Minimizing the Weighted Number of Tardy Jobs is W[1]-hard

Klaus Heeger Danny Hermelin

Ben-Gurion University of the Negev

Scheduling Seminar 24.01.2024

Klaus Heeger

Machine

Klaus Heeger

Machine

Jobs

doc2

PDF

Klaus Heeger

MachineJobsJob Chp = 5p = 5p = 4p - prdoc1doc2p = 3p = 7doc3doc4doc4

Job Characteristics

p — processing time

Machine

Job Characteristics

p — processing time w — weight

Machine

Job Characteristics

p — processing time w — weight d — due date

Klaus Heeger

▶ weakly NP-hard even if all jobs have the same due date (KNAPSACK) [Karp '72]

n: number of jobs

Klaus Heeger

- ▶ weakly NP-hard even if all jobs have the same due date (KNAPSACK) [Karp '72]
- $O(n \log n)$ for unit weights [Moore '68]

n: number of jobs

Klaus Heeger

- ▶ weakly NP-hard even if all jobs have the same due date (KNAPSACK) [Karp '72]
- $O(n \log n)$ for unit weights [Moore '68]
- ▶ $O(P \cdot n)$ and $O(W \cdot n)$ where P is the total processing time and W is the total weight of all jobs [Lawler and Moore '69]

n: number of jobs

Klaus Heeger

- ▶ weakly NP-hard even if all jobs have the same due date (KNAPSACK) [Karp '72]
- $O(n \log n)$ for unit weights [Moore '68]
- ▶ $O(P \cdot n)$ and $O(W \cdot n)$ where P is the total processing time and W is the total weight of all jobs [Lawler and Moore '69]
- admits an FPTAS [Sahni '76]

- ▶ weakly NP-hard even if all jobs have the same due date (KNAPSACK) [Karp '72]
- $O(n \log n)$ for unit weights [Moore '68]
- ▶ $O(P \cdot n)$ and $O(W \cdot n)$ where P is the total processing time and W is the total weight of all jobs [Lawler and Moore '69]
- admits an FPTAS [Sahni '76]
- ▶ $\widetilde{O}(n^{p_{\#}+1})$, $\widetilde{O}(n^{w_{\#}+1})$ [Hermelin, Karhi, Pinedo, Shabtay '21]

 $d_{\#}$: number of due dates $w_{\#}$: number of weights

 $p_{\#}$: number of processing times n: number of jobs

Klaus Heeger

- ▶ weakly NP-hard even if all jobs have the same due date (KNAPSACK) [Karp '72]
- $O(n \log n)$ for unit weights [Moore '68]
- ▶ $O(P \cdot n)$ and $O(W \cdot n)$ where P is the total processing time and W is the total weight of all jobs [Lawler and Moore '69]
- admits an FPTAS [Sahni '76]
- ▶ $\widetilde{O}(n^{p_{\#}+1})$, $\widetilde{O}(n^{w_{\#}+1})$ [Hermelin, Karhi, Pinedo, Shabtay '21]
- ▶ $2^{\widetilde{O}(p_{\#}+w_{\#})} \cdot \operatorname{poly}(n)$, $2^{\widetilde{O}(p_{\#}+d_{\#})} \cdot \operatorname{poly}(n)$, $2^{\widetilde{O}(d_{\#}+w_{\#})} \cdot \operatorname{poly}(n)$ [Hermelin, Karhi, Pinedo, Shabtay '21]

