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Plan
We would like to compare two types of 
schedules for identical inputs 

1. Reminder/definition of the models 

2. Definition of benefit/power of preemption

3. Examples and simple proofs for several variants

Goals:

1. To get an intuition of why one model (the 
preemptive one) is easier in a sense, compared to 
the other one (non-preemptive)

2. To see why such problems are attractive 
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Scheduling paradigms - summary
A scheduling problem consists of

 Jobs and their attributes

 Size/processing time

 Release date (the job cannot be started before this time)

 ...

 The number of machines and their types

 One machine

 Parallel identical machines 

 Uniformly related machines (with speeds)
 ...

 An objective/goal function

 Makespan

 Total completion time, total weighted completion time

 ℓ𝒑 norm
 ...

 Feasible schedules 

 preemptive or non-preemptive
 ...
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Jobs - notation
There are n jobs  Jobs have indexes 1,2,3,...,n

The size of job j is a positive integer 𝒑𝒋
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𝒑𝟏= 𝟑

𝒑𝟓= 𝟒

𝒑𝟑= 𝟏

𝒑𝟒= 𝟕

𝒑𝟐= 𝟐



Assigning/scheduling a job

A non-preemptive schedule

Every job must be executed completely

Every job receives a continuous time slot 

on some machine

A preemptive schedule

Every job must be executed completely but..

a job may be split into parts

Parts can be assigned to run separately

On the same machine or different machines

never at the same time
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Machines
 Each machine can be used for running jobs

Available continuously starting from time zero

 We do not consider other models here

 We exhibit concepts using the most standard models

 A machine can process at most one job at each time

 Any job can be processed on one machine at each time

 No resource sharing and no parallel processing 

One machine
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𝒑𝟏= 𝟑 𝒑𝟐= 𝟐



Parallel identical machines
- illustrations
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Uniformly related machines
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𝒑𝟏
= 𝟑

𝒑𝟐
=
𝟐

𝒔𝒊 ≥ 𝟎 𝐢𝐬 𝐭𝐡𝐞 𝐬𝐩𝐞𝐞𝐝 𝐨𝐟 𝐦𝐚𝐜𝐡𝐢𝐧𝐞 𝐢

speeds:   3       1       2       4 ...

𝒑𝟓
=
𝟒

𝒑𝟑
= 𝟏

𝒑𝟒
=
𝟕

Processing time 
of job j 
on machine i

𝒑𝒋

𝒔𝒊



Preemptive schedules versus
Non-preemptive schedules

• In a non-preemptive schedule, every job is assigned to one machine

• It is also assigned to a time slot to run completely

• It is assigned to its time slot, to run continuously on its machine

• In a preemptive schedule every job is also assigned to run 
completely

• But it can be split into (a finite number of) parts

• Every part is assigned separately

• Parts cannot run in parallel

• Fractional scheduling

• A job is split into parts

• Every part is assigned independently

• Parts can run in parallel
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Differences: example

• Identical machines

• There is just one job of size m  - the number of machines
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Fractional: 
the job is split 
equally

Makespan: last completion time     
equal to 1 for the fractional schedule, m for the integral one

Preemptive:  
splitting will not help

non-
preemptive



Preemptive versus non-preemptive
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Preemptive – splitting helps                                          Non-preemptive

4

3

2

1

Makespan: last completion time            
3 for the preemptive schedule, 4 for the non-preemptive one

Three jobs, each of size  2

0



Benefit of preemption 
or power of preemption

A measure 

of how much allowing preemption can reduce costs of solutions

For a given scheduling problem/variant and input 𝑰

Let 𝑶𝑷𝑻𝒑 𝑰 denote the cost of an optimal preemptive solution

Let 𝑶𝑷𝑻𝒏 𝑰 denote the cost of an optimal non-preemptive solution

𝑶𝑷𝑻𝒏 𝑰 ≥ 𝑶𝑷𝑻𝒑 𝑰

The benefit of preemption is

𝐬𝐮𝐩
𝑰

𝑶𝑷𝑻𝒏 𝑰

𝑶𝑷𝑻𝒑 𝑰
≥ 𝟏

In general: the benefit of preemption for a certain problem may be 
infinite or 1 or anything in between
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The set of preemptive solutions is a superset of 
non-preemptive solutions, for the same problem



