Single machine scheduling in additive manufacturing with two-dimensional packing constraints

# Kan Fang

Tianjin University, China

Zhaofang Mao, Enyuan Fu, Dian Huang, Lin Chen

**Global Scheduling Seminar** 

October 4, 2023

- We consider a single machine scheduling in additive manufacturing with two-dimensional packing constraints (SMSAM-2DP)
- We develop an approximation algorithm and a combinatorial Benders decomposition algorithm (Algorithm-CBD) to solve the problem
- Algorithm CBD performs well

- **2** Problem description
- **3** Approximation algorithm
- **4** Combinatorial Benders decomposition algorithm (Algorithm CBD)
- **5** Computational experiments

- Additive manufacturing (AM), commonly known as 3D printing, uses 3D digital model files to create objects layer-by-layer
- Advantages of additive manufacturing
  - shorten the product development cycle
  - reduce material loss
  - create complex geometries without molds
- Additive manufacturing market size is expected to rise from USD 16.72 billion in 2022 to reach a value of USD 76.16 billion by 2030, at a compound annual growth rate (CAGR) of 20.8%
- An important part of the fourth industrial revolution (Attaran, 2017)

- Disadvantages of additive manufacturing
  - The slow speed of the process
  - High cost of equipment and materials
  - The need for pre- and post-processing (cleaning, sintering, heat treatment, etc.)
- Some AM technologies allow different parts to be processed simultaneously in the same batch
  - e.g., selective laser melting (SLM), also known as direct metal laser sintering technology (DMLS)
- We focus on the DMLS technology (parts are not allowed to be vertically stacked)

• The production process of SLM/DMLS



Figure 1: From Li et al. (2017)

- Pre-processing operations (data preparation, filling of powder materials, adjustment of AM machine, filluing up protective atmosphere)
- Powder layering and laser melting: generate thin powder layers (typical thickness between  $20\mu m$  to  $60\mu m$ ), and scan the powder material by a high power laser beam
- Post-processing operations: clean machine, replace filters

- The production time of a batch is affected by the set of parts allocated to this batch
  - The maximum height of parts that affects the powder layering iterations
  - The total volume of parts that affects the scanning and layer fabrication of parts
  - Machine setup time
- The production time of a batch is a weighted sum of the above three factors (Li et al., 2017; Kucukkoc, 2019; Altekin and Bukchin, 2022)

- **2** Problem description
- **3** Approximation algorithm
- **4** Combinatorial Benders decomposition algorithm (Algorithm CBD)
- **5** Computational experiments

SMSAM-2DP problem: Parameters

- Set of parts  $I = \{1, 2, \dots, n\}$ , each part  $i \in I$  has
  - a predetermined orientation
  - length  $\ell_i$
  - width w<sub>i</sub>
  - height  $h_i$
  - volume *v<sub>i</sub>*
- The additive machine has
  - length L ( $\ell_i \leq L$ )
  - width W ( $w_i \leq W$ )
  - height H  $(h_i \leq H)$
  - scanning time per unit volume VT
  - recoating time per unit height *HT*
  - setup time between any two batches ST

SMSAM-2DP problem: Objective

- To minimize the makespan
  - The geometry of each part is projected on the XY plane, and the minimum rectangle limits is used to place the part in the building chamber
  - A batch is *feasible* if there is no overlap between the rectangular bounding boxes of any two parts
  - Once a batch is started to process parts, it cannot be interrupted until its completion
  - The makespan is equal to the completion time of the last batch in the schedule

SMSAM-2DP problem: Decision variables

- Assignment of parts into batches
- Position of parts in each batch
  - $(x_i, y_i)$ : the coordinates of the front-left corner of part *i*
  - $z_b$ : 1 if batch b is opened, 0 otherwise
  - $u_{ib}$ : 1 if part *i* is allocated into batch *b*, 0 otherwise
  - left<sub>ijb</sub>: 1 if part *i* is located left of part *j* in batch *b*, 0 otherwise
  - below<sub>ijb</sub>: 1 if part *i* is located behind part *j* in batch *b*, 0 otherwise
  - *h<sub>b</sub>*: height of batch *b*
  - $C_b$ : completion time of batch b
  - C<sub>max</sub>: makespan

SMSAM-2DP problem: Constraints

1 Each part *i* must be allocated to exactly one batch

$$\sum_{b\in B} u_{ib} = 1 \quad \forall i \in I$$

2 The height of each batch must be greater than the height of each part in this batch

$$h_i \cdot u_{ib} \leq h_b \quad \forall i \in I, \ b \in B$$

③ Each part cannot be placed outside the machine's platform in both horizontal (width) or vertical (length) directions

$$x_i + w_i \leq W + M \cdot (1 - u_{ib}) \quad \forall i \in I, \ b \in B$$

$$y_i + \ell_i \leq L + M \cdot (1 - u_{ib}) \quad \forall i \in I, \ b \in B$$

#### SMSAM-2DP problem: Constraints

If two parts i and j are allocated into the same batch, they are not allowed to overlap with each other

$$\begin{split} & |\operatorname{eft}_{ijb} + |\operatorname{eft}_{jib} + \operatorname{below}_{ijb} + \operatorname{below}_{jib} \geq u_{ib} + u_{jb} - 1 \quad \forall i, j \in I, b \in B \\ & x_i + w_i - M \cdot (2 - u_{ib} - u_{jb}) \leq x_j + M \cdot (1 - \operatorname{left}_{ijb}) \quad \forall i, j \in I, b \in B \\ & y_i + \ell_i - M \cdot (2 - u_{ib} - u_{jb}) \leq y_j + M \cdot (1 - \operatorname{below}_{ijb}) \quad \forall i, j \in I, b \in B \end{split}$$

