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Abstract

In the primary-secondary scheduling problem, we have a primary scheduling cri-
terion and a secondary scheduling criterion. The goal of the problem is to find a
schedule which minimizes the secondary criterion, subject to the restriction that the
primary criterion is minimized. In 1993, Lee and Vairaktarakis [LV1993] presented
a comprehensive review for the computational complexity of the single-machine
primary-secondary scheduling problems, where all the jobs are released at time
zero. When both of the two criteria are regular, more than twenty problems were
posed as open in [LV1993]. This talk will report the research progress of these

open problems.

[LV1993] Lee, C.Y., & Vairaktarakis, G. (1993). Complexity of single machine
hierarchical scheduling: A survey. In: Complexity in Numerical Optimization,
P.M. Pardalos, ed., World Scientific, River Edge, NJ, 269-298.



1 Schedules and criteria

We have n jobs J = {Ji, Ja, ..., J,} to be scheduled on a single machine.

Each job J; € J has a processing time p;, a due date d;, and a weight w;. All the
parameters p;, d;, w; are nonnegative integers.

Since we only consider the classical scheduling problems, each scheduling criterion

f 1s a function of the from
f — f(017027"'7cn)7
where C) 1s the completion time of job J; for j = 1,2,... n.
A scheduling criterion f is called regular if f is nondecreasing in the completion

times of the jobs.

In this report, we only consider the following regular criteria

fmax, Lmax: ZCj’ ;: Uj7 ;:Tﬂ S:chj? ijUj7 Zw]TY




We assume that all the jobs are released at time 0.
Then we only consider the schedules in which the jobs are consecutively scheduled

without 1dle times.

As aresult, a schedule ¢ of 7 is denoted by

where, for each index 7 € {1,2,...,n}, Jy is the i-th job in 0.

For two distinct jobs J; and J;, we use the notation J; <, J; to indicate that J; is

scheduled before J; in schedule o.



2 The primary-secondary scheduling problems

Let f and g be two regular scheduling criteria.
The single-machine primary-secondary scheduling problem with f being the pri-

mary criterion and g being the secondary criterion is denoted by

1|Lex(f, g)

which aims to find a schedule ¢ such that the secondary criterion g(o) is minimized
under the constraint that the primary criterion f(o) is minimized.

Let II( f) be the set of the optimal schedules for the single-criterion problem 1|| f.
Then a schedule o of J is optimal for problem 1||Lex(f, g) if and only if

o € TI(f),
g(o) =min{g(m) : 7 € II(f)}.

For each optimal schedule ¢ for problem 1||Lex(f, g), we call (f(o), g(o)) the

optimal vector of the problem.



3 Computational complexity

When we consider the computational complexity, a scheduling problem is
either polynomially solvable, or ordinary NP-hard, or unary NP-hard.
Here, a problem is ordinary NP-hard if it is binary NP-hard and is solvable in

pseudo-polynomial time.

A problem is called open if up to now we do not know any information about its

complexity classification.

A problem is called E-open if up to now we only know partial information about

its complexity classification, and so, the exact complexity is still open.

In particular, if an E-open problem is binary NP-hard (thus, the pseudo-polynomial
solvability or unary NP-hardness is still unknown), we call the problem OU-open.
For an OU-open problem, the remaining issue is to determine that it is ordinary
NP-hard or unary NP-hard.



4 Open problems in [LV1993]

In 1993, Lee and Vairaktarakis [LV1993] presented a comprehensive review for
the computational complexity of the single-machine primary-secondary scheduling

problems 1||Lex(f, g) with

AS {fmam Lyax, Zij ij0j7 S: Uj, S:ijj’ S:TJ? S:ijj}

According to different choices of the two criteria f and g, the complexity status of

all the problems at that time (before 1993) were reported in Lee and Vairaktarakis

[LV1993], where more than twenty problems are still open or E-open at that time.

Without going into the details of these results, we only report the new achievements

obtained these years for the open or E-open problems posed in [LV1993].

First, let us list these open or E-open problems.



(D) 1||Lex(d>_ w;C;, > Tj), OU-open.
(2) 1||Lex (D> w;C;, > w,;U;), OU-open.
(3) 1||Lex(D> | w;Cj, > w; T ) open.
4) 1||Lex(>_ Tj, > w;C;), OU-open.