Attributes: weights, release dates
and objectives
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𝒑𝟏= 𝟑 𝒑𝟐= 𝟐

𝒓𝟏 = 𝟐 𝒓𝟐 = 𝟏

𝒑𝟏= 𝟑𝒑𝟐= 𝟐

0       1       2       3 4       5       6       7

Makespan:  7 for the top schedule, 6 for the bottom one

Total completion time or sum of completion times of all jobs
12 for the top schedule, 9 for the bottom one

𝒘𝟏 = 𝟏𝟏 𝒘𝟐 = 𝟐

Total weighted completion time or sum of weighted completion times of all jobs
69 for the top schedule, 72 for the bottom one

Which schedule is “better”?

𝒑𝟏 = 𝟐 𝒑𝟐 = 𝟏



Useful notation and simple properties

• For a fixed input    I with     m machines ,   n jobs

P denotes the total size of all jobs   q  denotes the maximum job size

Properties valid for both preemptive and non-preemptive schedules:

• For a single machine, the makespan is at least P

• For m identical machines, the makespan is at least 
𝑷

𝒎

the pigeonhole principle – averaging

It is also at least   q - every job must be processed and no parallelism is allowed

• For m uniformly related machines,   the makespan is at least     
𝑷

σ𝒊 𝒔𝒊

the pigeonhole principle – weighted averaging based on speeds

It is also at least   
𝒒

𝐦𝐚𝐱 𝒔𝒊
- even if it runs on the fastest machine, it needs to be completed
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Topics

• Makespan

• One machine with release dates

• Identical machines

• Uniformly related machines

• Total (weighted/unweighted) completion times

• One machine with release dates

• Identical machines

• Uniformly related machines
15



Makespan, one machine, release dates: easy
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This variant has an optimal algorithm.  It is optimal both for the preemptive variant 

and the non-preemptive one The benefit of preemption is therefore 1

The algorithm:    Assume (by sorting)  that    𝒓𝟏 ≤ 𝒓𝟐 ≤ ⋯ ≤ 𝒓𝒏
Assign job 1 at time 𝑺𝟏 = 𝒓𝟏, into the time slot 𝐒𝟏, 𝐓𝟏 = [𝒓𝟏, 𝒓𝟏+ 𝒑𝟏)
For i=2,3,...,n in this order:     

Assign job i at time 𝑺𝒊 = 𝐦𝐚𝐱{𝒓𝒊, 𝑻𝒊−𝟏}, into the time slot [𝑺𝒊, 𝑺𝒊+ 𝒑𝒊)

654321j

122132𝒑𝒋

131211821𝒓𝒋

𝒑𝟐= 𝟑𝒑𝟏= 𝟐

0                2                4 6 8 10 12              14              16

𝒑𝟑
= 𝟏

𝒑𝟒= 𝟐 𝒑𝟓= 𝟐
𝒑𝟔

= 𝟏

In other words, assign every job as 
early as possible, given the already 
assigned jobs and its release date



Optimality
Consider the suffix of jobs scheduled consecutively – “block”

y, y+1, y+2, ..., n       for some       𝟏 ≤ 𝐲 ≤ 𝐧

y=4 in the example

They are scheduled starting time 𝒓𝒚

The makespan is 𝑳 = 𝒓𝒚 + σ𝒋=𝒚
𝒏 𝒑𝒋

where we have        𝒓𝒋 ≥ 𝒓𝒚 for 𝒋 ≥ 𝒚

In the example 𝒓𝒚 = 𝟏𝟏 𝒂𝒏𝒅 σ𝒋=𝒚
𝒏 𝒑𝒋 = 𝒑𝟒 + 𝒑𝟓 + 𝒑𝟔 = 𝟓

No valid schedule preemptive or non-preemptive

can complete all jobs earlier
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Makespan:
Identical machines  and Uniformly related machines

Woeginger, 2000            no release dates, no weights

The proofs are not complicated 

This allows us to see the full analysis

The tight bound for uniformly related machines is    
𝟐𝒎−𝟏

𝒎
= 𝟐 −

𝟏

𝒎

can be improved to
𝟐𝒎

𝒎+𝟏
= 𝟐 −

𝟐

𝒎+𝟏
for equal speeds – identical machines

For m=2 the bounds are 1.5 and 4/3

Before we try to prove this, a question: 

what can be say about optimal algorithms?