**5** Batch *b* is opened if at least one part is allocated to this batch

$$\sum_{i\in I} u_{ib} \leq M \cdot z_b \quad \forall b \in B$$

$$z_b \leq \sum_{i \in I} u_{ib} \quad \forall b \in B$$

#### SMSAM-2DP problem: Constraints

6 A batch can be opened only if its previous batch has already been opened

$$\sum_{i\in I} u_{i(b+1)} \leq M \cdot \sum_{i\in I} u_{ib} \quad \forall b \in B \setminus \{n\}$$

Completion time of each batch

$$C_b \geq C_{b-1} + VT \sum_{i \in I} v_i \cdot u_{ib} + HT \cdot h_b + ST \cdot z_b \quad \forall b \in B$$

8 Calculation of the makespan

$$C_{\max} \geq C_b \quad \forall b \in B$$

- Contribution to the literature: Additive manufacturing scheduling
- nearly 30 papers in 2016-2023

| Reference                 | Problem type | Constraint | Objective                     | Method          |  |  |
|---------------------------|--------------|------------|-------------------------------|-----------------|--|--|
| Freens et al. (2016)      | S            | SM         | Min. cost function            | MILP            |  |  |
| Kucukkoc et al. (2016)    | S            | RM         | Min. production costs         | MILP+Heuristic  |  |  |
| Kim et al. (2017)         | S            | PM/PA      | Min. makespan                 | MILP+GA         |  |  |
| Ransikarbum et al. (2017) | OAS          | RM         | Multiobjective                | MILP            |  |  |
| Li et al. (2017a)         | S            | RM         | Min. average production costs | MILP+ Heuristic |  |  |
| Oh et al. (2018c)         | NS           | R          | Min. cycle time               | Heuristic       |  |  |
| Dvorak et al. (2018)      | NS           | RM         | Min. makespan, tardiness      | CP+Heuristic    |  |  |
| Kucukkoc et al. (2018)    | S            | RM         | Min. maximum lateness         | GA              |  |  |
| Fera et al. (2018)        | S            | SM         | Min. lateness/earliness costs | GA              |  |  |
| Chergui et al. (2018)     | NS           | PM         | Min. tardiness                | MILP            |  |  |
| Li et al. (2018)          | OAS          | RM         | Max. profit                   | MILP            |  |  |
| Griffiths et al. (2019)   | NS           | SM/BO      | Min. build costs              | ITSP            |  |  |
| Stein et al. (2019)       | OAS          | RM         | Max. revenue                  | MILP            |  |  |

| Reference                    | Problem type | Constraint | Objective                     | Method          |  |  |  |  |
|------------------------------|--------------|------------|-------------------------------|-----------------|--|--|--|--|
| Kucukkoc (2019)              | S            | R          | Min. makespan                 | MILP            |  |  |  |  |
| Li et al. (2019b)            | OAS          | R          | Max. profit                   | MILP            |  |  |  |  |
| Wang et al. (2019)           | NS           | R          | Max. nesting rate             | Heuristic       |  |  |  |  |
| Luzon and Khmelnitsky (2019) | S            | SM, F      | Min. exp. makespan, flowtime  | Queueing theory |  |  |  |  |
| Fera et al. (2020)           | S            | SM         | Min. lateness/earliness costs | TS              |  |  |  |  |
| Zhang et al. (2020)          | NS           | R          | Min. makespan                 | EA              |  |  |  |  |
| Kim and Kim (2020)           | S            | P/PA/SU    | Min. makespan                 | MILP            |  |  |  |  |
| Alicastro et al. (2021)      | S            | SM         | Min. makespan                 | ILS             |  |  |  |  |
| Che et al. (2021)            | NS           | PM/BO      | Min. makespan                 | MILP+SA         |  |  |  |  |
| Kapadia et al. (2021)        | OAS          | PM/BO      | Max. profit                   | GA              |  |  |  |  |
| Rohaninejad et al. (2021)    | S            | R          | Min. weighted tardiness       | Hybrid GA, LS   |  |  |  |  |
| Altekin et al. (2021)        | S            | R          | Multiobjective                | MILP+Pareto     |  |  |  |  |
| Aloui and Hadj-Hamou (2021)  | NS           | R          | Min. total lateness           | MILP+Heuristic  |  |  |  |  |
| Kucukkoc et al. (2021)       | NS           | R          | Min. total tardiness          | GA              |  |  |  |  |
| Zipfel et al. (2021)         | NS           | PM         | Min. total weighted tardiness | ILS             |  |  |  |  |
| Altekin and Bukchin (2022)   | NS           | RM         | Min. makespan                 | MILP            |  |  |  |  |
| Lee and Kim (2023)           | NS           | RM         | Min. makespan                 | MILP+GA, PSO    |  |  |  |  |
| Hu et al. (2022)             | NS           | RM/BO      | Min. makespan                 | MILP+ALNS       |  |  |  |  |