 $d_{\#}$: number of due dates $w_{\#}$: number of weights

 $p_{\#}$: number of processing times n: number of jobs

Klaus Heeger

- ▶ weakly NP-hard even if all jobs have the same due date (KNAPSACK) [Karp '72]
- $O(n \log n)$ for unit weights [Moore '68]
- ▶ $O(P \cdot n)$ and $O(W \cdot n)$ where P is the total processing time and W is the total weight of all jobs [Lawler and Moore '69]
- admits an FPTAS [Sahni '76]
- ▶ $\widetilde{O}(n^{p_{\#}+1})$, $\widetilde{O}(n^{w_{\#}+1})$ [Hermelin, Karhi, Pinedo, Shabtay '21]
- ▶ $2^{\widetilde{O}(p_{\#}+w_{\#})} \cdot \operatorname{poly}(n)$, $2^{\widetilde{O}(p_{\#}+d_{\#})} \cdot \operatorname{poly}(n)$, $2^{\widetilde{O}(d_{\#}+w_{\#})} \cdot \operatorname{poly}(n)$ [Hermelin, Karhi, Pinedo, Shabtay '21]

Can we improve on $\widetilde{O}(n^{w_{\#}+1})$ or $\widetilde{O}(n^{p_{\#}+1})$?

 $d_{\#}$: number of due dates $w_{\#}$: number of weights

 $p_{\#}$: number of processing times n: number of jobs

Klaus Heeger

Known: $\widetilde{O}(n^{p_{\#}+1})$, $\widetilde{O}(n^{w_{\#}+1})$ -time algorithm [Hermelin, Karhi, Pinedo, Shabtay '21]

Theorem

Assuming ETH, there is no $n^{o(w_{\#}/\log w_{\#})}$ - or $n^{o(p_{\#}/\log p_{\#})}$ -time algorithm for $1||\sum w_j U_j$.

Known: $\widetilde{O}(n^{p_{\#}+1})$, $\widetilde{O}(n^{w_{\#}+1})$ -time algorithm [Hermelin, Karhi, Pinedo, Shabtay '21]

Theorem

Assuming ETH, there is no $n^{o(w_{\#}/\log w_{\#})}$ - or $n^{o(p_{\#}/\log p_{\#})}$ -time algorithm for $1||\sum w_j U_j$.

Exponential Time Hypothesis (ETH), informal: SATISFIABILITY requires exponential time

Known: $\widetilde{O}(n^{p_{\#}+1})$, $\widetilde{O}(n^{w_{\#}+1})$ -time algorithm [Hermelin, Karhi, Pinedo, Shabtay '21]

Theorem

Assuming ETH, there is no $n^{o(w_{\#}/\log w_{\#})}$ - or $n^{o(p_{\#}/\log p_{\#})}$ -time algorithm for $1||\sum w_j U_j$.

Exponential Time Hypothesis (ETH), informal: SATISFIABILITY requires exponential time

ETH, formal: $\exists c>1$ such that solving 3-SATISFIABILITY on n variables requires $O(c^n)$ time

Known: $\widetilde{O}(n^{p_{\#}+1})$, $\widetilde{O}(n^{w_{\#}+1})$ -time algorithm [Hermelin, Karhi, Pinedo, Shabtay '21]

Theorem

Assuming ETH, there is no $n^{o(w_{\#}/\log w_{\#})}$ - or $n^{o(p_{\#}/\log p_{\#})}$ -time algorithm for $1||\sum w_j U_j$.

Exponential Time Hypothesis (ETH), informal: SATISFIABILITY requires exponential time

ETH, formal: $\exists c>1$ such that solving 3-SATISFIABILITY on n variables requires $O(c^n)$ time

W[1]-hardness: Under assumption FPT \neq W[1], no $f(w_{\#}) \cdot poly(n)$ -time algorithm/no $f(p_{\#}) \cdot poly(n)$ -time algorithm

Klaus Heeger

Reductions

A many-one reduction from a problem P to a problem Q is a mapping f from instances from P to instances from Q such that

- 1. f(I) is a yes-instance if and only if I is, and
- 2. f is computable in polynomial time.

Reductions

A many-one reduction from a problem P to a problem Q is a mapping f from instances from P to instances from Q such that

- 1. f(I) is a yes-instance if and only if I is, and
- 2. f is computable in polynomial time.