It can be useful because we compare optimal solutions

Non-preemptive: the problems are NP-hard

Preemptive: McNaughton designed a simple and intuitive optimal 
algorithm for identical machine, about 60 years ago
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McNaughton’s algorithm

Consider a fixed input I and let T = max { 
𝑷

𝒎
, q }

Recall that q and 
𝑷

𝒎
are lower bounds on the makespan

There exists a preemptive schedule with makespan T

The algorithm:     

Assign jobs only during the time slot [0,T) on every machine

• Start from the first machine at time zero

• Assign jobs one after the other without idle time

• Cut a job if time T is reached and continue 

to schedule jobs starting from time 0 on the next machine 

• Do this until all jobs are scheduled

19



McNaughton’s algorithm, example

10987654321job 
index

3452375412size 

20

m=4   and we have P=36, q=7, T=9

9

7

5

3

1

2

3

4

4

5

51

6

7

8

8

9

10Properties:

Jobs split into two parts are assigned 
to their later time slots first

If q>P/m, there will be empty times 
before time T on the last machines 
and possibly on other machines too

Correctness: since 𝑻 ≥
𝑷

𝒎
there is space for all jobs

since 𝑻 ≥ 𝒒 𝐭𝐡𝐞𝐫𝐞 𝐢𝐬 𝐧𝐨 𝐨𝐯𝐞𝐫𝐥𝐚𝐩 between parts of one job



Identical machines, lower bound

Consider   m+1   identical jobs            each of size  m

A non-preemptive solution has a machine with at least two jobs  
(the pigeonhole principle) and its makespan is      at least  2m

For a preemptive solution:        𝑻 = 𝐦𝐢𝐧 𝒎,
𝒎 𝒎+𝟏

𝒎
= 𝒎+ 𝟏

This gives a ratio of at least 
𝟐𝒎

𝒎+𝟏
An illustration of the schedules for m=4:
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Identical machines, upper bound

Algorithm LPT will be used for the analysis

It is simple and creates a valid non-preemptive schedule

Its makespan bounds the optimal one from above

Most likely there is no simple optimal algorithm
- even an exponential one – but we find an upper bound on its cost

LPT (longest processing time)

Sort the jobs by non-increasing size to create a list

and apply LS (List Scheduling, Graham 1966)

LS Process the input list of jobs, assigning every job to the 
machine that will complete it first  - breaking ties arbitrarily

For identical machines it is equivalent to assigning to the machine of 
current minimum completion time
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Two examples for   m=3
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7654321job 
index

2431312size 

7654321job 
index

1123334size 

job 1
size 2 job 2

size 1 

job 3
size 3 

job 4
size 1 

job 5
size 3 

job 6
size 4 

job 7
size 2 

job 1
size 4 job 2

size 3 

job 4
size 3 

job 5
size 2 

job 6
size 1 

job 3
size 3 

job 7
size 1 

LS

LPT



Analysis for the benefit of preemption, for 
identical machines, makespan, using LPT

If there are at most m jobs 

LPT assigns each job to a different machine

the schedule is optimal, 

since its makespan is at most q

Otherwise:

Assume that the job of maximum completion time is the last one

If this is not the case, remove all further jobs, the makespan is unchanged 
for LPT and an optimal preemptive solution cannot have a larger makespan
– because the new input is a subset of the old one

Let p be the last job and its size. 

Any other job has size p or more because of the sorted order

24
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25
i

p

P is the total size of all brown 
jobs and the pink job p



Consider job p, there are at least m+1 jobs including p

Let i be the machine of p in the LPT schedule 

Let 𝑿𝒌 be the completion time of machine k 

just before the last job is assigned

The makespan of LPT is 𝑳 = 𝑿𝒊 + 𝒑

Since i is selected such that p is completed as early as possible

for every k  we get     𝑿𝒌 ≥ 𝑿𝒊

If we add a job of size p to every machine, 

all machine “completion times” will be at least L    

so   𝑷′ ≥ 𝒎 ⋅ 𝑳 and thus   𝑳 ≤
𝑷′

𝒎
Where P’ is the total size of old jobs and added jobs   

P’=P+(m-1)p
m-1 and not m because there was one such job of size p in the input

and when we added such jobs only m-1 are new
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27P is the total size of all brown jobs together with the pink job p.       
P’ is the total size of all jobs