#### Problem type:

- S-Scheduling
- NS-Nesting & scheduling
- OAS-Order Acceptance and Scheduling

#### Constraint:

- SM-Single Machine
- PM-(identical) Parallel Machines
- RM-Unrelated (parallel) machines
- PA-Processing Alternatives
- SU-Set-Ups
- F-Failures
- BO-Build Orientation

#### Objective:

- Min. cost
- Min. makespan
- Min. tardiness/lateness
- Max. profit
- Multiobjective

#### Method:

- MILP
- Heuristics: GA, TS, SA, EA, LS...
- CP, Pareto
- Approximation Algorithm
- Exact Algorithm

- **2** Problem description
- **3** Approximation algorithm

# **4** Combinatorial Benders decomposition algorithm (Algorithm CBD)

**5** Computational experiments

- In any optimal schedule, there must be no unforced idleness between any two consecutive batches
- Let  $P_b$  be the processing of batch b, then the total processing time of all batches P is

$$P = \sum_{b \in B} P_b = \underbrace{VT \sum_{i \in I} v_i}_{\text{total scanning time}} + \underbrace{HT \cdot \sum_{b \in B} h_b}_{\text{total recoating time}} + \underbrace{ST \cdot \sum_{b \in B} z_b}_{\text{total setup time}}$$

• The optimal makespan only depends on the total recoating time and the total setup time

- Suppose  $\sigma^*$  is an optimal schedule, in which the total number of batches opened is t
- We assume that h<sub>1</sub><sup>\*</sup> ≥ h<sub>2</sub><sup>\*</sup> ≥ · · · ≥ h<sub>t</sub><sup>\*</sup>, where h<sub>k</sub><sup>\*</sup> is the height of batch k (k = 1,...,t)
- $C_{\max}(\sigma^*) = VT \sum_{i \in I} v_i + HT \cdot \sum_{k=1}^t h_k^* + ST \cdot t$

#### Approximation algorithm

• Divide all the parts into three groups

$$I_{1} = \left\{ i : w_{i} \leq \frac{1}{2}W \& \ell_{i} \leq \frac{1}{2}L \right\},\$$

$$I_{2} = \left\{ i : w_{i} > \frac{1}{2}W \right\},\$$

$$I_{3} = \left\{ i : w_{i} \leq \frac{1}{2}W \& \ell_{i} > \frac{1}{2}L \right\}.$$

- Let  $n_i$  be the number of parts in group  $I_i$  (i = 1, 2, 3)
- Sort the parts in each group in nonincreasing order of their heights
- Denote  $j_k^i$  as the kth part in group  $I_i$   $(h_{j_1^i} \ge h_{j_2^i} \ge \cdots \ge h_{j_{n_i}^i})$

#### Approximation algorithm: Algorithm GreedyPack

1: Initialize:  $\widetilde{A} \leftarrow 0$ ,  $\widetilde{L} \leftarrow 0$ ,  $\widetilde{W} \leftarrow 0$ . 2: **for** i = 1 to 3 **do** if  $I_i \neq \emptyset$  then 3: Open a new batch so as to pack the parts for each  $I_i$ . Let  $s_i \leftarrow 1$ . 4: end if 5: 6: end for greedy packing for group I\_1  $\begin{array}{l} \textbf{for } k = 1 \text{ to } n_1 \text{ do} \\ 8: \quad \widetilde{A} \leftarrow \widetilde{A} + w_{j_k^1} \cdot \ell_{j_k^1}. \\ 9: \quad \textbf{if } \widetilde{A} \leq \frac{1}{2} WL \text{ then} \\ 10: \quad \text{Put part } j_k^1 \text{ into the current batch.} \\ 11: \quad \textbf{else} \\ 12: \quad \text{Close the current batch. Open a new batch and put part } j_k^1 \text{ into the new batch.} \\ 13: \quad s_1 \leftarrow s_1 + 1, \widetilde{A} \leftarrow w_{j_k^1} \cdot \ell_{j_k^1}. \\ 14: \quad \textbf{end if} \\ 15: \quad \text{ord for} \end{array}$ 15: end for greedy packing for group I\_2  $\begin{array}{cccc}
16: & \text{for } k = 1 \text{ to } n_2 \text{ do} \\
17: & \widetilde{L} \leftarrow \widetilde{L} + \ell_{j_k^2}. \\
18: & \text{if } \widetilde{L} \leq L \text{ then} \\
19: & \text{Put part } j_k^2 \text{ into the current batch.} \\
20: & \text{else} \\
21: & \text{Close the current batch. Open a new batch and put part } j_k^2 \text{ into the new batch.} \end{array}$  $s_2 \leftarrow s_2 + 1$ ,  $\widetilde{L} \leftarrow \ell_{j_k^2}$ . 22: 23: end if -24: end for 25: **for** k = 1 to  $n_3$  **do** 33: end for

#### Global Scheduling Seminar

Let 
$$\overline{w} = \max_{i \in \tilde{I}} w_i$$
,  $\overline{\ell} = \max_{i \in \tilde{I}} \ell_i$ ,  $A = \sum_{i \in \tilde{I}} w_i \ell_i$ ,  $x_+ = \max(x, 0)$ .

