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Abstract

In the primary-secondary scheduling problem, we have a primary scheduling cri-

terion and a secondary scheduling criterion. The goal of the problem is to find a

schedule which minimizes the secondary criterion, subject to the restriction that the

primary criterion is minimized. In 1993, Lee and Vairaktarakis [LV1993] presented

a comprehensive review for the computational complexity of the single-machine

primary-secondary scheduling problems, where all the jobs are released at time

zero. When both of the two criteria are regular, more than twenty problems were

posed as open in [LV1993]. This talk will report the research progress of these

open problems.

[LV1993] Lee, C.Y., & Vairaktarakis, G. (1993). Complexity of single machine

hierarchical scheduling: A survey. In: Complexity in Numerical Optimization,

P.M. Pardalos, ed., World Scientific, River Edge, NJ, 269-298.



1 Schedules and criteria
We have n jobs J = {J1, J2, . . . , Jn} to be scheduled on a single machine.

Each job Jj ∈ J has a processing time pj, a due date dj, and a weight wj. All the

parameters pj, dj, wj are nonnegative integers.

Since we only consider the classical scheduling problems, each scheduling criterion

f is a function of the from

f = f (C1, C2, . . . , Cn),

where Cj is the completion time of job Jj for j = 1, 2, . . . , n.

A scheduling criterion f is called regular if f is nondecreasing in the completion

times of the jobs.

In this report, we only consider the following regular criteria

fmax, Lmax,
∑

Cj,
∑

Uj,
∑

Tj,
∑

wjCj,
∑

wjUj,
∑

wjTj.



We assume that all the jobs are released at time 0.

Then we only consider the schedules in which the jobs are consecutively scheduled

without idle times.

As a result, a schedule σ of J is denoted by

σ = (Jσ(1), Jσ(2), . . . , Jσ(n)),

where, for each index i ∈ {1, 2, . . . , n}, Jσ(i) is the i-th job in σ.

For two distinct jobs Ji and Jj, we use the notation Ji ≺σ Jj to indicate that Ji is

scheduled before Jj in schedule σ.



2 The primary-secondary scheduling problems
Let f and g be two regular scheduling criteria.

The single-machine primary-secondary scheduling problem with f being the pri-

mary criterion and g being the secondary criterion is denoted by

1||Lex(f, g)

which aims to find a schedule σ such that the secondary criterion g(σ) is minimized

under the constraint that the primary criterion f (σ) is minimized.

Let Π(f ) be the set of the optimal schedules for the single-criterion problem 1||f .

Then a schedule σ of J is optimal for problem 1||Lex(f, g) if and only if σ ∈ Π(f ),

g(σ) = min{g(π) : π ∈ Π(f )}.

For each optimal schedule σ for problem 1||Lex(f, g), we call (f (σ), g(σ)) the

optimal vector of the problem.



3 Computational complexity
When we consider the computational complexity, a scheduling problem is

either polynomially solvable, or ordinary NP-hard, or unary NP-hard.
Here, a problem is ordinary NP-hard if it is binary NP-hard and is solvable in

pseudo-polynomial time.

A problem is called open if up to now we do not know any information about its

complexity classification.

A problem is called E-open if up to now we only know partial information about

its complexity classification, and so, the exact complexity is still open.

In particular, if an E-open problem is binary NP-hard (thus, the pseudo-polynomial

solvability or unary NP-hardness is still unknown), we call the problem OU-open.

For an OU-open problem, the remaining issue is to determine that it is ordinary

NP-hard or unary NP-hard.



4 Open problems in [LV1993]
In 1993, Lee and Vairaktarakis [LV1993] presented a comprehensive review for

the computational complexity of the single-machine primary-secondary scheduling

problems 1||Lex(f, g) with

f, g ∈ {fmax, Lmax,
∑

Cj,
∑

wjCj,
∑

Uj,
∑

wjUj,
∑

Tj,
∑

wjTj}.

According to different choices of the two criteria f and g, the complexity status of

all the problems at that time (before 1993) were reported in Lee and Vairaktarakis

[LV1993], where more than twenty problems are still open or E-open at that time.

Without going into the details of these results, we only report the new achievements

obtained these years for the open or E-open problems posed in [LV1993].

First, let us list these open or E-open problems.



(1) 1||Lex(
∑
wjCj,

∑
Tj), OU-open.

(2) 1||Lex(
∑
wjCj,

∑
ŵjUj), OU-open.

(3) 1||Lex(
∑
wjCj,

∑
wjTj), open.

(4) 1||Lex(
∑
Tj,

∑
wjCj), OU-open.

(5) 1||Lex(fmax,
∑
Uj), open.

(6) 1||Lex(
∑
Uj, fmax), open.

(7) 1||Lex(fmax,
∑
wjUj), OU-open.

(8) 1||Lex(
∑
wjUj, fmax), OU-open.

(9) 1||Lex(Lmax,
∑
Tj), OU-open.

(10) 1||Lex(
∑
Tj, Lmax), OU-open.

