Minimizing the Weighted Number of Tardy Jobs is W[1]-hard

Klaus Heeger Danny Hermelin

Ben-Gurion University of the Negev
Scheduling Seminar
24.01.2024

$1 \| \sum w_{j} U_{j}$

Machine

$1 \| \sum w_{j} U_{j}$

Machine

Jobs

$1 \| \sum w_{j} U_{j}$

Machine

Jobs
Job Characteristics

PDF	$p=5$	PDF
doc1	$p=3$	doc2
PDF		PDF
doc3		doc4

$1 \| \sum w_{j} U_{j}$

Machine

Jobs
$\left.\begin{array}{llll}\square & p=5 \\ \text { PDF } & w=4 & \text { PDF } & p=4 \\ w=5\end{array}\right)$

Job Characteristics

p - processing time w - weight
$1 \| \sum w_{j} U_{j}$

Machine

Jobs

$\begin{array}{ll} & \begin{array}{l}p=3 \\ w=6 \\ \text { PDF } \\ d=3\end{array} \\ \operatorname{doc} 3 & \end{array}$

$\begin{array}{ll}\square & \begin{array}{l}p=7 \\ w=5 \\ \text { doc } 4\end{array} \\ & \end{array}$

Job Characteristics

p - processing time w - weight
d - due date
$1 \| \sum w_{j} U_{j}$

Machine

Jobs

Job Characteristics

p - processing time w - weight
d - due date

Task: Order of jobs minimizing weighted number of tardy jobs
$1 \| \sum w_{j} U_{j}$

Machine

Jobs

Job Characteristics

p - processing time w - weight
d - due date

Task: Order of jobs minimizing weighted number of tardy jobs

$1 \| \sum w_{j} U_{j}$

Machine

Jobs

$$
\begin{aligned}
& p=3 \\
& w=6 \\
& d=3
\end{aligned}
$$

doc3

Job Characteristics

p - processing time w - weight
d - due date

Task: Order of jobs minimizing weighted number of tardy jobs

$1 \| \sum w_{j} U_{j}$

Machine

Jobs

doc3

Job Characteristics

p - processing time w - weight
d - due date

Task: Order of jobs minimizing weighted number of tardy jobs

0	0	+	0	+	5	$=5$
doc3	doc1		doc4		doc2	
2	6	8	12			

Related Work

- weakly NP-hard even if all jobs have the same due date (KNAPSACK) [Karp '72]

Related Work

- weakly NP-hard even if all jobs have the same due date (KNAPSACK) [Karp '72]
- $O(n \log n)$ for unit weights [Moore '68]

Related Work

- weakly NP-hard even if all jobs have the same due date (KNAPSACK) [Karp '72]
- $O(n \log n)$ for unit weights [Moore '68]
- $O(P \cdot n)$ and $O(W \cdot n)$ where P is the total processing time and W is the total weight of all jobs [Lawler and Moore '69]
n : number of jobs

Related Work

- weakly NP-hard even if all jobs have the same due date (KNAPSACK) [Karp '72]
- $O(n \log n)$ for unit weights [Moore '68]
- $O(P \cdot n)$ and $O(W \cdot n)$ where P is the total processing time and W is the total weight of all jobs [Lawler and Moore '69]
- admits an FPTAS [Sahni '76]
n : number of jobs

Related Work

- weakly NP-hard even if all jobs have the same due date (KNAPSACK) [Karp '72]
- $O(n \log n)$ for unit weights [Moore '68]
- $O(P \cdot n)$ and $O(W \cdot n)$ where P is the total processing time and W is the total weight of all jobs [Lawler and Moore '69]
- admits an FPTAS [Sahni '76]
- $\widetilde{O}\left(n^{p_{\#}^{+1}}\right), \widetilde{O}\left(n^{w_{\#}+1}\right)$ [Hermelin, Karhi, Pinedo, Shabtay '21]
$d_{\#}$: number of due dates
$w_{\#}$: number of weights
$p_{\#}$: number of processing times
n : number of jobs

Related Work

- weakly NP-hard even if all jobs have the same due date (Knapsack) [Karp '72]
- $O(n \log n)$ for unit weights [Moore '68]
- $O(P \cdot n)$ and $O(W \cdot n)$ where P is the total processing time and W is the total weight of all jobs [Lawler and Moore '69]
- admits an FPTAS [Sahni '76]
- $\widetilde{O}\left(n^{p_{\#}^{+1}}\right), \widetilde{O}\left(n^{w_{\#}+1}\right)$ [Hermelin, Karhi, Pinedo, Shabtay '21]
- $2^{\widetilde{O}\left(p_{\#}+w_{\#}\right)} \cdot \operatorname{poly}(n), 2^{\widetilde{O}\left(p_{\#}+d_{\#}\right)} \cdot \operatorname{poly}(n), 2^{\widetilde{O}\left(d_{\#}+w_{\#}\right)} \cdot \operatorname{poly}(n)$ [Hermelin, Karhi, Pinedo, Shabtay '21]
$d_{\#}$: number of due dates
$w_{\#}$: number of weights
$p_{\#}$: number of processing times
n : number of jobs

Related Work

- weakly NP-hard even if all jobs have the same due date (Knapsack) [Karp '72]
- $O(n \log n)$ for unit weights [Moore '68]
- $O(P \cdot n)$ and $O(W \cdot n)$ where P is the total processing time and W is the total weight of all jobs [Lawler and Moore '69]
- admits an FPTAS [Sahni '76]
- $\widetilde{O}\left(n^{p_{\#}^{+1}}\right), \widetilde{O}\left(n^{w_{\#}+1}\right)$ [Hermelin, Karhi, Pinedo, Shabtay '21]
- $2^{\widetilde{O}\left(p_{\#}+w_{\#}\right)} \cdot \operatorname{poly}(n), 2^{\widetilde{O}\left(p_{\#}+d_{\#}\right)} \cdot \operatorname{poly}(n), 2^{\widetilde{O}\left(d_{\#}+w_{\#}\right)} \cdot \operatorname{poly}(n)$ [Hermelin, Karhi, Pinedo, Shabtay '21]

Can we improve on $\widetilde{O}\left(n^{w_{\#}^{+1}}\right)$ or $\widetilde{O}\left(n^{p_{\#}^{+1}}\right)$?
$d_{\#}$: number of due dates
$w_{\#}$: number of weights
$p_{\#}$: number of processing times
n : number of jobs

Main Result

Known: $\widetilde{O}\left(n^{p_{\#}+1}\right), \widetilde{O}\left(n^{w_{\#}+1}\right)$-time algorithm [Hermelin, Karhi, Pinedo, Shabtay '21]

Theorem

Assuming ETH, there is no $n^{o\left(w_{\#} / \log w_{\#}\right)}$ - or $n^{o\left(p_{\#} / \log p_{\#}\right)}$-time algorithm for $1\left|\mid \sum w_{j} U_{j}\right.$.