Want to show: If $1||\sum w_j U_j$ is solvable in $n^{o(w_\#/\log w_\#)}$ time, then some hard problem P is solvable in $n^{o(k/\log k)}$ time

Reductions

A many-one reduction from a problem P to a problem Q is a mapping f from instances from P to instances from Q such that

- 1. f(I) is a yes-instance if and only if I is, and
- 2. f is computable in polynomial time.

Want to show: If $1||\sum w_j U_j$ is solvable in $n^{o(w_\#/\log w_\#)}$ time, then some hard problem P is solvable in $n^{o(k/\log k)}$ time

 \rightsquigarrow Sufficient: many-one reduction such that $w_{\#} = O(k)$

Klaus Heeger

Multicolored Subgraph Isomorphism

Input: Two colored graphs G and H

Multicolored Subgraph Isomorphism

Input: Two colored graphs G and HQuestion: Is H a colored subgraph of G?

Multicolored Subgraph Isomorphism

Input: Two colored graphs G and HQuestion: Is H a colored subgraph of G?

Theorem (Marx '10)

Assuming ETH, there is no $n^{o(k/\log k)}$ -time algorithm for MULTICOLORED SUBGRAPH ISOMORPHISM where k := |V(H)| + |E(H)|.

Klaus Heeger

0. Number vertices from each color class arbitrarily

0. Number vertices from each color class arbitrarily

- 0. Number vertices from each color class arbitrarily
- 1. For each color color, select vertex i

- 0. Number vertices from each color class arbitrarily
- 1. For each color color, select vertex i
- 2. For each edge {red, blue} of H, count edges $\{i', j'\}$ with $(i', j') \ge (i, i)$ (i.e. i' > ior $i' = i \land j' \ge i$)

- 0. Number vertices from each color class arbitrarily
- 1. For each color color, select vertex i
- 2. For each edge {red, blue} of H, count edges $\{i', j'\}$ with $(i', j') \ge (i, i)$ (i.e. i' > i or $i' = i \land j' \ge i$)
- 3. For each edge $\{\text{red}, \text{blue}\}$ of H, count edges $\{i', j'\}$ with $(i', j') \leq (i, i)$

Interlude: Numbers, Digits, and Blocks

Consider numbers wrt. to some large basis ${\cal N}$

Klaus Heeger

Interlude: Numbers, Digits, and Blocks

Consider numbers wrt. to some large basis $N \rightarrow$ no carry-over, i.e., can treat each digit separately

Interlude: Numbers, Digits, and Blocks

Consider numbers wrt. to some large basis N \leadsto no carry-over, i.e., can treat each digit separately

Divided into 1 + |E(H)| + |E(H)| + 1 = O(k) blocks: vertex selection blocks small blocks

Klaus Heeger

Selecting Vertices

For each color, two kinds of jobs J and $\neg J$ (each n times):

For each color, two kinds of jobs J and $\neg J$ (each n times): Selecting $i \stackrel{\wedge}{=} i \times J$ early and $(n - i) \times \neg J$ early

For each color, two kinds of jobs J and $\neg J$ (each n times): Selecting $i \stackrel{\wedge}{=} i \times J$ early and $(n - i) \times \neg J$ early J with proc. time & weight: 001|000001|000001|000000|0 $\neg J$ with proc. time & weight: 001|000000|000000|000001|0

For both jobs, due date:

For each color, two kinds of jobs J and $\neg J$ (each n times): Selecting $i \stackrel{\wedge}{=} i \times J$ early and $(n - i) \times \neg J$ early J with proc. time & weight: 001|000001|000001|000000|000000|0 $\neg J$ with proc. time & weight: 001|000000|000000|0000001|0 For both jobs, due date: nnn|100000|000000||000000|000000|0

After selecting 1, 2, 3, proc. time and weight is

 $nnn \mid 000023 \mid 000013 \mid \mid 0000n - 2n - 3 \mid 0000n - 1n - 3 \mid 0$