p

i

𝑳 = 𝒑 + 𝑿𝒊

𝑿𝒊



Benefit of preemption

The preemptive optimal cost is at least P/m

We use           𝑳 ≤
𝑷′

𝒎
and     P’=P+(m-1)p

Also     P ≥(m+1)p     because there are at least m+1 jobs 

Due to the sorted order, each has size at least p      so    𝒑 ≤
𝑷

𝒎+𝟏

The non-preemptive optimal cost is at most 

𝑳 ≤
𝑷′

𝒎
=
𝑷 + 𝒎− 𝟏 𝒑

𝒎
≤
𝑷+

𝑷 𝒎− 𝟏
𝒎+ 𝟏
𝒎

=
𝟐𝒎

𝒎 𝒎+ 𝟏
⋅ 𝑷

Comparing to P/m, the ratio between the costs is at most  
𝟐𝒎

𝒎+𝟏
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Uniformly related machines

For this paradigm, there is also an optimal preemptive algorithm

In fact there are many of those 
Horvath, Lam, Sethi 1977, Gonzales, Sahni 1978, Shachnai, Tamir, Woeginger, 2002,   
Ebenlendr, Sgall 2004, E. Tassa, 2006 

But none of them is as simple as the one of McNaughton for identical 
machines.  So we will only write an expression fo the resulting makespan

Assume for simplicity that jobs are sorted by size

𝒑𝟏 ≥ 𝒑𝟐 ≥ ⋯ ≥ 𝒑𝒏

We assume 𝒏 ≥ 𝒎 ,  as otherwise we can assume that the slowest m-n 
machines are not used by optimal solutions, and these machines are 
removed from the instance
Why? at most n machines can be active simultaneously, even in a 
preemptive schedule 
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Let the total size of the largest  k jobs be 𝑷𝒌 = σℓ=𝟏
𝒌 𝒑ℓ

Assume for simplicity that machines are sorted by speed

𝒔𝟏 ≥ 𝒔𝟐 ≥ ⋯ ≥ 𝒔𝒎

Let the total speed of the fastest k machines be

𝑺𝒌 = σℓ=𝟏
𝒌 𝒔ℓ

It is known that 

the makespan of an optimal preemptive solution is

𝐦𝐚𝐱
𝑷𝟏

𝑺𝟏
,
𝑷𝟐

𝑺𝟐
, … ,

𝑷𝒎−𝟏

𝑺𝒎−𝟏
,
𝑷𝒏

𝑺𝒎

this covers in particular the case that there are k very large jobs
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Uniformly related machines:   lower bound

m jobs, each of size 2m-1

m-1 machines of speed 2, one slower machine of speed 1

What is the makespan of a non-preemptive schedule?

If a fast machine has two jobs or more, its completion time is at least 
𝟐 𝟐𝒎−𝟏

𝟐
= 𝟐𝒎− 𝟏

Otherwise, the slow machine has at least one job by pigeonhole 
principle,     and its completion time is 2m-1 

So the makespan is at least 2m-1

As for the preemptive schedule, we have:

𝑷𝒌 = 𝒌 𝟐𝒎− 𝟏 𝑺𝒌 = 𝟐𝒌 𝐟𝐨𝐫 𝒌 < 𝒎 and 𝑺𝒎 = 𝟐𝒎− 𝟏

Plugging into the formula we have 𝐦𝐚𝐱
𝟐𝐦−𝟏

𝟐
,
𝐦 𝟐𝐦−𝟏

𝟐𝐦−𝟏
= 𝐦

So the benefit of preemption is at least     
𝟐𝒎−𝟏

𝒎
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What do the schedules look like?
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Uniformly related machines 
Upper bound

Let 𝐒 = 𝑺𝒎 = σ𝒊 𝒔𝒊
One difference in the analysis compared to that of identical machines

is that while the makespan of any solution 

preemptive or non-preemptive      is at least P/S

there are additional bounds for optimal solutions in the formula

• Another difference is that LPT now acts on machines with speeds

• The first m jobs are not necessarily assigned to m different machines

• We will nevertheless assume that there are at least m jobs

• Otherwise at least one machine is redundant 

We can use the result for a smaller value of m, which is smaller

2-1/m is monotonically increasing in m

• The main reason for the different bound is that we can only
assume that there are at least m jobs and not m+1

• Indeed the lower bound example has m jobs, so here it is a harder case
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• We still have the property that adding p to every machine brings 
the completion time to L or more, due to the choice of machine, 
where the job will be completed first.