#### Theorem (Steinberg 1997)

If  $\overline{w} \leq W, \overline{\ell} \leq L, 2A \leq WL - (2\overline{w} - W)_+ (2\overline{\ell} - L)_+$ , then it is possible to pack all the parts in  $\tilde{l}$  into the rectangle with width W and length L.

- For group  $I_1$ , since  $w_i \leq 1/2W$  and  $\ell_i \leq 1/2L$ , the inequalities in Steinberg's Theorem must hold, and the packing solution for  $I_1$  is feasible
- For groups  $I_2$  and  $I_3$ , it is trivial to see that their packing solutions are feasible
- Algorithm GreedyPack can provide a feasible packing solution for all the parts

#### Approximation algorithm

- $s_i$ : the number of batches opened for each group  $I_i$
- Denote  $h_k^i$  as the height of the kth batch in group  $I_i$

| Lemma         |  |  |  |
|---------------|--|--|--|
| $s_1 \leq 4t$ |  |  |  |

- A new batch can be opened only if  $\tilde{A} + w_i \ell_i > \frac{1}{2}WL$
- The total area of parts in any two consecutive batches must be at least 1/2WL
- The total area of parts in  $I_1$  is at least  $s_1/2 \cdot \frac{1}{2}WL$ , and is at most  $t \cdot WL$

• 
$$\frac{1}{4}s_1 \cdot WL \leq t \cdot WL \Rightarrow s_1 \leq 4t$$

#### Lemma

For any 
$$k \ge 0$$
, we have  $h_{4k-3}^1 \le h_k^* \Rightarrow \sum_{k=1}^{s_1} h_k^1 \le 4 \cdot \sum_{k=1}^t h_k^*$ 

- when k = 1, obviously true as  $h_1^*$  must be the largest height
- We have  $h_1^1 \ge \cdots \ge h_{4k-5}^1 \ge h_{4k-4}^1 \ge h_{4k-3}^1 \ge \cdots$
- The total area of the first 4k 4 batches must be at least  $2(k-1) \cdot \frac{1}{2}WL = (k-1)WL = (k-1)WL$
- The parts in the first 4k 4 batches cannot be fully packed into k - 1 batches in the optimal schedule ⇒ must exist one part i' in the first 4k - 4 batches that will be packed into a batch between batches k and t in the optimal schedule

• 
$$h_{i'} \ge h_{4k-3}^1 \Rightarrow h_k^* \ge h_{i'} \ge h_{4k-3}^1$$

#### Approximation algorithm

#### Lemma

 $s_2 \leq 2t$  and  $s_3 \leq 2t$ 

- Any of two parts in I<sub>2</sub> can only be packed together if their total length is not greater than L
- A new batch needs to be opened only when  $\tilde{L} + \ell_i > L$ , where  $\tilde{L}$  is the total length of parts in the current batch
- ⇒ The total area of parts in any two consecutive batches must be at least WL
- $\Rightarrow$  The total area of parts in  $I_2$  is at least  $\frac{s_2}{2}WL$
- $\Rightarrow \frac{s_2}{2} \cdot WL \leq t \cdot WL \Rightarrow s_2 \leq 2t$
- Similar results hold for group  $I_3$

## Approximation algorithm

#### Lemma

For any 
$$k \ge 0$$
, we have  $h_{2k-1}^2 \le h_k^*$  and  $h_{2k-1}^3 \le h_k^*$   
 $\Rightarrow \sum_{k=1}^{s_2} h_k^2 \le 2 \cdot \sum_{k=1}^t h_k^*$ , and  $\sum_{k=1}^{s_3} h_k^3 \le 2 \cdot \sum_{k=1}^t h_k^*$ 

- when k = 1, obviously true
- $h_1^2 \ge \cdots \ge h_{2k-3}^2 \ge h_{2k-2}^2 \ge h_{2k-1}^2 \ge \cdots$
- The total area of the first 2k 2 batches must be at least  $(k 1) \cdot WL$
- $\Rightarrow$  The parts in the first 2k 2 batches cannot be fully packed into k - 1 batches in the optimal schedule  $\Rightarrow$  must exist one part i' that will be packed into a batch between k and t in the optimal schedule  $h_{i'} \ge h_{2k-1}^2 \Rightarrow h_k^* \ge h_{i'} \ge h_{2k-1}^2$
- Similar results hold for group  $I_3$

## Theorem

The approximation ratio of Algorithm GreedyPack is at most 8

#### Proof.

• Denote  $\sigma$  as the schedule generated by Algorithm GreedyPack, and  $C_{\max}(\sigma)$  be the corresponding makespan of this schedule

$$C_{\max}(\sigma) = VT \sum_{i \in I} v_i + HT \cdot \left(\sum_{k=1}^{s_1} h_k^1 + \sum_{k=1}^{s_2} h_k^2 + \sum_{k=1}^{s_3} h_k^3\right) + ST \cdot \sum_{i=1}^{3} s_i$$

$$\leq VT \sum_{i \in I} v_i + HT \cdot 8 \sum_{k=1}^{t} h_k^* + ST \cdot 8t$$

$$\leq 8 \cdot \left(VT \sum_{i \in I} v_i + HT \cdot \sum_{k=1}^{t} h_k^* + ST \cdot t\right)$$