Minimizing the Weighted Number of Tardy Jobs is W[1]-hard

 $w_{\#} = 2 \cdot |V(H)|$

For each color, two kinds of jobs J and $\neg J$ (each n times): Selecting $i \stackrel{\wedge}{=} i \times J$ early and $(n - i) \times \neg J$ early J with proc. time & weight: 001|000001|000001|000000|0 $\neg J$ with proc. time & weight: 001|000000|000000|000001|0 For both jobs, due date: nnn|100000|000000||000000|000000|0

After selecting 1, 2, 3, proc. time and weight is

 $nnn \mid \! 000023 \mid \! 000013 \mid \! \mid \! 0000n-2n-3 \mid \! 0000n-1n-3 \mid 0$

Minimizing the Weighted Number of Tardy Jobs is W[1]-hard

 $w_{\#} = 2 \cdot |V(H)|$

 $1\ 2\ 3\ 4$

Recall: Want to "count" edges $\{j', k'\}$ with $(j', k') \ge (2, 3)$

Recall: Want to "count" edges $\{j', k'\}$ with $(j', k') \ge (2, 3)$

For first edge $e = \{1, 3\}$, two jobs:

Recall: Want to "count" edges $\{j', k'\}$ with $(j', k') \ge (2, 3)$

For first edge $e = \{1, 3\}$, two jobs: J^e with weight |100000|000000||000000|1, processing time |000100|000000||000000|0, due date nnn|000113|100000||000000|000000|0.

Recall: Want to "count" edges $\{j', k'\}$ with $(j', k') \ge (2, 3)$

For first edge $e = \{1, 3\}$, two jobs: J^e with weight |100000|000000||000000|000000|1, processing time |000100|000000||000000|0, due date nnn|000113|100000||000000|0.

Recall: Want to "count" edges $\{j',k'\}$ with $(j',k') \ge (2,3)$

For first edge $e = \{1, 3\}$, two jobs: J^e with weight |100000|000000||000000|000000|1, processing time |000100|000000||000000|0, due date nnn|000113|100000||000000|0.

 \Rightarrow exactly one of J^e and $\neg J^e$ can be early

Recall: Want to "count" edges $\{j',k'\}$ with $(j',k') \ge (2,3)$

For first edge $e = \{1, 3\}$, two jobs: J^e with weight |100000|000000||000000|000000|1, processing time |000100|000000||000000|0, due date nnn|000113|100000||000000|000000|0.

 $w_{\#} = 2 \cdot |V(H)| + 2$

1 2 3 4

⇒ exactly one of
$$J^e$$
 and $\neg J^e$ can be early J^e can be early if $(1,3) \ge (2,3)$

weight: nnn|000023|000013||0000n - 2n - 3|0000n - 1n - 3|0 processing time: nnn |000023|000013| |0000n - 2n - 3|0000n - 1n - 3|0 vertex large blocks small blocks

Recall: Want to "count" edges $\{j',k'\}$ with $(j',k') \geq (2,3)$

For first edge $e = \{1, 3\}$, two jobs: J^e with weight |100000|000000||000000|000000|1, processing time |000100|000000||000000|0, due date nnn|000113|100000||000000|000000|0.

⇒ exactly one of
$$J^e$$
 and $\neg J^e$ can be early J^e can be early if $(1,3) \ge (2,3)$

weight: nnn|100023|000013||0000n - 2n - 3|0000n - 1n - 3|0 processing time: nnn |000123|000013| |0000n - 2n - 3|0000n - 1n - 3|0 vertex large blocks small blocks

Recall: Want to "count" edges $\{j', k'\}$ with $(j', k') \ge (2, 3)$

Recall: Want to "count" edges $\{j', k'\}$ with $(j', k') \ge (2, 3)$

For second edge $e = \{2, 4\}$, two jobs: J^e with weight |100000|000000||000000|1, processing time |001000|000000||000000|0, and due date nnn|001124|100000||000000|0.

 $\neg J^e$ w. weight |100000|000000||000000|0,processing time |001000|000000||000000|0, and due date nnn|0011nn|100000||000000|0.