(11) 1||Lex(fmax,
∑
Tj), OU-open.

(12) 1||Lex(
∑
wjUj,

∑
ŵjUj), OU-open.

(13) 1||Lex(
∑
Uj,

∑
Cj), open.

(14) 1||Lex(
∑
Uj,

∑
Tj), open.

(15) 1||Lex(
∑
Tj,

∑
Uj), OU-open.



(16) 1||Lex(
∑
Tj, fmax), OU-open.

(17) 1||Lex(
∑
Tj,

∑
Cj), OU-open.

(18) 1||Lex(
∑
Tj,

∑
wjUj), OU-open.

(19) 1||Lex(
∑
Tj,

∑
wjTj), OU-open.

(20) 1||Lex(Lmax,
∑
Uj), open.

(21) 1||Lex(
∑
Uj, Lmax), open.

(22) 1||Lex(Lmax,
∑
wjUj), OU-open.

(23) 1||Lex(
∑
wjUj, Lmax), OU-open.

(24) 1||Lex(
∑
wjUj,

∑
Cj), OU-open.

(25) 1||Lex(
∑
wjUj,

∑
Tj), OU-open.

Up to now, the complexity status of problems (1)-(15) have been addressed or

partially addressed.

We will report on these results.



5 Problems (1)-(3)
(1) 1||Lex(

∑
wjCj,

∑
Tj), OU-open.

(2) 1||Lex(
∑
wjCj,

∑
ŵjUj), OU-open.

(3) 1||Lex(
∑
wjCj,

∑
wjTj), open.

Exact complexities of problems (1)-(3) are in fact implied in the early literature.

From Smith (1956), the unique strategy for solving problem 1||
∑
wjCj is to se-

quence the jobs in the WSPT (weighted shortest processing time) order, i.e., the

nondecreasing order of the ratios pj/wj.

Thus, for every f , problem 1||Lex(
∑
wjCj, f ) can be solved in the following way:

• First sequence the jobs by the WSPT order, which minimizes the primary criterion∑
wjCj.

• Then for each block of jobs with the same ratio pj/wj, reschedule the jobs by an

optimal schedule for problem 1||f to minimize the secondary criterion f .



Lawler (1977) showed that problem 1||
∑
Tj is pseudo-polynomially solvable.

Thus, problem (1), i.e., 1||Lex(
∑
wjCj,

∑
Tj), is pseudo-polynomially solvable,

and so, ordinary NP-hard.

For problem 1||
∑
wjUj, Lawler and Moore (1969) presented an O(nP )-time algo-

rithm and Sahni (1976) presented an O(nW )-time algorithm, where P =
∑n

j=1 pj

and W =
∑n

j=1wj.

Thus, problem (2), i.e., 1||Lex(
∑
wjCj,

∑
ŵjUj), is pseudo-polynomially solvable,

and so, ordinary NP-hard.

Arkin and Roundy (1991) showed that the problem 1|wj = λpj|
∑
wjTj is binary

NP-hard and solvable in pseudo-polynomial time.

Thus, problem (3), i.e., 1||Lex(
∑
wjCj,

∑
wjTj), is ordinary NP-hard.



6 Problem (4)
(4) 1||Lex(

∑
Tj,

∑
wjCj), OU-open.

Exact complexity of this problem is also implied in the early literature.

Lenstra et al. (1977) showed that the problem 1|d̄j|
∑
wjCj is unary NP-hard,

where d̄j is the deadline of job Jj which requires that Cj ≤ d̄j for every job Jj.

Let us consider a feasible instance J of problem 1|d̄j|
∑
wjCj.

By setting dj = d̄j, it is clear that a schedule σ of J is feasible (subject to the

deadlines) if and only if
∑
Tj(σ) = 0, i.e., σ is optimal for problem 1||

∑
Tj.

Thus, problem 1|d̄j|
∑
wjCj on feasible instances polynomially reduces to problem

1||Lex(
∑
Tj,

∑
wjCj).

This implies that problem (4), i.e., 1||Lex(
∑
Tj,

∑
wjCj), is unary NP-hard.



7 Problems (5)-(8)
(5) 1||Lex(fmax,

∑
Uj), open.

(6) 1||Lex(
∑
Uj, fmax), open.

(7) 1||Lex(fmax,
∑
wjUj), OU-open.

(8) 1||Lex(
∑
wjUj, fmax), OU-open.

The work of Yuan [Y2017] implies that all the problems (5)-(8) are unary NP-hard.

Next we only consider (5) and (6) since problems (7) and (8) are more general.

Reference:

[Y2017] Yuan, J.J. (2017). Unary NP-hardness of minimizing the number of tardy

jobs with deadlines. Journal of Scheduling, 20(2), 211-218.



Yuan [Y2017] showed that problem 1|d̄j|
∑
Uj is unary NP-hard.

Let us consider a feasible instance J of problem 1|d̄j|
∑
Uj.