• But now we have  𝑳 = 𝑿𝒊 +
𝒑

𝒔𝒊
for machine i that has p

• For any machine k we have 𝑿𝒌 +
𝒑

𝒔𝒌
≥ 𝑳 ,  

since p is assigned to i

• Due to the speeds we have σ𝒌𝑿𝒌 ⋅ 𝒔𝒌 = 𝑷 − 𝒑

• By    𝑿𝒌 +
𝒑

𝒔𝒌
≥ 𝑳 we have 𝑿𝒌 ⋅ 𝒔𝒌 + 𝒑 ≥ 𝑳 ⋅ 𝒔𝒌

and equivalently    𝑿𝒌 ⋅ 𝒔𝒌 ≥ 𝑳 ⋅ 𝒔𝒌 − 𝒑

• By taking the sum over all machines 

𝑷 − 𝒑 =෍

𝒌

𝑿𝒌 ⋅ 𝒔𝒌 ≥ 𝑳 ⋅ (෍

𝒌

𝒔𝒌) −𝒎 ⋅ 𝒑 = 𝑳 ⋅ 𝑺 −𝒎 ⋅ 𝒑

34

L is the cost of LPT



By 𝑷 − 𝒑 = 𝑳 ⋅ 𝑺 −𝒎 ⋅ 𝒑

we get    𝑳 ≤
𝒎−𝟏 𝒑+𝑷

𝐒

By      𝑷 ≥ 𝒎 ⋅ 𝒑 we get

𝑳 ≤
𝒎− 𝟏 𝒑 + 𝑷

𝐒
≤

𝒎− 𝟏 𝑷
𝒎

+ 𝑷

𝑺
=

𝟐𝒎− 𝟏 𝑷

𝒎𝑺

Since the makespan of any preemptive schedule is at least P/S

the benefit of preemption is at most 

𝟐𝒎− 𝟏

𝒎

35
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More on makespan
The special case of two uniformly related machines was studied:

Jiang, Weng, Hu, 2014, Soper and Strusevich, 2014

We found that the tight bound is 1.5 for this case

In these papers, the benefit of preemption was studied as a function 
of the speed ratio s ≥ 1 between the two machines

It is 1.5 only for the case of s=2

We saw that is is 4/3 for s=1   

They found the following tight result:  

2𝑠+2

3𝑠
for 1 ≤ 𝑠 ≤

4

3
𝑠+1

2
for

4

3
≤ 𝑠 ≤ 2

𝑠+1

𝑠
for 𝑠 ≥ 2

The ratio tends to 1 for large s, because then one machine is so 
much slower than the other that it is almost not used
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Total (weighted) completion time
This variant is much more interesting that the previous one for a 
single machine,   and it is also of interest for multiple machines

Proofs of upper bounds are harder
we will mainly consider lower bound examples, in order to see the flavor of this variant

For identical machines, the benefit of preemption is 1 for total weighted completion time

Rothkopf 1966   - quite surprising (both the result, and the early stage that it was proved).

We will show bounds for the benefit of preemption based on

• One machine, release dates   E., Levin  2016
• This work contains lower bounds

• The overall tight upper bound for total weighted completion time follows from 
previous work

• Chekuri, Motwani, Natarajan, Stein  2001, where  its value is 
𝒆

𝒆−𝟏
≈ 1.581

• Uniformly related machines  E., Levin, Soper, Strusevich 2017 

• In this work there is an analysis of a tight upper bound of value ≈ 1.39795

• For the unweighted case

• For two machines the tight value is 1.2
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One machine, release dates
We saw that for preemption does not help for makespan minimization 

Why does it help for total completion time?