Recall: Want to "count" edges $\{j', k'\}$ with $(j', k') \ge (2, 3)$

For second edge $e = \{2, 4\}$, two jobs: J^e with weight |100000|000000||000000|1, processing time |001000|000000||000000|0, and due date nnn|001124|100000||000000|000000|0.

 $\neg J^e$ w. weight |100000|000000||000000|0,processing time |001000|000000||000000|0, and due date nnn|0011nn|100000||000000|0, and \Rightarrow one of J^e and $\neg J^e$ can be scheduled early. J^e can be early if $(2, 4) \ge (2, 3)$

weight: nnn|100023|000013||0000n - 2n - 3|0000n - 1n - 3|0 processing time nnn |000123|000013| |0000n - 2n - 3|0000n - 1n - 3|0 vertex large blocks small blocks

Recall: Want to "count" edges $\{j', k'\}$ with $(j', k') \ge (2, 3)$

For second edge $e = \{2, 4\}$, two jobs: J^e with weight |100000|000000||000000|1, processing time |001000|000000||000000|0, and due date nnn|001124|100000||000000|000000|0.

 $\neg J^e$ w. weight |100000|000000||000000|0,processing time |001000|000000||000000|0, and due date nnn|0011nn|100000||000000|0, and \Rightarrow one of J^e and $\neg J^e$ can be scheduled early. J^e can be early if $(2, 4) \ge (2, 3)$

Recall: Want to "count" edges $\{j', k'\}$ with $(j', k') \ge (2, 3)$

For third edge $e = \{2, 3\}$, two jobs: J^e with weight |100000|000000||000000|1, processing time |010000|000000||000000|0, and due date nnn|011123|100000||000000|0.

 $\neg J^e$ w. weight |100000|000000||000000|0,processing time |010000|000000||000000|0, and due date nnn|0111nn|100000||000000|0, and \Rightarrow one of J^e and $\neg J^e$ can be scheduled early. J^e can be early if $(2,3) \ge (2,3)$

weight: nnn|200023|000013||0000n - 2n - 3|0000n - 1n - 3|1 processing time $\underbrace{nnn}_{\text{vertex}} \underbrace{|001123|000013|}_{\text{large blocks}} \underbrace{|0000n - 2n - 3|0000n - 1n - 3|}_{\text{small blocks}} 0$

Klaus Heeger

Recall: Want to "count" edges $\{j', k'\}$ with $(j', k') \ge (2, 3)$

For fourth edge $e = \{3, 2\}$, two jobs: J^e with weight |100000|000000||000000|1, processing time |100000|000000||000000|0, and due date nnn|111132|100000||000000|000000|0.

 $\neg J^e$ w. weight |100000|000000||000000|0,processing time |100000|000000||000000|0, and due date nnn|1111nn|100000||000000|0, and \Rightarrow one of J^e and $\neg J^e$ can be scheduled early. J^e can be early if $(3, 2) \ge (2, 3)$

weight: nnn|300023|000013||0000n - 2n - 3|0000n - 1n - 3|2 processing time nnn |011123|000013| 0000n - 2n - 3|0000n - 1n - 3|0000n - 1n - 3|0000n - 1n - 3|0000n - 1n - 3|0000n - 2n - 3|0000n - 1n - 3|0000000n - 1n - 3|00000n - 1n - 3|00000n - 1n - 3|00000n - 1

Recall: Want to "count" edges $\{j', k'\}$ with $(j', k') \ge (2, 3)$

For fourth edge $e = \{3, 2\}$, two jobs: J^e with weight |100000|000000||000000|1, processing time |100000|000000||000000|0, and due date nnn|111132|100000||000000|000000|0.