Main Result

Known: $\widetilde{O}\left(n^{p_{\#}+1}\right), \widetilde{O}\left(n^{w_{\#}+1}\right)$-time algorithm [Hermelin, Karhi, Pinedo, Shabtay '21]

Theorem

Assuming ETH, there is no $n^{o\left(w_{\#} / \log w_{\#}\right)}$ - or $n^{o\left(p_{\#} / \log p_{\#}\right)}$-time algorithm for $1\left|\mid \sum w_{j} U_{j}\right.$.

Exponential Time Hypothesis (ETH), informal: SATISFIABILITY requires exponential time

Main Result

Known: $\widetilde{O}\left(n^{p_{\#}+1}\right), \widetilde{O}\left(n^{w_{\#}+1}\right)$-time algorithm [Hermelin, Karhi, Pinedo, Shabtay '21]

Theorem

Assuming ETH, there is no $n^{o\left(w_{\#} / \log w_{\#}\right)}$ - or $n^{o\left(p_{\#} / \log p_{\#}\right)}$-time algorithm for $1\left|\mid \sum w_{j} U_{j}\right.$.

Exponential Time Hypothesis (ETH), informal: SATISFIABILITY requires exponential time

ETH, formal: $\exists c>1$ such that solving 3-SATISFIABILITY on n variables requires $O\left(c^{n}\right)$ time

Main Result

Known: $\widetilde{O}\left(n^{p_{\#}+1}\right), \widetilde{O}\left(n^{w_{\#}+1}\right)$-time algorithm [Hermelin, Karhi, Pinedo, Shabtay '21]

Theorem

Assuming ETH, there is no $n^{o\left(w_{\#} / \log w_{\#}\right)}$ - or $n^{o\left(p_{\#} / \log p_{\#}\right)}$-time algorithm for $1\left|\mid \sum w_{j} U_{j}\right.$.

Exponential Time Hypothesis (ETH), informal: SATISFIABILITY requires exponential time

ETH, formal: $\exists c>1$ such that solving 3 -SATISFIABILITY on n variables requires $O\left(c^{n}\right)$ time

W[1]-hardness: Under assumption FPT $\neq \mathrm{W}[1]$, no $f\left(w_{\#}\right) \cdot \operatorname{poly}(n)$-time algorithm/no $f\left(p_{\#}\right) \cdot \operatorname{poly}(n)$-time algorithm

Reductions

A many-one reduction from a problem P to a problem Q is a mapping f from instances from P to instances from Q such that

1. $f(I)$ is a yes-instance if and only if I is, and
2. f is computable in polynomial time.

Reductions

A many-one reduction from a problem P to a problem Q is a mapping f from instances from P to instances from Q such that

1. $f(I)$ is a yes-instance if and only if I is, and
2. f is computable in polynomial time.

Want to show: If $1 \| \sum w_{j} U_{j}$ is solvable in $n^{o\left(w_{\#} / \log w_{\#}\right)}$ time, then some hard problem P is solvable in $n^{o(k / \log k)}$ time

Reductions

A many-one reduction from a problem P to a problem Q is a mapping f from instances from P to instances from Q such that

1. $f(I)$ is a yes-instance if and only if I is, and
2. f is computable in polynomial time.

Want to show: If $1 \| \sum w_{j} U_{j}$ is solvable in $n^{o\left(w_{\#} / \log w_{\#}\right)}$ time, then some hard problem P is solvable in $n^{o(k / \log k)}$ time
\rightsquigarrow Sufficient: many-one reduction such that $w_{\#}=O(k)$

Multicolored Subgraph Isomorphism

Input: Two colored graphs G and H

Multicolored Subgraph Isomorphism

Input: Two colored graphs G and H Question: Is H a colored subgraph of G ?

Multicolored Subgraph Isomorphism

Input: Two colored graphs G and H
Question: Is H a colored subgraph of G ?

Theorem (Marx '10)

Assuming ETH, there is no $n^{o(k / \log k)}$-time algorithm for Multicolored Subgraph IsOMORPHISM where $k:=|V(H)|+|E(H)|$.

High-Level Idea

0 . Number vertices from each color class arbitrarily

High-Level Idea

0 . Number vertices from each color class arbitrarily

High-Level Idea

0 . Number vertices from each color class arbitrarily

1. For each color color, select vertex i

High-Level Idea

0 . Number vertices from each color class arbitrarily

1. For each color color, select vertex i
2. For each edge $\{$ red, blue $\}$ of H, count edges $\left\{i^{\prime}, j^{\prime}\right\}$ with $\left(i^{\prime}, j^{\prime}\right) \geq(i, i)$ (i.e. $i^{\prime}>i$ or $\left.i^{\prime}=i \wedge j^{\prime} \geq i\right)$

High-Level Idea

0 . Number vertices from each color class arbitrarily

1. For each color color, select vertex i
2. For each edge $\{$ red, blue $\}$ of H, count edges $\left\{i^{\prime}, j^{\prime}\right\}$ with $\left(i^{\prime}, j^{\prime}\right) \geq(i, i)$ (i.e. $i^{\prime}>i$ or $\left.i^{\prime}=i \wedge j^{\prime} \geq i\right)$
3. For each edge $\{$ red, blue $\}$ of H, count edges $\left\{i^{\prime}, j^{\prime}\right\}$ with $\left(i^{\prime}, j^{\prime}\right) \leq(i, i)$

Interlude: Numbers, Digits, and Blocks

Consider numbers wrt. to some large basis N

Interlude: Numbers, Digits, and Blocks

Consider numbers wrt. to some large basis N
\rightsquigarrow no carry-over, i.e., can treat each digit separately

Interlude: Numbers, Digits, and Blocks

Consider numbers wrt. to some large basis N \rightsquigarrow no carry-over, i.e., can treat each digit separately

Divided into $1+|E(H)|+|E(H)|+1=O(k)$ blocks:

Selecting Vertices

For each color, two kinds of jobs J and $\neg J$ (each n times):

$$
w_{\#}=2 \cdot|V(H)|
$$

Selecting Vertices

For each color, two kinds of jobs J and $\neg J$ (each n times): Selecting $i \hat{=} i \times J$ early and $(n-i) \times \neg J$ early

$$
w_{\text {\# }}=2 \cdot|V(H)|
$$

Selecting Vertices

For each color, two kinds of jobs J and $\neg J$ (each n times): Selecting $i \wedge i \times J$ early and $(n-i) \times \neg J$ early J with proc. time \& weight: $\quad 001|000001| 000001||000000| 000000| 0$

$$
w_{\#}=2 \cdot|V(H)|
$$

Selecting Vertices

For each color, two kinds of jobs J and $\neg J$ (each n times): Selecting $i \wedge i \times J$ early and $(n-i) \times \neg J$ early J with proc. time \& weight: $001|000001| 000001||000000| 000000| 0$ $\neg J$ with proc. time \& weight: $001|000000| 000000||000001| 000001| 0$

$$
w_{\#}=2 \cdot|V(H)|
$$

Selecting Vertices

For each color, two kinds of jobs J and $\neg J$ (each n times):

$$
w_{\#}=2 \cdot|V(H)|
$$ Selecting $i \wedge i \times J$ early and $(n-i) \times \neg J$ early J with proc. time \& weight: $001|000001| 000001||000000| 000000| 0$ $\neg J$ with proc. time \& weight: $001|000000| 000000||000001| 000001| 0$ For both jobs, due date: nnn|100000|000000||000000|000000|0

Selecting Vertices

For each color, two kinds of jobs J and $\neg J$ (each n times):

$$
w_{\#}=2 \cdot|V(H)|
$$

Selecting $i \wedge i \times J$ early and $(n-i) \times \neg J$ early
J with proc. time \& weight: $001|000001| 000001||000000| 000000| 0$ $\neg J$ with proc. time \& weight: $001|000000| 000000||000001| 000001| 0$

For both jobs, due date: nnn|100000|000000||000000|000000|0

After selecting $1,2,3$, proc. time and weight is

$$
n n n|000023| 000013||0000 n-2 n-3| 0000 n-1 n-3| 0
$$

Selecting Vertices

For each color, two kinds of jobs J and $\neg J$ (each n times): Selecting $i \hat{=} i \times J$ early and $(n-i) \times \neg J$ early J with proc. time \& weight: $001|000001| 000001||000000| 000000| 0$ $\neg J$ with proc. time \& weight: $001|000000| 000000||000001| 000001| 0$ For both jobs, due date: nnn|100000|000000||000000|000000|0

$$
w_{\#}=2 \cdot|V(H)|
$$

After selecting $1,2,3$, proc. time and weight is

$$
n n n|000023| 000013||0000 n-2 n-3| 0000 n-1 n-3| 0
$$

Large Blocks—(red, blue)-block

Recall: Want to "count" edges $\left\{j^{\prime}, k^{\prime}\right\}$ with $\left(j^{\prime}, k^{\prime}\right) \geq(2,3)$

$$
w_{\#}=2 \cdot|V(H)|
$$

weight:
$n n n|000023| 000013||0000 n-2 n-3| 0000 n-1 n-3| 0$
processing time: $\underbrace{n n n}_{\text {vertex }} \underbrace{|000023| 000013 \mid}_{\text {large blocks }} \underbrace{|0000 n-2 n-3| 0000 n-1 n-3 \mid}_{\text {small blocks }} 0$

Large Blocks—(red, blue)-block

Recall: Want to "count" edges $\left\{j^{\prime}, k^{\prime}\right\}$ with $\left(j^{\prime}, k^{\prime}\right) \geq(2,3)$

$$
w_{\#}=2 \cdot|V(H)|
$$

For first edge $e=\{1,3\}$, two jobs:

weight:
$n n n|000023| 000013||0000 n-2 n-3| 0000 n-1 n-3| 0$
processing time: $\underbrace{n n n}_{\text {vertex }} \underbrace{|000023| 000013 \mid}_{\text {large blocks }} \underbrace{|0000 n-2 n-3| 0000 n-1 n-3 \mid}_{\text {small blocks }} 0$

Large Blocks—(red, blue)-block

Recall: Want to "count" edges $\left\{j^{\prime}, k^{\prime}\right\}$ with $\left(j^{\prime}, k^{\prime}\right) \geq(2,3)$

$$
w_{\#}=2 \cdot|V(H)|
$$

For first edge $e=\{1,3\}$, two jobs:
J^{e} with weight $|100000| 000000||000000| 000000| 1$, processing time $|000100| 000000||000000| 000000| 0$, due date nnn|000113|100000||000000|000000|0.

weight:
$n n n|000023| 000013||0000 n-2 n-3| 0000 n-1 n-3| 0$ processing time: $\underbrace{n n n}_{\text {vertex }} \underbrace{|000023| 000013 \mid}_{\text {large blocks }} \underbrace{|0000 n-2 n-3| 0000 n-1 n-3 \mid}_{\text {small blocks }} 0$

Large Blocks—(red, blue)-block

Recall: Want to "count" edges $\left\{j^{\prime}, k^{\prime}\right\}$ with $\left(j^{\prime}, k^{\prime}\right) \geq(2,3)$

$$
w_{\#}=2 \cdot|V(H)|+2
$$

For first edge $e=\{1,3\}$, two jobs:
J^{e} with weight $|100000| 000000||000000| 000000| 1$, processing time $|000100| 000000||000000| 000000| 0$, due date nnn|000113|100000||000000|000000|0.
$\neg J^{e}$ w. weight $|100000| 000000||000000| 000000| 0$, processing time $|000100| 000000||000000| 000000| 0$, due date nnn|0001nn|100000||000000|000000|0

weight: $n n n|000023| 000013||0000 n-2 n-3| 0000 n-1 n-3| 0$ processing time: $\underbrace{n n n}_{\text {vertex }} \underbrace{|000023| 000013 \mid}_{\text {large blocks }} \underbrace{|0000 n-2 n-3| 0000 n-1 n-3 \mid}_{\text {small blocks }} 0$