$$= 8 \cdot C_{\max}(\sigma^*) \quad (quite loose!)$$

- **2** Problem description
- **3** Approximation algorithm

# **4** Combinatorial Benders decomposition algorithm (Algorithm CBD)

**5** Computational experiments

- Classical Benders decomposition algorithm: (Benders, 1962; Rahmaniani et al., 2017)
  - Given a MILP P : min{ $cy + dx : Ay + Bx \ge b, y \ge 0, x \in X$ }
  - The Benders decomposition algorithm first fixes x̄ ∈ X, then solves the slave problem SP : min{cy : Ay ≥ b Bx̄, y ≥ 0}, which can be solved by means of the dual slave problem SD : max{u(b Bx̄) : uA ≤ c, u ≥ 0}
  - If SD has an optimal solution  $\overline{u}$ , then an optimality cut  $z \ge \overline{u}(b Bx)$  is constructed
  - If SD is unbounded, a feasibility cut  $0 \ge \overline{u}(b Bx)$  is formed
  - When some variables in the subproblems are required to be integer, standard duality theory cannot be applied to derive the classical Benders cuts

- Combinatorial Benders decomposition algorithm (Codato and Fischetti, 2006)
  - Do not use the dual information to generate cuts
  - It can handle problems where the MP is a 0-1 integer program and the subproblem is a feasibility problem (c = 0)
  - The slave problem SP can be used as a feasibility check on the system {Ay + Bx̄ ≥ b, y ≥ 0}
  - If x̄ is not a feasible solution for at least one variable x<sub>j</sub> causing infeasibility, then this variable must take a different value from x̄<sub>j</sub>
  - If x̄ is a feasible solution for SP, then it is feasible and optimal for P

Schematic of CBD



Figure 2: From Li et al. (2022)

- Numerous applications of CBD
  - Cutting and packing problems: Cote et al. (2014); Cote et al. (2021)
  - Assebly line balancing problems: Akpinar et al. (2017); Huang et al. (2022); Sikora and Weckenborg (2022)
  - Scheduling problems: Verstichel et al. (2015); Li et al. (2022)

- Decompose our problem into the following master and slave problems:
  - The master problem: determine the allocation of parts into batches without the two-dimensional packing constraints
  - The slave problems: determine the existence of feasible packing solutions for the allocated parts in each batch
- If the packing solution is infeasible for some slave problem, generate combinatorial Benders cuts to forbid the current allocation plan of parts, and add such cuts to the master problem
- Continue such process until all slave problems become feasible, and the solution of the master problem become optimal to the original problem

# The master probelm

$$\begin{bmatrix} \text{master} \end{bmatrix} \min C_{\max} \tag{1a}$$
s.t. 
$$\sum_{b \in B} u_{ib} = 1$$

$$h_i \cdot u_{ib} \le h_b \qquad \forall i \in I \qquad (1b)$$

$$h_i \cdot u_{ib} \le h_b \qquad \forall i \in I, \ b \in B \qquad (1c)$$
area-restriction cuts 
$$\implies \sum_{i \in I} w_i \ell_i \cdot u_{ib} \le W \cdot L \qquad \forall b \in B \qquad (1d)$$

$$\sum_{i \in I} u_{ib} \le M \cdot z_b \qquad \forall b \in B \qquad (1e)$$

$$z_b \le \sum_{i \in I} u_{ib} \qquad \forall b \in B \qquad (1f)$$

$$\sum_{i \in I} u_{i(b+1)} \le M \cdot \sum_{i \in I} u_{ib} \qquad \forall b \in B \land (1g)$$

$$C_b \ge C_{b-1} + VT \sum_{i \in I} v_i \cdot u_{ib} + HT \cdot h_b + ST \cdot z_b \qquad \forall b \in B \qquad (1h)$$

$$C_{\max} \ge C_b \qquad \forall b \in B \qquad (1i)$$

$$u_{ib}, \ z_b \in \{0, 1\} \qquad \forall i \in I, \ b \in B \qquad (1j)$$

$$h_b, \ C_b \ge 0 \qquad \forall b \in B \qquad (1k)$$

#### The slave problems

- Let  $S = \{u_{ib}^*, z_b^*\}$  be the solution of the master problem, and  $C_{max}^*$  be the corresponding makespan
- Denote  $\overline{I}_b = \{i \in I | u_{ib}^* = 1\}$  as the set of parts allocated into batch b