(5) 1||Lex( fuax; »_ U;), open.

(6) 1||Lex(D>_ Uj, fmax), Open.

(7) 1||Lex( fumax, Y w;U,), OU-open.

(8) 1||Lex (> w;Uj, fmax), OU-open.

(9) 1||Lex(Lyax, »_ 1), OU-open.

(10) 1||Lex(>_ T}, Liax), OU-open.

(11) 1||Lex(fuax, Y T;j), OU-open.

(12) 1||Lex(>_ w,;U;, > w;U;), OU-open.
(13) 1||Lex(>_U;, > C;), open.

(14) 1[[Lex(3 Uy, 32 T3), open.

(15) 1||Lex(>_ T}, > U;), OU-open.



(16) 1[[Lex (Y T}, fnax)> OU-open.
(17) 1||Lex(> T}, > C;), OU-open.
(18) 1||Lex(>_ T}, > w,;U;), OU-open.
(19) 1||Lex(>_ T}, > w,T;), OU-open.
(20) 1||Lex(Lyax, Y U;), open.

(21) 1||Lex(D>_ U;, Liax), Open.

(22) 1||Lex(Luax, Y, w;U;), OU-open.
(23) 1||Lex (D> w;Uj, Liax), OU-open.
(24) 1||Lex(>_ w;U;, >~ C;), OU-open.
(25) 1||Lex(>_ w,;U;, > Tj), OU-open.

Up to now, the complexity status of problems (1)-(15) have been addressed or

partially addressed.

We will report on these results.



5 Problems (1)-(3)

(D) 1|Lex(> ] w,C;, > T;), OU-open.

(2) 1||Lex(>_ w;C};, > w;U;), OU-open.

(3) 1||Lex(D>_ w;C;, > w;T}), open.

Exact complexities of problems (1)-(3) are in fact implied in the early literature.

From Smith (1956), the unique strategy for solving problem 1|| Y w,C; is to se-
quence the jobs in the WSPT (weighted shortest processing time) order, i.e., the

nondecreasing order of the ratios p;/w;.

Thus, for every f, problem 1||Lex (> w;C}, f) can be solved in the following way:
e First sequence the jobs by the WSPT order, which minimizes the primary criterion
Z w C]‘.

e Then for each block of jobs with the same ratio p,/w,, reschedule the jobs by an

optimal schedule for problem 1|| f to minimize the secondary criterion f.



Lawler (1977) showed that problem 1|| > 7} is pseudo-polynomially solvable.
Thus, problem (1), i.e., 1||Lex(>  w,C;, > 1Tj), is pseudo-polynomially solvable,
and so, ordinary NP-hard.

For problem 1|| > Jw;U;, Lawler and Moore (1969) presented an O(nP)-time algo-
rithm and Sahni (1976) presented an O(nW)-time algorithm, where P = Z;.Zzl p;
and W =" w;.

Thus, problem (2), i.e., 1||Lex(D> | w,C;, > w,;U;), is pseudo-polynomially solvable,
and so, ordinary NP-hard.

Arkin and Roundy (1991) showed that the problem 1|w; = Ap;| > w;T} is binary
NP-hard and solvable in pseudo—polynomial time.
C;, > w;T}), is ordinary NP-hard.




6 Problem (4)
(4) 1|[Lex(3_ T}, >~ w;C}), OU-open.

Exact complexity of this problem is also implied in the early literature.

Lenstra et al. (1977) showed that the problem 1|d;| > w;C; is unary NP-hard,
where d; is the deadline of job J; which requires that C; < d; for every job J;.

Let us consider a feasible instance 7 of problem 1|d;| > w;C;.
By setting d; = dj, it is clear that a schedule o of J is feasible (subject to the
deadlines) if and only if ) | 7;(0) = 0, i.e., o is optimal for problem 1|| > 7.

Thus, problem 1|d;| >~ w,C; on feasible instances polynomially reduces to problem

1| Lex (¥ T, X w;Cy).

This implies that problem (4), i.e., 1||Lex (> 7}, > w;C};), is unary NP-hard.



/ Problems (5)-(8)

(5) 1||Lex( fumax, Y U;), open.

(6) 1||Lex (D> Uj, fmax), Open.