Large Blocks—(red, blue)-block

Recall: Want to "count" edges $\left\{j^{\prime}, k^{\prime}\right\}$ with $\left(j^{\prime}, k^{\prime}\right) \geq(2,3)$

$$
w_{\#}=2 \cdot|V(H)|+2
$$

For first edge $e=\{1,3\}$, two jobs:
J^{e} with weight $|100000| 000000||000000| 000000| 1$, processing time $|000100| 000000||000000| 000000| 0$, due date nnn|000113|100000||000000|000000|0.
$\neg J^{e}$ w. weight $|100000| 000000||000000| 000000| 0$, processing time $|000100| 000000||000000| 000000| 0$, due date $n n n|0001 n n| 100000||000000| 000000| 0$
\Rightarrow exactly one of J^{e} and $\neg J^{e}$ can be early

weight: $n n n|000023| 000013||0000 n-2 n-3| 0000 n-1 n-3| 0$ processing time: $\underbrace{n n n}_{\text {vertex }} \underbrace{|000023| 000013 \mid}_{\text {large blocks }} \underbrace{|0000 n-2 n-3| 0000 n-1 n-3 \mid}_{\text {small blocks }} 0$

Large Blocks—(red, blue)-block

Recall: Want to "count" edges $\left\{j^{\prime}, k^{\prime}\right\}$ with $\left(j^{\prime}, k^{\prime}\right) \geq(2,3)$

$$
w_{\#}=2 \cdot|V(H)|+2
$$

For first edge $e=\{1,3\}$, two jobs:
J^{e} with weight $|100000| 000000||000000| 000000| 1$, processing time $|000100| 000000||000000| 000000| 0$, due date nnn|000113|100000||000000|000000|0.
$\neg J^{e}$ w. weight $|100000| 000000||000000| 000000| 0$, processing time $|000100| 000000||000000| 000000| 0$, due date $n n n|0001 n n| 100000||000000| 000000| 0$
\Rightarrow exactly one of J^{e} and $\neg J^{e}$ can be early

J^{e} can be early if $(1,3) \geq(2,3)$
weight: $\quad n n n|000023| 000013||0000 n-2 n-3| 0000 n-1 n-3| 0$ processing time: $\underbrace{n n n}_{\text {vertex }} \underbrace{|000023| 000013 \mid}_{\text {large blocks }} \underbrace{|0000 n-2 n-3| 0000 n-1 n-3 \mid}_{\text {small blocks }} 0$

Large Blocks—(red, blue)-block

Recall: Want to "count" edges $\left\{j^{\prime}, k^{\prime}\right\}$ with $\left(j^{\prime}, k^{\prime}\right) \geq(2,3)$

$$
w_{\#}=2 \cdot|V(H)|+2
$$

For first edge $e=\{1,3\}$, two jobs:
J^{e} with weight $|100000| 000000||000000| 000000| 1$, processing time $|000100| 000000||000000| 000000| 0$, due date nnn|000113|100000||000000|000000|0.
$\neg J^{e}$ w. weight $|100000| 000000||000000| 000000| 0$, processing time $|000100| 000000||000000| 000000| 0$, due date $n n n|0001 n n| 100000||000000| 000000| 0$
\Rightarrow exactly one of J^{e} and $\neg J^{e}$ can be early

J^{e} can be early if $(1,3) \geq(2,3)$
weight: $\quad n n n|100023| 000013||0000 n-2 n-3| 0000 n-1 n-3| 0$ processing time: $\underbrace{n n n}_{\text {vertex }} \underbrace{|000123| 000013 \mid}_{\text {large blocks }} \underbrace{|0000 n-2 n-3| 0000 n-1 n-3 \mid}_{\text {small blocks }} 0$

Large Blocks-(red, blue)-block, 2nd edge
Recall: Want to "count" edges $\left\{j^{\prime}, k^{\prime}\right\}$ with $\left(j^{\prime}, k^{\prime}\right) \geq(2,3)$

$$
w_{\text {\# }}=2 \cdot|V(H)|+2
$$

weight:
$n n n|100023| 000013||0000 n-2 n-3| 0000 n-1 n-3| 0$
processing time $\underbrace{n n n}_{\text {vertex }} \underbrace{|000123| 000013 \mid}_{\text {large blocks }} \underbrace{|0000 n-2 n-3| 0000 n-1 n-3 \mid}_{\text {small blocks }} 0$

Large Blocks—(red, blue)-block, 2nd edge
Recall: Want to "count" edges $\left\{j^{\prime}, k^{\prime}\right\}$ with $\left(j^{\prime}, k^{\prime}\right) \geq(2,3)$

$$
w_{\#}=2 \cdot|V(H)|+2
$$

For second edge $e=\{2,4\}$, two jobs:
J^{e} with weight |100000|000000||000000|000000|1, processing time $|001000| 000000||000000| 000000| 0$, and due date $n n n|001124| 100000||000000| 000000| 0$.
$\neg J^{e}$ w. weight $|100000| 000000||000000| 000000| 0$, processing time $|001000| 000000||000000| 000000| 0$, and due date $n n n|0011 n n| 100000||000000| 000000| 0$.

Large Blocks—(red, blue)-block, 2nd edge
Recall: Want to "count" edges $\left\{j^{\prime}, k^{\prime}\right\}$ with $\left(j^{\prime}, k^{\prime}\right) \geq(2,3)$

$$
w_{\#}=2 \cdot|V(H)|+2
$$

For second edge $e=\{2,4\}$, two jobs:
J^{e} with weight |100000|000000||000000|000000|1, processing time $|001000| 000000||000000| 000000| 0$, and due date $n n n|001124| 100000||000000| 000000| 0$.
$\neg J^{e}$ w. weight $|100000| 000000||000000| 000000| 0$, processing time $|001000| 000000||000000| 000000| 0$, and due date $n n n|0011 n n| 100000||000000| 000000| 0$. \Rightarrow one of J^{e} and $\neg J^{e}$ can be scheduled early.
J^{e} can be early if $(2,4) \geq(2,3)$

Large Blocks—(red, blue)-block, 2nd edge
Recall: Want to "count" edges $\left\{j^{\prime}, k^{\prime}\right\}$ with $\left(j^{\prime}, k^{\prime}\right) \geq(2,3)$

$$
w_{\#}=2 \cdot|V(H)|+2
$$

For second edge $e=\{2,4\}$, two jobs:
J^{e} with weight |100000|000000||000000|000000|1, processing time $|001000| 000000||000000| 000000| 0$, and due date $n n n|001124| 100000||000000| 000000| 0$.
$\neg J^{e}$ w. weight $|100000| 000000||000000| 000000| 0$, processing time $|001000| 000000||000000| 000000| 0$, and due date $n n n|0011 n n| 100000||000000| 000000| 0$. \Rightarrow one of J^{e} and $\neg J^{e}$ can be scheduled early.
J^{e} can be early if $(2,4) \geq(2,3)$