# The algorithmic outline of Algorithm CBD

| Algorithm 1 The algorithmic outline of Algorithm CBD                                    |      |
|-----------------------------------------------------------------------------------------|------|
| 1: Initialization: flag $\leftarrow$ 1.                                                 |      |
| 2: while flag = 1 do                                                                    |      |
| 3: FeasibleBatchcounter $\leftarrow 0$ .                                                |      |
| 4: Solve the master problem to obtain its solution $x^*$ , and the corresponding number | r of |
| batches B.                                                                              |      |
| 5: <b>if</b> the MP is feasible <b>then</b>                                             |      |
| 6: <b>for</b> $b = 0$ to <i>B</i> <b>do</b>                                             |      |
| 7: Solve the corresponding slave problems for batch <i>b</i> , i.e., slave(b).          |      |
| 8: <b>if</b> slave(b) is infeasible <b>then</b>                                         |      |
| 9: Add the corresponding combinatorial Benders cuts to the master problem.              |      |
| 10: break                                                                               |      |
| 11: <b>else</b>                                                                         |      |
| 12: FeasibleBatchcounter $\leftarrow$ FeasibleBatchcounter $+1$ .                       |      |
| 13: <b>end if</b>                                                                       |      |
| 14: end for                                                                             |      |
| 15: <b>if</b> FeasibleBatchcounter = $B$ <b>then</b>                                    |      |
| 16: All slave problems are feasible. Set flag $\leftarrow 0$ .                          |      |
| 17: Output the current solution $x^*$ .                                                 |      |
| 18: <b>end if</b>                                                                       |      |
| 19: <b>else</b>                                                                         |      |
| 20: The original problem is infeasible.                                                 |      |
| 21: break                                                                               |      |
| 22: end if                                                                              |      |

#### Combinatorial Benders cuts: No-good cuts

- Let  $I_b = \{i \in I | u_{ib}^* = 1, \text{ and slave}(b) \text{ is infeasible} \}$
- One trivial combinatorial Benders cut can be derived:

$$\sum_{i\in \widetilde{I}_b} u_{ib} \le |\widetilde{I}_b| - 1 \qquad \forall b \in B.$$
 (1)

 When the number of parts allocated into such infeasible batch is large, the above Benders cut could be quite loose (no-good cuts)



$$\Rightarrow u_{1b} + u_{2b} + u_{3b} + u_{5b} \le 3 \quad \forall b \in B$$

#### Batch 1

- For any given order of parts, we pack each part subsequently to check its feasibility
- If feasible, we continue such process by adding the next unpacked part
- Otherwise, we obtain an infeasible set of parts, and a corresponding Benders cut can be generated
- Can only exclude some of the infeasible allocation plans
- Obtain an upper bound on the number of batches to be opened



- Alternative approach: enumeratively examine all subsets of the parts, and check its feasibility
- The method of generating the MIS cuts:
  - We start enumerating each subset of this batch with a cardinality of  $n_s = 2$ , and check its feasibility
  - Each time when an infeasible subset is obtained, we generate a new Benders cut with respect to this subset
  - All supersets that include this subset will be excluded
  - We continue such process by gradually increasing the cardinality of the subset from 2 to N until no more action can be made

#### An illustrative example for generating the MIS cuts



- Such procedure can output all MIS cuts
- The computational time will be exponentially increasing
- May not be practical when the total number of parts is large
- Balance between the quality of Benders cuts and computational time ⇒ Generate part or all MIS
- MIS-based heuristic cuts:
  - Given any infeasible batch with  $\overline{N}$  parts
  - one-layer: only find infeasible subsets with  $n_s = \overline{N} 1$
  - two-layer: only find infeasible subsets with  $n_s = \overline{N} 1$  and  $n_s = \overline{N} 2$
  - all-layer: find all infeasible subsets with  $n_s$  from 2 to  $\overline{N}$
- For large-sized instances, the computational time remains unsatisfactory

- Let LB(I) be the lower bound on the number of batches for a given set of parts I
- Trivial bound:  $LB(I) \ge \left[\sum_{i \in I} w_i I_i / WL\right]$
- Considerable literature on designing different approximation algorithms for the two-dimensional bin packing problem (e.g., the hybrid first fit algorithm, HFF (Chung et al., 1982))
  - Let HFF(I) be the number of bins used in an approximation algorithm HFF, and  $\alpha$  is the approximation ratio of HFF

• 
$$OPT(I) \geq \lceil HFF(I)/\alpha \rceil$$

• 
$$LB = \max\left\{\left\lceil \frac{\sum_{i \in I} w_i l_i}{WL} \right\rceil, \left\lceil \frac{HFF(I)}{\alpha} \right\rceil\right\}$$

## Accelerating strategy 2: Introducing a secondary objective

- The infeasibility of the slave problem is usually caused by the allocation of too many parts into the same batch
- We introduce a secondary objective in the master problem to minimize the deviation of the number of parts across all batches while preserving the value of the primary objective
- Distribute the parts into batches as equally as possible under the same makespan
- The revised master problem:

min 
$$C_{\max} + \varepsilon \cdot \left(\overline{O} - \underline{O}\right)$$
 (3a)

s.t. Constraints (1b) - (1k) (3b)

$$O_b = \sum_{i \in I} u_{ib} \qquad \forall b \in B \tag{3c}$$

$$\overline{O} \ge O_b \qquad \qquad \forall b \in B \tag{3d}$$

 $\underline{O} \le O_b \qquad \qquad \forall b \in B \tag{3e}$ 

- We can also use Steinberg's Theorem to directly verify whether the allocated parts can be feasibly packed into the batch
- We calculate and compare the vlaues in the conditions of Steinberg's Theorem instead of solving the slave problem, and speed up the solution process of Algorithm CBD