Consider an instance with two jobs

A large job    𝒑𝟏 = 𝟐, 𝒓𝒋 = 𝟎

and a small job  𝒑𝟐 = 𝟎, 𝒓𝟐 = 𝟏
We allow jobs of size zero for simplicity, formally we can use very big jobs and jobs of size 1

An optimal preemptive schedule is simple

The schedule is optimal, as every job j is completed at the time 𝒓𝒋 + 𝒑𝒋
The large job is stopped in order to process the small job

But this cannot be done in a non-preemptive schedule

𝒋𝒐𝒃 𝟏 𝒋𝒐𝒃 𝟏

0                    1 2

𝒋𝒐𝒃 𝟐

The total 
completion 
time is 1+2=3
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There are two reasonable non-preemptive schedules

This gives a lower bound of 4/3 on the benefit of preemption for the 
objective of (unweighted) total completion time

It can be slightly improved (to 1.39) with additional jobs of size zero and another 
large job, but we will focus on the weighted case anyway

𝒋𝒐𝒃 𝟏

0                    1 2                     3

𝒋𝒐𝒃 𝟐

The total 
completion 
time is 1+3=4

𝒋𝒐𝒃 𝟏

0                    1 2

𝒋𝒐𝒃 𝟐

The total 
completion 
time is 2+2=4
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Total weighted completion time – lower bound

Now the large job has size N (and release date 0)

There are N-1 small jobs, each of size 0, and release dates:

1,2,3,…,N-1                weights are specified later

The calculations are easier if the large job is the job of index N

Similarly to the small example, an optimal preemptive 
schedule completes job j at time 𝒓𝒋 + 𝒑𝒋 = 𝒋

𝒋𝒐𝒃 𝟏

𝒋𝒐𝒃 𝑵

𝒋𝒐𝒃 𝟐
𝒋𝒐𝒃 𝟑

The total weighted completion time is

෍

𝒋=𝟏

𝑵

𝒋 ⋅ 𝒘𝒋
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Reasonable non-preemptive schedules:    N schedules in total

41

Possible starting times for the large job are 0,1,2,...,N-1

N

N+1

N+2

N+3



The cost for the first schedule is 
𝑵 𝒘𝟏 +𝒘𝟐 +⋯+𝒘𝑵

The cost for the second schedule is 
𝒘𝟏 + (𝑵 + 𝟏)(𝒘𝟐 +𝒘𝟑 +⋯+𝒘𝑵)

The cost for the third schedule is 
𝒘𝟏 + 𝟐𝒘𝟐 + (𝑵 + 𝟐)(𝒘𝟑 +𝒘𝟒 +⋯+𝒘𝑵)

The cost for the i-th schedule is 

෍

𝒋=𝟏

𝒊−𝟏

𝒋 ⋅ 𝒘𝒋 + (𝑵 + 𝒊 − 𝟏)(𝒘𝒊 +𝒘𝒊+𝟏 +⋯+𝒘𝑵)

The cost for the N-th schedule is 

෍

𝒋=𝟏

𝑵−𝟏

𝒋 ⋅ 𝒘𝒋 + 𝟐𝑵 − 𝟏 ⋅ 𝒘𝑵

We would like to assign weights such that all N costs are equal
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The resulting costs are:

𝒘𝒊 = 𝒂𝒊 for 𝑖 = 1,2, … , 𝑁 − 1 and 𝒘𝑵 = 𝑵 ⋅ 𝒂𝑵 for 𝒂 = 𝟏 −
𝟏

𝑵

This gives a ratio that tends to 
𝑒

𝑒−1
≈ 1.581

for N growing to infinity

The origin of the e is due to the term 1 −
1

𝑁

𝑁

The upper bound follows from an algorithm that tries to imitate an optimal preemptive algorithm

It gives priority to jobs for which an optimal preemptive algorithm completed a certain fraction 

But both the preemptive problem and the non-preemptive problem are NP-hard

Without weights, the non-preemptive problem is polynomial:

Algorithm SRPT (shortest/smallest remaining processing time)

is optimal – Scharge 1968

At each time it runs the job with smallest remaining residue – it may 
swap the job if another job is released (or if a job is completed).
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Uniformly related machines  total completion time

For a single machine, without release dates preemption does not 
help. We considered the variant with release dates.