(7) 1][Lex(funax, - w;U;), OU-open.

(8) 1||Lex (D> w;Uj, fimax), OU-open.

The work of Yuan [Y2017] implies that all the problems (5)-(8) are unary NP-hard.

Next we only consider (5) and (6) since problems (7) and (8) are more general.
Reference:

[Y2017] Yuan, J.J. (2017). Unary NP-hardness of minimizing the number of tardy
jobs with deadlines. Journal of Scheduling, 20(2), 211-218.



Yuan [Y2017] showed that problem 1|d;| > U; is unary NP-hard.

Let us consider a feasible instance J of problem 1|d;| >~ U;.
By setting, for each time ¢ > 0 and each index j € {1,2,...,n},

0, if t <dj,
fit) = , .
+oo, ift > dj.
it is clear that a schedule o of J is feasible (subject to the deadlines) if and only if
fmax(o) = 0, i.e., o is optimal for problem 1| fax-

Then the following statement can be observed.

e A schedule of J is optimal for problem 1|d;| Y_ U; if and only if it is optimal for
problem 1||Lex(fuax, Y Uj)-

This statement means that problem 1|d;| > U; polynomially reduces to problem

1| |Lex( fuax, »_ Uj).
Thus, problem (5), i.e., 1||Lex( fuax, Y, Uj), is also unary NP-hard.



Let us further consider a feasible instance J of problem 1|d;| > U;.

Let U* be the optimal value of the problem 1|| > ° U; on instance 7, without consid-
ering the deadline restriction.

Yuan [Y2017] also showed that the following decision problem is unary NP-

complete.

DECISION[1]: Is there a feasible schedule o of instance 7 (subject to the dead-
lines) such that > " U;(o) = U*?

. 0, ift<d,, .
With f;(t) = B we have the following statement.
+oo, ift > dj,

e A schedule o of 7 is an YES-solution of DECISION][1] if and only if ¢ is an
optimal schedule for problem 1||Lex(>  U;, fumax) With objective vector (U*,0).

This statement means that DECISION[1] polynomially reduces to problem

1|Lex(> Uj, fuax)-
Thus, problem (6), i.e., 1||Lex (> Uj, fuax), i also unary NP-hard.



8 Problems (9) and (10)

(9) 1||Lex(Lmpax, Y 1;), OU-open.

(10) 1||Lex(D> T}, Liax), OU-open.

The work of Koulamas and Kyparisis [KK2001] implies that problems (9) and (10)
are ordinary NP-hard.

Reference:

[KK2001] Koulamas, C., & Kyparisis, G. J. (2001). Single machine scheduling
with release times, deadlines and tardiness objectives. European Journal of Opera-
tional Research, 133(2), 447-453.

From Lee and Vairaktarakis [LV1993], both (9) and (10) are binary NP-hard.
We next show that both (9) and (10) are pseudo-polynomially solvable.



Problem 1|(d;, d;)| > T; was studied in Koulamas and Kyparisis [KK2001], where
“(d;,d;)” in the 3-field means that the jobs have agreeable due dates and deadlines,

or equivalently, the jobs of 7 can be renumbered such that
dy <dy <---<djyandd; < dy <--- < d,.

By establishing a Separation Theorem similar to that in Lawler (1977), the authors

showed that problem 1|(d;, d;)| > T} is solvable in O(n°py,.x) time which is pseudo-

polynomial.

We use ALGORITHMI[1] to denote the algorithm in Koulamas and Kyparisis
[KK2001] for solving problem 1|(d;, d;)| > T



To solve problem (9), i.e., 1||Lex(Lax, Y T;), we use the following procedure.

PROCEDURE][1]: For solving problem 1||Lex(Ly.y, Yy 7;) on instance J.
e Solve the problem 1||L,,,x on instance 7 and let L* be its optimal value.
e Setd; = d; + L* for j = 1,2,...,n. Let J' be the new instance with such
deadlines.
Observe that the jobs have agreeable due dates and deadlines in 7.
e Run ALGORITHM[1] to solve the problem 1|(d;,d;)| > T} on instance [J' and

let o be its optimal schedule.

It is easy to see that the schedule o returned by PROCEDURE][1] is also optimal
for problem 1||Lex(Ly.ax, Y 1) on instance 7.