- **2** Problem description
- **3** Approximation algorithm

# **4** Combinatorial Benders decomposition algorithm (Algorithm CBD)

**5** Computational experiments

- The dataset provided by Che et al. (2021): parts with different orientations and various sizes
- We choose the first orientation of each part in their dataset and output the characteristics of this part, i.e., height, length, width and volume
- We randomly generate various parts based on the above data (repeat selections are allowed)
- The work of Kucukkoc (2019) have provided the additive machinerelated parameters: the scanning time, recoating time, setup time
- We consider three different types of additive machines

| machine type | VT (hr/cm <sup>3</sup> ) | HT (hr/cm) | ST (hr) | L (cm) | W (cm) | H (cm) |
|--------------|--------------------------|------------|---------|--------|--------|--------|
| small (S)    | 0.030864                 | 0.7        | 2       | 15     | 15     | 32.5   |
| medium (M)   | 0.030864                 | 0.7        | 2       | 17.5   | 17.5   | 32.5   |
| large (L)    | 0.030864                 | 0.7        | 2       | 20     | 20     | 32.5   |

• We consider the following combinations of the number of parts *n* and the type of machines:

 $\{(n, type) : n \in \{15, 20, 30, 40\}, type \in \{S, M, L\}\}.$ 

• For each combination, we randomly generate 10 instances, for a total of  $4 \times 3 \times 10 = 120$  instances

| combination     | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 |
|-----------------|----|----|----|----|----|----|----|----|----|----|----|----|
| machine type    | S  | M  | L  | S  | M  | L  | S  | M  | L  | S  | M  | L  |
| number of parts | 15 | 15 | 15 | 20 | 20 | 20 | 30 | 30 | 30 | 40 | 40 | 40 |

- We conduct our experiments on a computer with a 2.8GHz Intel Core i7 processor and 16 GB of RAM running the Windows 10 operating system
- We set a time limit of 7200 seconds for each experiment

#### Comparison of performance with different acceleration strategies

• Computational of performance between different acceleration strategies with n = 20 on S-type machine

|          |       | Algorithm CE |         |       |            |            |        | D without Algorithm CBD with |            |        |            |            | Algorithm CBD with |            |            | Algorithm CBD with |            |            | BD with |
|----------|-------|--------------|---------|-------|------------|------------|--------|------------------------------|------------|--------|------------|------------|--------------------|------------|------------|--------------------|------------|------------|---------|
|          |       | any stra     |         |       | any stra   | tegy       | S      | trategy                      | 1          | S      | trategy    | 2          | strategy 3         |            |            | all strategies     |            |            |         |
| Instance | ОЪј   | Time         | Gap     | Obj   | MP<br>Iter | SP<br>Iter | Time   | MP<br>Iter                   | SP<br>Iter | Time   | MP<br>Iter | SP<br>Iter | Time               | MP<br>Iter | SP<br>Iter | Time               | MP<br>Iter | SP<br>Iter | Time    |
| 1        | 97.45 | _            | 6.00%   | 97.45 | 121        | 1785       | 255.82 | 151                          | 2129       | 172.16 | 102        | 1492       | 193.94             | 121        | 1742       | 234.40             | 112        | 1580       | 121.90  |
| 2        | 93.03 | -            | 5.45%   | 93.03 | 16         | 256        | 29.51  | 34                           | 520        | 66.77  | 17         | 270        | 17.18              | 16         | 239        | 23.24              | 5          | 100        | 4.53    |
| 3        | 92.45 | -            | 5.03%   | 92.45 | 58         | 827        | 115.87 | 70                           | 1024       | 86.18  | 74         | 1049       | 148.37             | 58         | 763        | 132.10             | 70         | 944        | 86.06   |
| 4        | 79.59 | -            | 4.62%   | 79.59 | 31         | 538        | 82.59  | 28                           | 512        | 50.34  | 35         | 508        | 69.94              | 31         | 504        | 89.76              | 34         | 451        | 45.95   |
| 5        | 81.92 | -            | 6.20%   | 81.64 | 48         | 828        | 75.52  | 24                           | 430        | 31.06  | 25         | 442        | 55.98              | 48         | 776        | 81.14              | 26         | 415        | 29.09   |
| 6        | 92.15 | -            | 11.60%  | 87.42 | 3          | 42         | 4.48   | 3                            | 42         | 3.10   | 3          | 42         | 3.95               | 3          | 34         | 4.85               | 3          | 34         | 3.37    |
| 7        | 83.51 | -            | 4.81%   | 83.51 | 12         | 202        | 831.55 | 3                            | 54         | 29.71  | 6          | 111        | 59.95              | 12         | 193        | 850.56             | 5          | 62         | 11.54   |
| 8        | 78.95 | -            | 7.23%   | 78.95 | 427        | 4421       | 518.10 | 422                          | 4314       | 422.98 | 425        | 4344       | 561.54             | 427        | 4413       | 521.16             | 434        | 4469       | 473.00  |
| 9        | 90.94 | -            | 3.12%   | 90.94 | 21         | 305        | 116.89 | 23                           | 330        | 26.90  | 21         | 303        | 56.61              | 21         | 283        | 128.29             | 21         | 273        | 26.36   |
| 10       | 89.64 | -            | 2.93%   | 89.36 | 9          | 164        | 23.36  | 16                           | 211        | 16.77  | 9          | 133        | 20.17              | 9          | 147        | 24.96              | 8          | 103        | 11.13   |
| Avg      | 87.96 | >7200        | ) 5.70% | 87.43 | 74.60      | 936.80     | 205.37 | 77.40                        | 956.60     | 90.60  | 71.70      | 869.40     | 118.76             | 74.60      | 909.40     | 209.05             | 71.80      | 843.10     | 81.29   |