For a single machine we can define SPT (shortest processing time):

Sort the jobs by non-decreasing processing times and schedule them 
in this order  Lawler, 1973 proved a generalized version

For multiple uniformly related machines, release dates would 
complicate the problem, and it is non-trivial even without release 
dates (and it has a clean structure).

The advantage here: Both variants compared here are polynomial 
The algorithms are attributed to multiple articles 

see the books by Pinedo and by Brucker

The non-preemptive version:          “The multipliers algorithm”
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Optimality of SPT for a set of jobs on one machine: 

-- Obviously idle time increases the objective 

so every reasonable schedule is just a permutation
scheduled consecutively starting from time zero

-- If the schedule is not sorted (an exchange argument)

apply “sorting”: swap pairs of consecutive jobs and as a 
result: 

one completion time does not change - the first job gets the 
completion time of the second one - and the other one 
decreases – because the job is smaller

Thus, in a non-preemptive schedule, once the set of jobs of a 
machine is selected, it is scheduled by SPT on that machine

45



The multipliers algorithm
Every machine is scheduled using the SPT rule

But how do we partition jobs among machines?

For jobs of sizes 𝒂𝟏, 𝒂𝟐, … , 𝒂𝒌 assigned to a machine of speed s

to run in this order

If the completion time of the i-th job is 𝑻𝒊
The cost for this machine  is  (𝑻𝟏 + 𝑻𝟐 +⋯+ 𝑻𝒌)/𝒔

Since 𝑻𝒊 = 𝒂𝟏 + 𝒂𝟐 +⋯+ 𝒂𝒊 the i-th job waits for all jobs that 
run before it to be completed, and we get a cost of:

෍

𝒊=𝟏

𝒌
𝒌 − 𝒊 + 𝟏 𝒂𝒊

𝒔

We call   
𝒌−𝒊+𝟏

𝒔
a multiplier

For this machine the multipliers are (in reverse order) 1/s, 2/s, 3/s,...
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The last job to run 
on this machine



Out of the possible multipliers, the smallest n are chosen greedily and 
assigned in reverse order to the sorted list of jobs

The largest job gets the smallest multiplier as in SPT

in which the multipliers in reverse order are 1,2,...,n

n is the multiplier of the smallest job – that will run first

assigned to run starting from time 0 but assigned from top to bottom

Example: for machines with speeds 7,5,3,2

The four lists of multipliers are 
1/7,2/7,3/7,4/7,5/7,6/7,7/7,8/7,....

1/5,2/5,3/5,4/5,5/5, 6/5,....

1/3,2/3,3/3,4/3,....

1/2,2/2,3/2,....

Breaking ties arbitrarily or using a fixed rule 

smallest/largest machine index for machines of sorted speeds

The sorted list of multipliers is: 

1/7~0.142857, 1/5=0.2, 2/7~0.2857, 1/3~0.33333, 2/5=0.4, 3/7~0.42857, ½=0.5, 
4/7~0.57, 3/5=0.6, 2/3~0.6667, 5/7~0.71, 4/5=0.8, 6/7~0.857, 2/2=1, 3/3=1,... 
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The preemptive version:        
“The staircase algorithm”

The idea:

At each time, run the smallest m jobs on the machines

if there are less jobs, use the fastest machines

Sorted such that the smallest job runs on the fastest machine 
etc.

Why? we would like to complete small jobs as fast as we can

This means that we start the smallest job on the fastest machine, and 
the second smallest on the machine of next speed

When the smallest job is completed, the job of next priority is moved 
there (or started there)
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Isn’t this the same?
example for both algorithms

m=3 machines of speeds 4,2,1

Jobs of sizes:  4,6,7,11,13,14

Non-preemptive: use the multipliers 
𝟏

𝟒
,
𝟏

𝟐
,
𝟐

𝟒
,
𝟑

𝟒
,
𝟏

𝟏
,
𝟐

𝟐

¼ for 14, ½ for 13,...