Large Blocks—(red, blue)-block, 3rd edge

Recall: Want to "count" edges $\left\{j^{\prime}, k^{\prime}\right\}$ with $\left(j^{\prime}, k^{\prime}\right) \geq(2,3)$

$$
w_{\#}=2 \cdot|V(H)|+2
$$

For third edge $e=\{2,3\}$, two jobs:
J^{e} with weight |100000|000000||000000|000000|1, processing time $|010000| 000000||000000| 000000| 0$, and due date $n n n|011123| 100000||000000| 000000| 0$.
$\neg J^{e}$ w. weight $|100000| 000000||000000| 000000| 0$, processing time $|010000| 000000||000000| 000000| 0$, and due date $n n n|0111 n n| 100000||000000| 000000| 0$.
\Rightarrow one of J^{e} and $\neg J^{e}$ can be scheduled early.
J^{e} can be early if $(2,3) \geq(2,3)$

Large Blocks—(red, blue)-block, 4th edge
Recall: Want to "count" edges $\left\{j^{\prime}, k^{\prime}\right\}$ with $\left(j^{\prime}, k^{\prime}\right) \geq(2,3)$

$$
w_{\#}=2 \cdot|V(H)|+2
$$

For fourth edge $e=\{3,2\}$, two jobs:
J^{e} with weight |100000|000000||000000|000000|1, processing time $|100000| 000000||000000| 000000| 0$, and due date $n n n|111132| 100000||000000| 000000| 0$.
$\neg J^{e}$ w. weight $|100000| 000000||000000| 000000| 0$, processing time $|100000| 000000||000000| 000000| 0$, and due date $n n n|1111 n n| 100000||000000| 000000| 0$.
\Rightarrow one of J^{e} and $\neg J^{e}$ can be scheduled early.

J^{e} can be early if $(3,2) \geq(2,3)$

Large Blocks—(red, blue)-block, 4th edge
Recall: Want to "count" edges $\left\{j^{\prime}, k^{\prime}\right\}$ with $\left(j^{\prime}, k^{\prime}\right) \geq(2,3)$

$$
w_{\#}=2 \cdot|V(H)|+2
$$

For fourth edge $e=\{3,2\}$, two jobs:
J^{e} with weight |100000|000000||000000|000000|1, processing time $|100000| 000000||000000| 000000| 0$, and due date $n n n|111132| 100000||000000| 000000| 0$.
$\neg J^{e}$ w. weight $|100000| 000000||000000| 000000| 0$, processing time $|100000| 000000||000000| 000000| 0$, and due date $n n n|1111 n n| 100000||000000| 000000| 0$.
\Rightarrow one of J^{e} and $\neg J^{e}$ can be scheduled early.

J^{e} can be early if $(3,2) \geq(2,3)$

Large Blocks—(brown, blue)-block

Recall: Want to "count" edges $\left\{i^{\prime}, k^{\prime}\right\}$ with $\left(i^{\prime}, k^{\prime}\right) \geq(1,3)$
For first edge $e=\{1,3\}$, two jobs:

$$
w_{\#}=2 \cdot|V(H)|+2
$$

weight:

$$
n n n|m 00023| 000013||0000 n-2 n-3| 0000 n-1 n-3| 3
$$

processing time:

Large Blocks—(brown, blue)-block

Recall: Want to "count" edges $\left\{i^{\prime}, k^{\prime}\right\}$ with $\left(i^{\prime}, k^{\prime}\right) \geq(1,3)$
For first edge $e=\{1,3\}$, two jobs:
J^{e} with weight $\quad|100000||000000| 000000 \mid 1$, processing time $|000100||000000| 000000 \mid 0$, due date $n n n|111123| 100000||000000| 000000| 0$.

$$
w_{\#}=2 \cdot|V(H)|+2
$$

weight:

$$
n n n|m 00023| 000013||0000 n-2 n-3| 0000 n-1 n-3| 3
$$

processing time:

Large Blocks—(brown, blue)-block

Recall: Want to "count" edges $\left\{i^{\prime}, k^{\prime}\right\}$ with $\left(i^{\prime}, k^{\prime}\right) \geq(1,3)$

$$
w_{\#}=2 \cdot|V(H)|+2
$$

For first edge $e=\{1,3\}$, two jobs:
J^{e} with weight $\quad|100000||000000| 000000 \mid 1$, processing time $\quad|000100||000000| 000000 \mid 0$, due date $n n n|111123| 100000||000000| 000000| 0$.
$\neg J^{e}$ w. weight processing time
|100000||000000|000000|0, |000100||000000|000000|0, due date $n n n|111123| 0001 n n||100000| 000000| 0$

weight: $\quad n n n|m 00023| 000013||0000 n-2 n-3| 0000 n-1 n-3| 3$
processing time: $\underbrace{n n n}_{\text {vertex }} \underbrace{|111123| 000013 \mid}_{\text {large blocks }} \underbrace{|0000 n-2 n-3| 0000 n-1 n-3 \mid}_{\text {small blocks }} 0$

Large Blocks—(brown, blue)-block

Recall: Want to "count" edges $\left\{i^{\prime}, k^{\prime}\right\}$ with $\left(i^{\prime}, k^{\prime}\right) \geq(1,3)$

$$
w_{\#}=2 \cdot|V(H)|+2
$$

For first edge $e=\{1,3\}$, two jobs:
J^{e} with weight |100000||000000|000000|1, processing time $|000100||000000| 000000 \mid 0$, due date $n n n|111123| 100000||000000| 000000| 0$.
$\neg J^{e} \mathrm{w}$. weight processing time due date $n n n|111123| 0001 n n||100000| 000000| 0$
$\Rightarrow J^{e}$ can be early if ???
weight:

$$
n n n|m 00023| 000013||0000 n-2 n-3| 0000 n-1 n-3| 3
$$

processing time:

Large Blocks—(red, blue)-block, after last edge

$$
w_{\#}=2 \cdot|V(H)|+2
$$

Recall: Want to "count" edges $\left\{j^{\prime}, k^{\prime}\right\}$ with $\left(j^{\prime}, k^{\prime}\right) \geq(2,3)$
weight:
$n n n|m 00023| 000013||0000 n-2 n-3| 0000 n-1 n-3| 3$
processing time: $n n n|111123| 000013||0000 n-2 n-3| 0000 n-1 n-3| 0$