- The results show that these three strategies and their combinations can significantly reduce the CPU time
- The average CPU time is about half of the one without considering any acceleration strategy

- Algorithm CBD0: the combinatorial Benders decomposition algorithm that only uses the no-good cuts
- Algorithm CBD1: the one uses both the no-good cuts and the next-fit-based heuristic cuts
- Algorithm CBD2: the one with no-good and NF-based heuristic cuts and the one-layer MIS cuts
- Algorithm CBD3: the one with no-good and NF-based heuristic cuts and the two-layer MIS cuts
- Algorithm CBD4: the one with no-good and NF-based heuristic cuts and the all-layer MIS cuts

 Computational of performance between different types of Benders cuts with n = 20 on S-type machine

|          | MILP  |       |        |       |            | Algorithm CBD0 |        |            | rithm (    | CBD1   | Algo       | Algorithm CBD2 Algorithm CBD3 |        |            |            | Alg    | Algorithm CBD4 |            |        |
|----------|-------|-------|--------|-------|------------|----------------|--------|------------|------------|--------|------------|-------------------------------|--------|------------|------------|--------|----------------|------------|--------|
| Instance | Obj   | Time  | Gap    | Obj   | MP<br>Iter | SP<br>Iter     | Time   | MP<br>Iter | SP<br>Iter | Time   | MP<br>Iter | SP<br>Iter                    | Time   | MP<br>Iter | SP<br>Iter | Time   | MP<br>Iter     | SP<br>Iter | Time   |
| 1        | 97.45 | _     | 6.00%  | 97.45 | 123        | 482            | 313.22 | 134        | 532        | 287.54 | 112        | 1580                          | 121.90 | 106        | 4273       | 92.79  | 124            | 10866      | 144.64 |
| 2        | 93.03 | _     | 5.45%  | 93.03 | 21         | 75             | 8.67   | 21         | 84         | 10.27  | 5          | 100                           | 4.53   | 10         | 386        | 13.19  | 8              | 738        | 10.98  |
| 3        | 92.45 | -     | 5.03%  | 92.45 | 230        | 713            | 727.49 | 227        | 719        | 572.37 | 70         | 944                           | 86.06  | 57         | 2039       | 96.47  | 61             | 3714       | 58.621 |
| 4        | 79.59 | _     | 4.62%  | 79.59 | 96         | 356            | 90.07  | 104        | 395        | 87.84  | 34         | 451                           | 45.95  | 22         | 846        | 42.35  | 21             | 1783       | 49.72  |
| 5        | 81.92 | _     | 6.20%  | 81.64 | 44         | 140            | 23.46  | 45         | 157        | 22.18  | 26         | 415                           | 29.09  | 23         | 982        | 40.97  | 34             | 2814       | 34.89  |
| 6        | 92.15 | -     | 11.60% | 87.42 | 3          | 9              | 1.19   | 3          | 20         | 1.44   | 3          | 34                            | 3.37   | 3          | 77         | 4.74   | 3              | 285        | 7.55   |
| 7        | 83.51 | -     | 4.81%  | 83.51 | 5          | 14             | 2.53   | 6          | 29         | 2.71   | 5          | 62                            | 11.54  | 9          | 383        | 51.79  | 15             | 4287       | 111.94 |
| 8        | 78.95 | _     | 7.23%  | 78.95 | 589        | 1767           | 812.37 | 588        | 1775       | 667.77 | 434        | 4469                          | 473.00 | 424        | 12729      | 673.19 | 428            | 23038      | 410.84 |
| 9        | 90.94 | -     | 3.12%  | 90.94 | 118        | 450            | 197.45 | 128        | 501        | 188.67 | 21         | 273                           | 26.36  | 16         | 435        | 31.32  | 12             | 648        | 20.76  |
| 10       | 89.64 |       | 2.93%  | 89.36 | (41)       | 144            | 39.20  | 47         | 168        | 27.82  | 8          | 103                           | 11.13  | (7)        | 182        | 15.13  | (7)            | 646        | 19.77  |
| Avg      | 87.96 | >7200 | 5.70%  | 87.43 | 127.00     | 415.00         | 221.57 | 130.30     | 438.00     | 186.86 | 71.80      | 843.10                        | 81.29  | 67.70      | 2233.20    | 106.19 | 71.30          | 4881.90    | 86.97  |

 Any of the above combinatorial Benders decomposition algorithm can perform significantly better than solving the MILP model directly by Gurobi

- By imposing the NF-based heuristic cuts, the computational time of Algorithm CBD1 is generally smaller than Algorithm CBD0 (tighter upper bounds on the number of batches to be opened)
- By incorporating the MIS-based heuristic cuts, the number of iterations for the master problem in Algorithms CBD2-4 can be notably reduced compared to the ones in Algorithm CBD0, and the computational time decreases greatly when the number of parts increases
- The MIS-based heuristic cuts are quite effective in solving the SMSAM-2DP problem

# END OF PRESENTATION THANKYOU!

Please send your questions or comments to kfang@tju.edu.cn