The schedule:
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9

7

5

3

1

speed:  4       2      1

Total completion 
time: 30.75

size 4  

size 6  size 11 

size 14 

size 7 

size 13 



Preemptive: The staircase algorithm

m=3 machines of speeds 4,2,1  Jobs of sizes:  4,6,7,11,13,14

The schedule:

50

9

7

5

3

1

speed:  4       2      1

Total completion 
time: 27

size 4  size 6  size 7  

size 11 

size 13 

size 14 

The cost of a non-preemptive 
schedule that assigns all jobs 
to the fast machine and 
schedules them in SPT order is 
38.75

We can see that the difference 
between the two optimal 
schedules is not very large but 
there is some difference

Similar motivation – everyone 
waits for the first job, so it 
should be the smallest one



Uniformly related machines, total completion time, 
lower bounds

The previous example implies a lower bound of 1.1388..

Consider two machines of speeds 1 and s>1 

and three identical jobs, each of size 1

The reasonable non-preemptive schedules are as follows:

51

2/s

1/s

speed:      s         1

𝒔 ≤ 𝟑 3/s

2/s

1/s

speed:      s         1

𝒔 ≥ 3

The 
cost is 
3/s+1

The 
cost is 

6/s



The preemptive schedule is as follows:

52

3/s-2/s2+1/s3

2/s-1/s2

1/s

speed:      s         1

The cost is 6/s-3/s2+1/s3

In the case s=3 the benefit 
of preemption is at least 
1.1739

For other values of s the 
resulting lower bound is 
smaller

(1-1/s+1/s2)/s

(1-1/s)/s=1/s-1/s21/s

speed:      s         1 speed:      s         1

𝑠 ≥ 2
The 

cost is 
1/s+1

The cost is 
3/s

𝑠 ≤ 2

If there are only two 
jobs the preemptive 
schedule is as above 
without the green job 

and has cost 3/s-1/s2

Reasonable 
non-preemptive 
schedules for two 
jobs:



For two jobs we find a lower bound of 

𝒔𝟐 + 𝒔

𝟑𝒔 − 𝟏
𝐟𝐨𝐫 𝒔 ≤ 𝟐 𝐚𝐧𝐝

𝟑𝒔

𝟑𝒔 − 𝟏
𝐟𝐨𝐫 𝒔 ≥ 𝟐

The maximum occurs as s=2 and it is 1.2

Is this the precise benefit of preemption for two machines?

Yes, we can prove that there is a worst-case input with unit size 
jobs, for any number of machines and speed combination

We can analyze different numbers of jobs and show that for two 
machines the worst case is for two jobs 

We can also prove that in a worst-case input, there is one fast 
machine of speed s>1 and all other machines have speed 1
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Example: s=2, m=4, n=5 jobs, each of size 1
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speed:      2        1        1        1speed:      2        1        1        1

Goal: find the suitable values of s and n given m
We can assume that m is large 

Solving this gives the value of benefit of preemption: 
1.39795

There are worst-case instances with n=m and s<m, where 
s/m~ 0.7959



A generalized model

Unrelated machines 

This is the multiprocessor model where every machine i and a job j 
have a processing time for “j running on i” associated with this pair

A preemptive schedule can be defined, for every machine the size of a job 
assigned to it defines a fraction, and the sum of fractions has to be 1 

Makespan

It is known that the benefit of preemption is exactly 4

Correa, Skutella, Verschae  2009

Total weighted completion time

The benefit of preemption is strictly below 2

An upper bound of 1.81 is known: Sitters, 2008

This is the best result known for uniformly related machines, the 
weighted case. Open problem: find the tight bound for that!
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Other variants
The benefit of preemption is of interest for many scheduling 
problems - interesting when it is not 1 but still it is a constant

For one machine, the status of total (unweighted) completion time 
is also unknown, and  it is in approximately [1.39167, 1.5819767]

There are variants where the benefit of preemption is infinite

If there are deadlines, the tardiness of a job j is defined as

𝐦𝐚𝐱 𝟎, 𝑪𝒋 − 𝒅𝒋 where 𝑪𝒋 is its completion time
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4

3

2

1

In this example with identical 
machines which we saw, if all 
deadlines are equal to 3, the cost of 
the preemptive schedule is 0 and the 
cost of the non-preemptive one is 4



Similar/related problems
One can compare schedules with different numbers of 
preemptions

For example

• One preemption versus an unlimited number of preemptions

• Ten preemptions versus 17 preemptions..

One can find how many preemptions are needed to achieve the 
best possible preemptive schedule  (worst-case)

From previous work:

• m-1 for makespan and identical machines

• 2m-2 for makespan and uniformly related machines
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