Large Blocks—(red, blue)-block, after last edge

$$
w_{\#}=2 \cdot|V(H)|+2
$$

Recall: Want to "count" edges $\left\{j^{\prime}, k^{\prime}\right\}$ with $\left(j^{\prime}, k^{\prime}\right) \geq(2,3)$
Two kinds of filler jobs, each n times:
$J_{\text {red }}^{(\text {red,blue) }}$ with weight \& proc. time $|000010| 000000||000000| 000000| 0$
weight:

$$
n n n|m 00023| 000013||0000 n-2 n-3| 0000 n-1 n-3| 3
$$

processing time: $n n n|111123| 000013||0000 n-2 n-3| 0000 n-1 n-3| 0$

Large Blocks—(red, blue)-block, after last edge

$$
w_{\#}=2 \cdot|V(H)|+2
$$

Recall: Want to "count" edges $\left\{j^{\prime}, k^{\prime}\right\}$ with $\left(j^{\prime}, k^{\prime}\right) \geq(2,3)$
Two kinds of filler jobs, each n times:
$J_{\text {red }}^{(\text {red,blue) }}$ with weight \& proc. time $|000010| 000000||000000| 000000| 0$
$J_{\text {blue }}^{\text {(red,blue) }}$ with weight \& proc. time $|000001| 000000||000000| 000000| 0$

weight: $\quad n n n|m 00023| 000013||0000 n-2 n-3| 0000 n-1 n-3| 3$
processing time: $n n n|111123| 000013||0000 n-2 n-3| 0000 n-1 n-3| 0$

Large Blocks—(red, blue)-block, after last edge

$$
w_{\#}=2 \cdot|V(H)|+2
$$

Recall: Want to "count" edges $\left\{j^{\prime}, k^{\prime}\right\}$ with $\left(j^{\prime}, k^{\prime}\right) \geq(2,3)$
Two kinds of filler jobs, each n times:
$J_{\text {red }}^{(\text {red,blue) }}$ with weight \& proc. time $|000010| 000000||000000| 000000| 0$
$J_{\text {blue }}^{\text {(red,blue) }}$ with weight \& proc. time $|000001| 000000||000000| 000000| 0$
 due date $n n n|1111 n n| 100000||000000| 000000| 0$
weight:

$$
n n n|m 00023| 000013||0000 n-2 n-3| 0000 n-1 n-3| 3
$$

processing time: $n n n|111123| 000013||0000 n-2 n-3| 0000 n-1 n-3| 0$

Large Blocks—(red, blue)-block, after last edge

$$
w_{\#}=2 \cdot|V(H)|+4
$$

Recall: Want to "count" edges $\left\{j^{\prime}, k^{\prime}\right\}$ with $\left(j^{\prime}, k^{\prime}\right) \geq(2,3)$
Two kinds of filler jobs, each n times:
$J_{\text {red }}^{(\text {red,blue) }}$ with weight \& proc. time $|000010| 000000||000000| 000000| 0$
$J_{\text {blue }}^{(\text {red,blue })}$ with weight \& proc. time $|000001| 000000||000000| 000000| 0$
 due date $n n n|1111 n n| 100000||000000| 000000| 0$
weight:

$$
n n n|m 00023| 000013||0000 n-2 n-3| 0000 n-1 n-3| 3
$$

processing time: $n n n|111123| 000013||0000 n-2 n-3| 0000 n-1 n-3| 0$

Large Blocks—(red, blue)-block, after last edge

$$
w_{\#}=2 \cdot|V(H)|+4
$$

Recall: Want to "count" edges $\left\{j^{\prime}, k^{\prime}\right\}$ with $\left(j^{\prime}, k^{\prime}\right) \geq(2,3)$
Two kinds of filler jobs, each n times:
$J_{\text {red }}^{(\text {red,blue) }}$ with weight \& proc. time $|000010| 000000||000000| 000000| 0$
$J_{\text {blue }}^{\text {(red,blue) }}$ with weight \& proc. time $|000001| 000000||000000| 000000| 0$
 due date $n n n|1111 n n| 100000||000000| 000000| 0$
weight:

$$
n n n|m 000 n n| 000013||0000 n-2 n-3| 0000 n-1 n-3| 3
$$

processing time: $n n n|1111 n n| 000013||0000 n-2 n-3| 0000 n-1 n-3| 0$

Large Blocks—(brown, blue)-block

Recall: Want to "count" edges $\left\{i^{\prime}, k^{\prime}\right\}$ with $\left(i^{\prime}, k^{\prime}\right) \geq(1,3)$

$$
w_{\#}=2 \cdot|V(H)|+4
$$

For first edge $e=\{1,3\}$, two jobs:
weight:
$n n n|m 000 n n| 000013||0000 n-2 n-3| 0000 n-1 n-3| 3$
processing time: $\underbrace{n n n}_{\text {vertex }} \underbrace{|111123| 000013 \mid}_{\text {large blocks }} \underbrace{|0000 n-2 n-3| 0000 n-1 n-3 \mid}_{\text {small blocks }} 0$

Large Blocks—(brown, blue)-block

Recall: Want to "count" edges $\left\{i^{\prime}, k^{\prime}\right\}$ with $\left(i^{\prime}, k^{\prime}\right) \geq(1,3)$

$$
w_{\#}=2 \cdot|V(H)|+6
$$

For first edge $e=\{1,3\}$, two jobs:

weight:
$n n n|m 000 n n| 000013||0000 n-2 n-3| 0000 n-1 n-3| 3$
processing time: $\underbrace{n n n}_{\text {vertex }} \underbrace{|111123| 000013 \mid}_{\text {large blocks }} \underbrace{|0000 n-2 n-3| 0000 n-1 n-3 \mid}_{\text {small blocks }} 0$

Large Blocks—(brown, blue)-block

Recall: Want to "count" edges $\left\{i^{\prime}, k^{\prime}\right\}$ with $\left(i^{\prime}, k^{\prime}\right) \geq(1,3)$

$$
w_{\#}=2 \cdot|V(H)|+6
$$

For first edge $e=\{1,3\}$, two jobs:
J^{e} with weight
processing time
|100000||000000|000000|1,
|000100||000000|000000|0,
due date $n n n|1111 n n| 000113||000000| 000000| 0$.
weight:
$n n n|m 000 n n| 000013||0000 n-2 n-3| 0000 n-1 n-3| 3$
processing time: $\underbrace{n n n}_{\text {vertex }} \underbrace{|111123| 000013 \mid}_{\text {large blocks }} \underbrace{|0000 n-2 n-3| 0000 n-1 n-3 \mid}_{\text {small blocks }} 0$