 $\neg J^e$ w. weight |100000|000000||000000|0,processing time |100000|000000||000000|0, and due date nnn|1111nn|100000||000000|0, and \Rightarrow one of J^e and $\neg J^e$ can be scheduled early. J^e can be early if $(3, 2) \ge (2, 3)$

 $\begin{array}{c} \text{weight:} & nnn | 400023 | 000013 | | 0000n - 2n - 3 | 0000n - 1n - 3 | 3 \\ \text{processing time} & nnn \\ \underbrace{nnn} & | 111123 | 000013 | \\ \text{vertex} & | 10000n - 2n - 3 | 0000n - 1n - 3 | 0 \\ \text{small blocks} \\ \end{array}$

Recall: Want to "count" edges $\{i',k'\}$ with $(i',k') \geq (1,3)$

For first edge $e = \{1, 3\}$, two jobs:

Recall: Want to "count" edges $\{i', k'\}$ with $(i', k') \ge (1, 3)$

For first edge $e = \{1, 3\}$, two jobs: J^e with weight |100000||000000|000000|1, processing time |000100||000000|000000|0, due date nnn|111123|100000||000000|000000|0.

Recall: Want to "count" edges $\{i',k'\}$ with $(i',k') \ge (1,3)$

Recall: Want to "count" edges $\{i',k'\}$ with $(i',k') \ge (1,3)$

```
\Rightarrow J^e can be early if ???
```


weight: nnn|m00023|000013||0000n - 2n - 3|0000n - 1n - 3|3processing time: nnn|m100023|000013||0000n - 2n - 3|0000n - 1n - 3|3vertex large blocks small blocks

Klaus Heeger

Recall: Want to "count" edges $\{j', k'\}$ with $(j', k') \ge (2, 3)$

weight: nnn|m00023|000013||0000n - 2n - 3|0000n - 1n - 3|3processing time: nnn|111123|000013||0000n - 2n - 3|0000n - 1n - 3|0

Klaus Heeger

Recall: Want to "count" edges $\{j', k'\}$ with $(j', k') \ge (2, 3)$

Two kinds of filler jobs, each n times: $J_{\rm red}^{\rm (red, blue)}$ with weight & proc. time |000010|000000||000000|0

nnn|m00023|000013||0000n - 2n - 3|0000n - 1n - 3|3

processing time: nnn |111123|000013||0000n - 2n - 3|0000n - 1n - 3| 0

weight:

Minimizing the Weighted Number of Tardy Jobs is W[1]-hard

 $w_{\#} = 2 \cdot |V(H)| + 2$

 $1\ 2\ 3$

Recall: Want to "count" edges $\{j',k'\}$ with $(j',k') \ge (2,3)$

Two kinds of filler jobs, each n times: $J_{\text{red}}^{(\text{red,blue})}$ with weight & proc. time |000010|000000||000000|0 $J_{\text{blue}}^{(\text{red,blue})}$ with weight & proc. time |000001|000000||000000|0

weight: nnn|m00023|000013||0000n - 2n - 3|0000n - 1n - 3|3processing time: nnn|111123|000013||0000n - 2n - 3|0000n - 1n - 3|0

Minimizing the Weighted Number of Tardy Jobs is W[1]-hard

 $w_{\#} = 2 \cdot |V(H)| + 2$

 $1\ 2\ 3$

Recall: Want to "count" edges $\{j', k'\}$ with $(j', k') \ge (2, 3)$ Two kinds of filler jobs, each n times: $J_{\text{red}}^{(\text{red,blue})}$ with weight & proc. time |000010|000000||000000|0 $J_{\text{blue}}^{(\text{red,blue})}$ with weight & proc. time |000001|000000||000000|0

due date nnn|1111nn|100000||000000|000000|0

weight: nnn|m00023|000013||0000n - 2n - 3|0000n - 1n - 3|3processing time: nnn|111123|000013||0000n - 2n - 3|0000n - 1n - 3|0

Minimizing the Weighted Number of Tardy Jobs is W[1]-hard

 $w_{\#} = 2 \cdot |V(H)| + 2$

1 2 3

Recall: Want to "count" edges $\{j', k'\}$ with $(j', k') \ge (2, 3)$ Two kinds of filler jobs, each n times: $J_{\text{red}}^{(\text{red,blue})}$ with weight & proc. time |000010|000000||000000|0

