1
,

A2i = C2i =
T

22i−1 (Lq−i+2 + e2i )
,

ℓ2i =
e2i

Lq−i+2 + e2i
.

(23)
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Complexity – Si = pi = fi = 0 makespan, cost, NO fixed overheads

communication

T/2

P11
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P31

P32

T/2
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T/23
T/23

T/24

T_
26

T_
25

T_
25

T/24

T/22

communication

comm.

comm.

computation

computation

comp.

comp.

Is there a schedule of cost K ≤ 3
2L for load V = 3

2

∑q+1
i=1 Li? ■
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Isoline maps examples – in meteorology

Figure: Isotherms France on 27.VI.2019
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Isoline maps examples – in thermodynamics

Figure: Enthalpy-entropy chart for water and steam
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Why isoefficiency maps? Motivation

• Such visualizations proved effective in building understanding of
sensitivities and relationships of complex phenomena in many areas
of science and technology (isotherms, isobars, isogons, . . . ) We
want to do the same!

• Isoefficiency maps are visual representations of the system
parameter interactions by use of isolines, i.e. set of points of equal
parallel efficiency in 2D projection of system parameters.

• Thus DLT becomes an analytical performance model.
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Basic Performance Measures

Classically:
• speedup:

S(m) =
T (1)

T (m)
(24)

• efficiency:

E(m) =
S
m

=
T (1)

m × T (m)
, (25)

where T (i) is execution time on i machines.

In the DLT model:
• Efficiency:

E(m,A,C , S ,V ) =
T (1,A,C ,S ,V )

m × T (m,A,C ,S ,V )
.
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Isoefficiency Map Construction

• Isoefficiency line:

I (e,X ,Y ) = {(x , y) : E(m,A,C ,S ,V ) = e,

∀p ∈ Param \ {X ,Y } p = const,

x ∈ X , y ∈ Y }. (26)

where:
e – efficiency level
X ,Y – a pair of interesting parameters to be presented in a 2D
map
(x , y) – a pair of particular values of parameters X ,Y
Param – set of all model parameters: m,A,C , S ,V
p = const – constant value of one particular parameter p in the set
Param \ {X ,Y }
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Isoefficiency map: V vs m

1E-01

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+00 1E+01 1E+02 1E+03

E=0.9 E=0.8

E=0.7

A

C

S

E=0.4

E=0.5 E=0.3

E=0.2E=0.6 E=0

m

infeasible
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A
=
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,
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0
.0
2
,
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=
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When m grows, also V should grow for constant efficiency. But not all machine numbers m can be feasibly used even
for very large V (because S > 0).



50/55

Basics Verification Extensions Complexity Isolines Concluding

Isoefficiency map: C vs m
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=
1
,
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1
E
4

When m is small, even slow communication allows for good efficiency (left). In typical conditions speed of communi-
cation must increase (C decreases) to use big numbers of machines (center). Ultimately, arbitrarily large m cannot be
supported by increasing communication speed (because S > 0, right).
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Iso-Maps for other performance measures?

• Such a visualization method can be repeated for other HPC
performance indicators.

• For example, for energy – maps of equal energy consumption can
be constructed.
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Iso-Energy map: k vs m
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k – reduction in electric power consumption when idle.
When increasing processor number m, we reduce overheads and energy consumption, this can be ”wasted” by less
effective machine idle states (k decreases, left). Yet, ultimately for large machine numbers, constant energy consump-
tion cannot be achieved by just more effective idle state (k is growing, right).
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Conclusions

DLT is an attractive scheduling model because:

DLT is comprehensive – many details of computing platform
can be represented in DLT,

DLT is a good compromise between complexity and accuracy,

to some extent DLT is computationally easy,

DLT is an analytical performance model used to build
iso-efficiency and iso-energy maps for understanding of
complex relationships between system and application
parameters.



54/55

Basics Verification Extensions Complexity Isolines Concluding

Thank you for your attention

A kind Request For Comments:
see https://arxiv.org/abs/2401.00947

and tell me what you think
Maciej.Drozdowski@cs.put.poznan.pl

https://arxiv.org/abs/2401.00947
mailto:Maciej.Drozdowski@cs.put.poznan.pl
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Further reading

M.Drozdowski, N.V.Shakhlevich, Scheduling divisible loads with time and cost constraints, Journal of
Scheduling, 24(5), 2021, 507-521, https://doi.org/10.1007/s10951-019-00626-6, summary of
complexity results, open access

T.Robertazzi, Divisible Load Scheduling, https://www.ece.stonybrook.edu/~tom/dlt.html#THEORY
a list of DLT publications up to approx. 2015

J.Marszalkowski, M.Drozdowski, G.Singh, Time-energy trade-offs in processing divisible loads on
heterogeneous hierarchical memory systems, Journal of Parallel and Distributed Computing, 144, 2020,
206-219, https://doi.org/10.1016/j.jpdc.2020.05.015 , a MIP and other algorithms for energy use
model with hierarchical memory, open access.

M.Drozdowski, J.M.Marszalkowski, J.Marszalkowski, Energy trade-offs analysis using equal-energy maps,
Future Generation Computer Systems, 36, 2014, 311-321,
http://dx.doi.org/10.1016/j.future.2013.07.004 , iso-energy maps for a simpler energy use model.

M.Drozdowski, Scheduling for Parallel Processing, Springer, 2009.
https://doi.org/10.1007/978-1-84882-310-5 , a book on scheduling in general for parallel systems
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