Thus, problem (9), i.e., 1||Lex(Lmax, » 7}), is solvable in pseudo-polynomial

O(N°puax) time.



Now we consider problem (10), i.e., 1||Lex(> T}, Liax)-

Again, let L* be the optimal value of problem 1|| L., on instance 7.

Let (7", L) be the optimal vector of problem 1||Lex () T}, L) on instance 7.
T’ can be obtained by solving problem 1|| Y © 7 on instance 7.

The remaining issue is to determine the value L'.

e It is obvious that
L'e{Ll*L*+1,...,L"+ P)},

where P = p(J) is the total processing time of the jobs of 7.

Thus, for each 7 € {0, 1, ..., P}, we define

LW = L*+r,
d7 = dj+ L"), forj=1,2,...,n,

and use J(7) to denote the instance (induced from J) with deadlines J;T).

Note that the jobs have agreeable due dates and deadlines in instance 7 (7).



Suppose that L' = L(") = L* 4+ 7/ for some 7’ € {0,1,...., P}.

Foreach 7 € {0,1,...., P}, we use T to denote the optimal value of the problem
1|(d;, d;)| S_ T; on instance J ")
It is clear that 77) > T for all 7 € {0,1,...., P}.

We have the following statement for 7.

e 7’ is the minimum value of 7 € {0,1,..., P} such that ") = 7", i.e., the optimal
value of the problem 1|(d;, d;)| " T} on instance J7) is T".

For an integer 7 € {0,1, ..., P},
if T(7) = T'. we know that 7/ < 7;
if T(7) > T', we know that 7/ > .

Thus, 7' can be determined by binary search on 7 € {0,1,..., P} with the deci-
sion “T'") = T" or not” being answered by applying ALGORITHM][1] for solving
problem 1|(d;, d;)| >_ T} on instance J (")



We finally observe that

e A schedule of J is optimal for problem 1||Lex(D_ T}, Ly.y) if and only if it is
optimal for the problem 1|(d;, d;)| >_ T} on instance J ™).

As a result, problem 1||Lex() T}, Lyax) can be solved by the following procedure.

PROCEDURE]|2]: For solving problem 1||Lex(D> 7}, Liax) on instance J .

e Determine the value 7" by solving problem 1|| > © 7} on instance J.

e Apply binary search for 7 € {0,1,..., P} to determine the value 7/, where we
need to solve O(log P) problems 1|(d;,d;)| >_ T} on instance J'7) for the picked
values 7, each problem is solved by using ALGORITHM[1] in O(n°py,.y) time.

e Set I/ = L* + 7. Output the optimal vector (7", L').

Thus, problem (10), i.e., 1||Lex(>_ T}, Lax), is solvable in O(n’py.y log P) time.



9 Problem (11)

(11) 1||Lex( fuax, Y Tj), OU-open.
The work of Chen and Yuan [CY2019] implies that this problem is unary NP-hard.

Reference:

[CY2019] Chen, R. B., & Yuan, J. J. (2019). Unary NP-hardness of single-machine
scheduling to minimize the total tardiness with deadlines. Journal of Scheduling,
22(5), 595-601.

Chen and Yuan [CY2019] showed that problem 1|d;| > T} is unary NP-hard.

. . . . 0, ift<d,
Again, by setting, for each time ¢ and each index j, f;(t) = B
+o00, ift > dj,

we see that the problem 1|d;| 3" T} on feasible instances polynomially reduces to
the problem 1||Lex( fuax, > 1j)-
Thus, problem (11), i.e., 1||Lex( fumax, Y 7}), is also unary NP-hard.



10 Problem (12)

(12) 1’ ’LCX(Z ijj, Z UA}jUj), OU—open.
A work of Agnetis et al. [ABGPS2014] implies that this problem is ordinary
NP-hard.

Reference:
[ABGPS2014] Agnetis, A., Billaut, J. C., Gawiejnowicz, S., Pacciarelli, D., &
Soukhal, A. (2014). Multiagent Scheduling: Models and Algorithms. Berlin

Heidelberg, Springer.

In Agnetis et al. [ABGPS2014], the authors showed that the constraint problem
1] > w;U; - > w;U; < @ is solvable in pseudo-polynomial time.