 $J_{\rm blue}^{\rm (red, blue)}$ with weight & proc. time |000001|000000||000000|0

due date nnn|1111nn|100000||000000|000000|0

weight: nnn|m00023|000013||0000n - 2n - 3|0000n - 1n - 3|3processing time: nnn|111123|000013||0000n - 2n - 3|0000n - 1n - 3|0

Recall: Want to "count" edges $\{j', k'\}$ with $(j', k') \ge (2, 3)$ Two kinds of filler jobs, each n times: $J_{\text{red}}^{(\text{red,blue})}$ with weight & proc. time |000010|000000||000000|0 $J_{\text{blue}}^{(\text{red,blue})}$ with weight & proc. time |000001|000000||000000|0

due date nnn|1111nn|100000||000000|000000|0

weight: nnn|m000nn|000013||0000n - 2n - 3|0000n - 1n - 3|3processing time: nnn|1111nn|000013||0000n - 2n - 3|0000n - 1n - 3|0

Recall: Want to "count" edges $\{i', k'\}$ with $(i', k') \ge (1, 3)$

For first edge $e = \{1, 3\}$, two jobs:

Recall: Want to "count" edges $\{i', k'\}$ with $(i', k') \ge (1, 3)$

For first edge $e = \{1, 3\}$, two jobs:

Recall: Want to "count" edges $\{i', k'\}$ with $(i', k') \ge (1, 3)$

For first edge $e = \{1, 3\}$, two jobs: J^e with weight |100000||000000|000000|1, processing time |000100||000000|000000|0, due date nnn|1111nn|000113||000000|000000|0.

Recall: Want to "count" edges $\{i',k'\}$ with $(i',k') \ge (1,3)$

Recall: Want to "count" edges $\{i',k'\}$ with $(i',k') \ge (1,3)$

```
\Rightarrow J^e can be early if (1,3) \ge (1,3)
```


Recall: Want to "count" edges $\{i',k'\}$ with $(i',k') \ge (1,3)$

```
\Rightarrow J^e \text{ can be early if } (1,3) \ge (1,3)
exactly one of J^e and \neg J^e can be early.
```


weight: nnn |m000nn|000013||0000n - 2n - 3|0000n - 1n - 3|3processing time: nnn |111123|000013||0000n - 2n - 3|0000n - 1n - 3|3vertex large blocks small blocks

Now: Want to "count" edges $\{j, k\}$ with $(j, k) \leq (2, 3)$

$$w_{\#} = 2 \cdot |V(H)| + 4 \cdot |E(H)|$$

Now: Want to "count" edges $\{j, k\}$ with $(j, k) \leq (2, 3)$

Now: Want to "count" edges $\{j, k\}$ with $(j, k) \leq (2, 3)$

For first edge $e = \{1, 3\}$, two jobs:			
J^e with weight	1000	0	0 000000 1
processing time	0001	0	0 000000 0
due date $nnn 1111nn 1111nn$	0001 n –	2n -	3 1000 <mark>00</mark> 0
$ eg J^e$ with weight	1000	0	0 000000 0
processing time	0001	0	0 000000 0
due date $nnn 1111nn 1111nn$	0001	n	<i>n</i> 100000 0

$$w_{\#} = 2 \cdot |V(H)| + 4 \cdot |E(H)|$$

Now: Want to "count" edges $\{j, k\}$ with $(j, k) \leq (2, 3)$

For first edge $e = \{1, 3\}$, two jobs: J^e with weight 0|000000|1 1000 0 processing time 0|000000|0 0001 0 due date nnn|1111nn|1111nn||0001n - 2n - 3|100000|0 $\neg J^e$ with weight 10000|000000|0 0 processing time 0001 0|000000|0 0 *n*|100000|0 due date nnn|1111nn|1111nn||0001n

$$w_{\#} = 2 \cdot |V(H)| + 4 \cdot |E(H)|$$

$$\Rightarrow J^e$$
 can be early if $(n-1,n-3) \ge (n-2,n-3)$

weight:
processing time:
$$\frac{nnn|m000nn|m000nn||0000n - 2n - 3|0000n - 1n - 3|7}{|1111nn||1111nn|} \underbrace{|0000n - 2n - 3|0000n - 1n - 3|}_{\text{vertex large blocks}} 0$$