Large Blocks—(brown, blue)-block

Recall: Want to "count" edges $\left\{i^{\prime}, k^{\prime}\right\}$ with $\left(i^{\prime}, k^{\prime}\right) \geq(1,3)$

$$
w_{\#}=2 \cdot|V(H)|+6
$$

For first edge $e=\{1,3\}$, two jobs:
$\begin{array}{ll}J^{e} \text { with weight } & |100000||000000| 000000 \mid 1, \\ \text { processing time } \\ \text { due date } n n n|1111 n n| 000100||000000| 000000| 0, \\ \text { dine }\end{array}$
$\neg J^{e}$ w. weight processing time
|100000||000000|000000|0,
 due date $n n n|1111 n n| 0001 n n||100000| 000000| 0$
weight:

$$
n n n|m 000 n n| 000013||0000 n-2 n-3| 0000 n-1 n-3| 3
$$

Large Blocks—(brown, blue)-block

Recall: Want to "count" edges $\left\{i^{\prime}, k^{\prime}\right\}$ with $\left(i^{\prime}, k^{\prime}\right) \geq(1,3)$

$$
w_{\#}=2 \cdot|V(H)|+6
$$

For first edge $e=\{1,3\}$, two jobs:
J^{e} with weight $\quad|100000||000000| 000000 \mid 1$, processing time $\quad|000100||000000| 000000 \mid 0$, due date $n n n|1111 n n| 000113||000000| 000000| 0$.
$\neg J^{e}$ w. weight processing time due date $n n n|1111 n n| 0001 n n||100000| 000000| 0$
$\Rightarrow J^{e}$ can be early if $(1,3) \geq(1,3)$
weight: $n n n|m 000 n n| 000013||0000 n-2 n-3| 0000 n-1 n-3| 3$ processing time: $\underbrace{n n n}_{\text {vertex }} \underbrace{|111123| 000013 \mid}_{\text {large blocks }} \underbrace{|0000 n-2 n-3| 0000 n-1 n-3 \mid}_{\text {small blocks }} 0$

Large Blocks—(brown, blue)-block

Recall: Want to "count" edges $\left\{i^{\prime}, k^{\prime}\right\}$ with $\left(i^{\prime}, k^{\prime}\right) \geq(1,3)$

$$
w_{\#}=2 \cdot|V(H)|+6
$$

For first edge $e=\{1,3\}$, two jobs:
J^{e} with weight $\quad|100000||000000| 000000 \mid 1$, processing time $\quad|000100||000000| 000000 \mid 0$, due date $n n n|1111 n n| 000113||000000| 000000| 0$.
$\neg J^{e}$ w. weight processing time due date $n n n|1111 n n| 0001 n n||100000| 000000| 0$
$\Rightarrow J^{e}$ can be early if $(1,3) \geq(1,3)$
exactly one of J^{e} and $\neg J^{e}$ can be early.
weight: $\quad n n n|m 000 n n| 000013||0000 n-2 n-3| 0000 n-1 n-3| 3$ processing time: $\underbrace{n n n}_{\text {vertex }} \underbrace{|111123| 000013 \mid}_{\text {large blocks }} \underbrace{|0000 n-2 n-3| 0000 n-1 n-3 \mid}_{\text {small blocks }} 0$

Small Blocks—(red, blue)-block

Now: Want to "count" edges $\{j, k\}$ with $(j, k) \leq(2,3)$

$$
w_{\#}=2 \cdot|V(H)|+4 \cdot|E(H)|
$$

weight:

Small Blocks-(red, blue)-block

Now: Want to "count" edges $\{j, k\}$ with $(j, k) \leq(2,3)$

$$
w_{\#}=2 \cdot|V(H)|+4 \cdot|E(H)|
$$

For first edge $e=\{1,3\}$, two jobs:

$$
\begin{array}{lccc}
J^{e} \text { with weight } & \mid 1000 & 0 & 0|000000| 1 \\
\text { processing time } & \mid 0001 & 0 & 0|000000| 0 \\
\text { due date } n n n|1111 n n| 1111 n n|\mid 0001 n-2 n & -3|100000| 0
\end{array}
$$

weight:

Small Blocks—(red, blue)-block

Now: Want to "count" edges $\{j, k\}$ with $(j, k) \leq(2,3)$

$$
w_{\#}=2 \cdot|V(H)|+4 \cdot|E(H)|
$$

For first edge $e=\{1,3\}$, two jobs:

J^{e} with weight	$\mid 1000$	0	$0\|000000\| 1$
processing time	$\mid 0001$	0	$0\|000000\| 0$
due date $n n n\|1111 n n\| 1111 n n\|\mid 0001 n-2 n$	$-3\|100000\| 0$		
$\neg J^{e}$ with weight	$\mid 1000$	0	$0\|000000\| 0$
processing time	$\mid 0001$	0	$0\|000000\| 0$
due date nnn $\|1111 n n\| 1111 n n\|\mid 0001$	n	$n\|100000\| 0$	

 due date nnn|1111nn|1111nn||0001 n n|100000|0

Small Blocks-(red, blue)-block

Now: Want to "count" edges $\{j, k\}$ with $(j, k) \leq(2,3)$

$$
w_{\#}=2 \cdot|V(H)|+4 \cdot|E(H)|
$$

For first edge $e=\{1,3\}$, two jobs:

J^{e} with weight	$\mid 1000$	0	$0\|000000\| 1$
processing time	$\mid 0001$	0	$0\|000000\| 0$
due date $n n n\|1111 n n\| 1111 n n\|\mid 0001 n-2 n$	$-3\|100000\| 0$		
$\neg J^{e}$ with weight	$\mid 1000$	0	$0\|000000\| 0$
processing time	$\mid 0001$	0	$0\|000000\| 0$
due date nnn $\|1111 n n\| 1111 n n\|\mid 0001$	n	$n\|100000\| 0$	

$\Rightarrow J^{e}$ can be early if $(n-1, n-3) \geq(n-2, n-3)$
 processing time $|0001 \quad 0 \quad 0| 000000 \mid 0$
due date $n n n|1111 n n| 1111 n n||0001 \quad n \quad n| 100000| 0$