By setting () to be the optimal value of problem 1|| > | w;U;, which can be obtained
in O(nP) time, we see that problem (12), i.e., 1||Lex()_ w;U;, > w;U;), is pseudo-
polynomially solvable, and so, ordinary NP-hard.



11 Problems (13) and (14)

(13) 1||Lex(>_U;, > C;), open.
(14) 1||Lex(Y Uy, 3 T5). open.
Complexities of the two problems were updated by Huo et al. [HLZ2007].

Reference:
[HLZ2007] Huo, Y. M., Leung, J. Y-T., & Zhao, H. R. (2007). Complexity of two-
dual criteria scheduling problems. Operations Research Letters, 35(2), 211-220.

Huo et al. [HLZ2007] showed that problems (13) and (14) are binary NP-hard.

By our knowledge, the exact complexity (pseudo-polynomially solvable, or unary
NP-hard) of any of the two problems is still unaddressed.

Thus, problems (13) and (14) are OU-open now.

Conjecture 1. Problems (13) and (14) are unary NP-hard.



12 Problem (15)

(15) 1][Lex(X2 T, 32 Uy), OU-open.
Recently, Yuan and Zhao [YZ2021] showed that this problem is pseudo-
polynomially solvable, and so, ordinary NP-hard.

Reference:
[YZ2021] Yuan J. J., & Zhao Q. L. (2021). Single-machine primary-secondary
scheduling for minimizing the total tardiness and the number of tardy jobs. In Sub-

mission.

Recall that Lawler (1977) presented an O(n°py,.«)-time algorithm for solving prob-

lem 1|| > 7} based on the following separation theorem.

The Separation Theorem: Suppose that d; < d, < --- < d, and let J; be a job of
the longest processing time. Then there is an index k£ € {j,7 + 1,...,n} and there

1s an optimal schedule o in which the jobs are scheduled in the order

{J17 J27 S Jk} \ {Jj} <o J] <o {J/{:—i-l) Jk—i—?v ooy Jn}



Very accidentally, we found the following modified separation theorem for problem

1|[Lex(X T, S Uy).

The Modified Separation Theorem: Suppose that d; < dy < --- < d,, where
“d; = d; and p; < p;” will lead to ¢ < j. Let J; be a job such that J; has the longest
processing time, and subject to this condition, d; is as small as possible. Then there
isanindex k € {j,j+1,...,n} and there is an optimal schedule ¢ in which the jobs

are scheduled in the order

{Jh J27 S ‘]k} \ {Jj} <o Jj <o {Jk+17 Jk+27 500 Jn}

With this modified separation theorem in hand, by using the similar procedure as
that in Lawler (1977), we present an O(n°py,..)-time pseudo-polynomial algorithm
for solving problem 1||Lex(> 7}, > U,).

Thus, problem (15) is ordinary NP-hard.



13 Problems (16)-(25)

There is no progress on these problems.

(16) 1||Lex(3> Ty, fiuax), OU-open.
(17) 1||Lex(> T}, > C;), OU-open.
(18) 1||Lex(>_ T}, > w,;U;), OU-open.
(19) 1||Lex(>_ T}, > w,T;), OU-open.

Conjecture 2. Problems (16)-(19) are pseudo-polynomially solvable, possibly
based on some new separation theorems together with some new techniques.

e But simple separation theorems as that in Yuan and Zhao [YZ2021] do not exist.

(20) 1||Lex(Lyax, »_, U;), open.
(21) 1||Lex(D> U;, Liax), open.

Conjecture 3. Problems (20) and (21) are polynomially solvable.



(22) 1||Lex(Lmax, y_, w;U;), OU-open.
(23) 1||Lex (> w;Uj, Lyax), OU-open.

Conjecture 4. Problems (22) and (23) are pseudo-polynomially solvable.

(24) 1||Lex(>_ w;U;, > C;), OU-open.
(25) 1||Lex(>_ w,;U;, > Tj), OU-open.

We have conjectured that problems (13) and (14), i.e., 1||Lex(>_U;, > C;) and

1||Lex(>_ U;, > T}), are unary NP-hard.

Thus, we also have the following conjecture.

Conjecture 5. Problems (24) and (25) are unary NP-hard.



Thank You!
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