Now: Want to "count" edges $\{j, k\}$ with $(j, k) \leq (2, 3)$

For first edge $e = \{1, 3\}$, two jobs: J^e with weight 0|000000|1 1000 0 processing time 0|000000|0 0001 0 due date nnn|1111nn|1111nn||0001n - 2n - 3|100000|0 $\neg J^e$ with weight 10000|000000|0 0 processing time 0001 0|000000|0 0 due date nnn|1111nn|1111nn||0001*n*|100000|0 n

$$w_{\#} = 2 \cdot |V(H)| + 4 \cdot |E(H)|$$

$$\Rightarrow J^e$$
 can be early if $(n-1,n-3) \ge (n-2,n-3) \iff (1,3) \le (2,3)$

weight:
processing time:
$$\frac{nnn|m000nn|m000nn||0000n - 2n - 3|0000n - 1n - 3|7}{|1111nn||1111nn|} \underbrace{|0000n - 2n - 3|0000n - 1n - 3|}_{\text{vertex large blocks}} 0$$

Klaus Heeger

Now: Want to "count" edges $\{j, k\}$ with $(j, k) \le (2, 3)$

For first edge $e = \{1, 3\}$, two jobs: J^e with weight 10000 0|000000|10|000000|0 processing time 0001 0 due date nnn|1111nn|1111nn||0001n - 2n - 3|100000|0 $\neg J^e$ with weight 10000|000000|0 0 processing time 0001 0|000000|0 0 due date nnn|1111nn|1111nn||0001 n n|100000|0 $w_{\#} = 2 \cdot |V(H)| + 4 \cdot |E(H)|$

 $\Rightarrow J^e \text{ can be early if } (n-1, n-3) \ge (n-2, n-3) \iff (1,3) \le (2,3)$ one of J^e and $\neg J^e$ can be scheduled early.

Klaus Heeger

Theorem

Assuming ETH, there is no $n^{o(w_{\#}/\log w_{\#})}$ -time algorithm for $1||\sum w_j U_j$.

Klaus Heeger

Seen:

 \blacktriangleright known algorithms for constant $w_{\#}$ or $p_{\#}$ almost optimal according to ETH

Seen:

- \blacktriangleright known algorithms for constant $w_{\#}$ or $p_{\#}$ almost optimal according to ETH
- ▶ W[1]-hardness for $w_{\#}$ and $p_{\#}$

Seen:

- \blacktriangleright known algorithms for constant $w_{\#}$ or $p_{\#}$ almost optimal according to ETH
- ▶ W[1]-hardness for $w_{\#}$ and $p_{\#}$

Open questions:

still gap between upper and lower bound

Seen:

- \blacktriangleright known algorithms for constant $w_{\#}$ or $p_{\#}$ almost optimal according to ETH
- ▶ W[1]-hardness for $w_{\#}$ and $p_{\#}$

Open questions:

- still gap between upper and lower bound
- ▶ improve running time for parameters $w_{\#} + p_{\#}$, $w_{\#} + d_{\#}$, or $p_{\#} + d_{\#}$

Seen:

- \blacktriangleright known algorithms for constant $w_{\#}$ or $p_{\#}$ almost optimal according to ETH
- ▶ W[1]-hardness for $w_{\#}$ and $p_{\#}$

Open questions:

- still gap between upper and lower bound
- ▶ improve running time for parameters $w_{\#} + p_{\#}$, $w_{\#} + d_{\#}$, or $p_{\#} + d_{\#}$

Thank you!