Small Blocks-(red, blue)-block

Now: Want to "count" edges $\{j, k\}$ with $(j, k) \leq(2,3)$

$$
w_{\#}=2 \cdot|V(H)|+4 \cdot|E(H)|
$$

For first edge $e=\{1,3\}$, two jobs:

J^{e} with weight	$\mid 1000$	0	$0\|000000\| 1$
processing time	$\mid 0001$	0	$0\|000000\| 0$
due date $n n n\|1111 n n\| 1111 n n\|\mid 0001 n-2 n$	$-3\|100000\| 0$		
$\neg J^{e}$ with weight	$\mid 1000$	0	$0\|000000\| 0$
processing time	$\mid 0001$	0	$0\|000000\| 0$
due date nnn $\|1111 n n\| 1111 n n\|\mid 0001$	n	$n\|100000\| 0$	

 processing time $\quad|0001 \quad 0 \quad 0| 000000 \mid 0$ due date nnn|1111nn|1111nn||0001 $n \quad n|100000| 0$
$\Rightarrow J^{e}$ can be early if $(n-1, n-3) \geq(n-2, n-3) \Longleftrightarrow(1,3) \leq(2,3)$

Small Blocks-(red, blue)-block

Now: Want to "count" edges $\{j, k\}$ with $(j, k) \leq(2,3)$

$$
w_{\#}=2 \cdot|V(H)|+4 \cdot|E(H)|
$$

For first edge $e=\{1,3\}$, two jobs:

J^{e} with weight	$\mid 1000$	0	$0\|000000\| 1$
processing time	$\mid 0001$	0	$0\|000000\| 0$
due date $n n n\|1111 n n\| 1111 n n\|\mid 0001 n-2 n$	$-3\|100000\| 0$		
$\neg J^{e}$ with weight	$\mid 1000$	0	$0\|000000\| 0$
processing time	$\mid 0001$	0	$0\|000000\| 0$
due date $n n n\|1111 n n\| 1111 n n\|\mid 0001$	n	$n\|100000\| 0$	

 due date $n n n|1111 n n| 1111 n n||0001 \quad n \quad n| 100000| 0$
$\Rightarrow J^{e}$ can be early if $(n-1, n-3) \geq(n-2, n-3) \Longleftrightarrow(1,3) \leq(2,3)$
 one of J^{e} and $\neg J^{e}$ can be scheduled early.
weight: $\quad n n n|m 000 n n| m 000 n n||0000 n-2 n-3| 0000 n-1 n-3| 7$

After small blocks

$$
w_{\#}=2 \cdot|V(H)|+8 \cdot|E(H)|
$$

Weight of early jobs: $\underbrace{n n n}_{\text {vertex }} \underbrace{|m 000 n n| m 000 n n \mid}_{\text {large blocks }} \underbrace{|m 000 n n| m 000 n n \mid}_{\text {small blocks }} \underbrace{|E(G)|+\ell}_{\text {counting }}$
where ℓ is the number of edges between the selected vertices

Processing time of early jobs $\underbrace{n n n}_{\text {vertex }} \underbrace{|1111 n n| 1111 n n \mid}_{\text {large blocks }} \underbrace{|111 n n| 1111 n n \mid}_{\text {small blocks }} \underbrace{0}_{\text {counting }}$

After small blocks

$$
w_{\#}=2 \cdot|V(H)|+8 \cdot|E(H)|
$$

Weight of early jobs: $\underbrace{n n n}_{\text {vertex }} \underbrace{|m 000 n n| m 000 n n \mid}_{\text {large blocks }} \underbrace{|m 000 n n| m 000 n n \mid}_{\text {small blocks }} \underbrace{|E(G)|+\ell}_{\text {counting }}$
where ℓ is the number of edges between the selected vertices
G contains H as colored subgraph $\Longleftrightarrow \ell \geq|E(H)|$

Processing time of early jobs $\underbrace{n n n}_{\text {vertex }} \underbrace{|1111 n n| 1111 n n \mid}_{\text {large blocks }} \underbrace{|111 n n| 1111 n n \mid}_{\text {small blocks }} \underbrace{0}_{\text {counting }}$

After small blocks

$$
w_{\#}=2 \cdot|V(H)|+8 \cdot|E(H)|
$$

Weight of early jobs: $\underbrace{n n n}_{\text {vertex }} \underbrace{|m 000 n n| m 000 n n \mid}_{\text {large blocks }} \underbrace{|m 000 n n| m 000 n n \mid}_{\text {small blocks }} \underbrace{|E(G)|+\ell}_{\text {counting }}$ where ℓ is the number of edges between the selected vertices
G contains H as colored subgraph $\Longleftrightarrow \ell \geq|E(H)|$

Theorem

Assuming ETH, there is no $n^{o\left(w_{\#} / \log w_{\#}\right)}$-time algorithm for $1 \| \sum w_{j} U_{j}$.

Processing time of early jobs $\underbrace{n n n}_{\text {vertex }} \underbrace{|1111 n n| 1111 n n \mid}_{\text {large blocks }} \underbrace{|1111 n n| 1111 n n \mid}_{\text {small blocks }} \underbrace{0}_{\text {counting }}$

Conclusion

Seen:

- known algorithms for constant $w_{\#}$ or $p_{\#}$ almost optimal according to ETH

Conclusion

Seen:

- known algorithms for constant $w_{\#}$ or $p_{\#}$ almost optimal according to ETH
- W[1]-hardness for $w_{\#}$ and $p_{\#}$

Conclusion

Seen:

- known algorithms for constant $w_{\#}$ or $p_{\#}$ almost optimal according to ETH
- W[1]-hardness for $w_{\#}$ and $p_{\#}$

Open questions:

- still gap between upper and lower bound

Conclusion

Seen:

- known algorithms for constant $w_{\#}$ or $p_{\#}$ almost optimal according to ETH
- W[1]-hardness for $w_{\#}$ and $p_{\#}$

Open questions:

- still gap between upper and lower bound
- improve running time for parameters $w_{\#}+p_{\#}, w_{\#}+d_{\#}$, or $p_{\#}+d_{\#}$

Conclusion

Seen:

- known algorithms for constant $w_{\#}$ or $p_{\#}$ almost optimal according to ETH
- W[1]-hardness for $w_{\#}$ and $p_{\#}$

Open questions:

- still gap between upper and lower bound
- improve running time for parameters $w_{\#}+p_{\#}, w_{\#}+d_{\#}$, or $p_{\#}+d_{\#}$

Thank you!