By setting, for each time t ≥ 0 and each index j ∈ {1, 2, . . . , n},

fj(t) =

 0, if t ≤ d̄j,

+∞, if t > d̄j.

it is clear that a schedule σ of J is feasible (subject to the deadlines) if and only if

fmax(σ) = 0, i.e., σ is optimal for problem 1||fmax.

Then the following statement can be observed.

• A schedule of J is optimal for problem 1|d̄j|
∑
Uj if and only if it is optimal for

problem 1||Lex(fmax,
∑
Uj).

This statement means that problem 1|d̄j|
∑
Uj polynomially reduces to problem

1||Lex(fmax,
∑
Uj).

Thus, problem (5), i.e., 1||Lex(fmax,
∑
Uj), is also unary NP-hard.



Let us further consider a feasible instance J of problem 1|d̄j|
∑
Uj.

Let U ∗ be the optimal value of the problem 1||
∑
Uj on instance J , without consid-

ering the deadline restriction.

Yuan [Y2017] also showed that the following decision problem is unary NP-

complete.

DECISION[1]: Is there a feasible schedule σ of instance J (subject to the dead-

lines) such that
∑
Uj(σ) = U ∗?

With fj(t) =

 0, if t ≤ d̄j,

+∞, if t > d̄j,
we have the following statement.

• A schedule σ of J is an YES-solution of DECISION[1] if and only if σ is an

optimal schedule for problem 1||Lex(
∑
Uj, fmax) with objective vector (U ∗, 0).

This statement means that DECISION[1] polynomially reduces to problem

1||Lex(
∑
Uj, fmax).

Thus, problem (6), i.e., 1||Lex(
∑
Uj, fmax), is also unary NP-hard.



8 Problems (9) and (10)
(9) 1||Lex(Lmax,

∑
Tj), OU-open.

(10) 1||Lex(
∑
Tj, Lmax), OU-open.

The work of Koulamas and Kyparisis [KK2001] implies that problems (9) and (10)

are ordinary NP-hard.

Reference:

[KK2001] Koulamas, C., & Kyparisis, G. J. (2001). Single machine scheduling

with release times, deadlines and tardiness objectives. European Journal of Opera-

tional Research, 133(2), 447-453.

From Lee and Vairaktarakis [LV1993], both (9) and (10) are binary NP-hard.

We next show that both (9) and (10) are pseudo-polynomially solvable.



Problem 1|(dj, d̄j)|
∑
Tj was studied in Koulamas and Kyparisis [KK2001], where

“(dj, d̄j)” in the β-field means that the jobs have agreeable due dates and deadlines,

or equivalently, the jobs of J can be renumbered such that

d1 ≤ d2 ≤ · · · ≤ dn and d̄1 ≤ d̄2 ≤ · · · ≤ d̄n.

By establishing a Separation Theorem similar to that in Lawler (1977), the authors

showed that problem 1|(dj, d̄j)|
∑
Tj is solvable in O(n5pmax) time which is pseudo-

polynomial.

We use ALGORITHM[1] to denote the algorithm in Koulamas and Kyparisis

[KK2001] for solving problem 1|(dj, d̄j)|
∑
Tj.



To solve problem (9), i.e., 1||Lex(Lmax,
∑
Tj), we use the following procedure.

PROCEDURE[1]: For solving problem 1||Lex(Lmax,
∑
Tj) on instance J .

• Solve the problem 1||Lmax on instance J and let L∗ be its optimal value.

• Set d̄j = dj + L∗ for j = 1, 2, . . . , n. Let J ′ be the new instance with such

deadlines.

Observe that the jobs have agreeable due dates and deadlines in J ′.
• Run ALGORITHM[1] to solve the problem 1|(dj, d̄j)|

∑
Tj on instance J ′ and

let σ be its optimal schedule.

It is easy to see that the schedule σ returned by PROCEDURE[1] is also optimal

for problem 1||Lex(Lmax,
∑
Tj) on instance J .

Thus, problem (9), i.e., 1||Lex(Lmax,
∑
Tj), is solvable in pseudo-polynomial

O(n5pmax) time.



Now we consider problem (10), i.e., 1||Lex(
∑
Tj, Lmax).

Again, let L∗ be the optimal value of problem 1||Lmax on instance J .

Let (T ′, L′) be the optimal vector of problem 1||Lex(
∑
Tj, Lmax) on instance J .

T ′ can be obtained by solving problem 1||
∑
Tj on instance J .

The remaining issue is to determine the value L′.

• It is obvious that

L′ ∈ {L∗, L∗ + 1, . . . , L∗ + P )},

where P = p(J ) is the total processing time of the jobs of J .

Thus, for each τ ∈ {0, 1, . . . , P}, we define L(τ) = L∗ + τ,

d̄
(τ)
j = dj + L(τ), for j = 1, 2, . . . , n,

and use J (τ) to denote the instance (induced from J ) with deadlines d̄(τ)j .

Note that the jobs have agreeable due dates and deadlines in instance J (τ).



Suppose that L′ = L(τ ′) = L∗ + τ ′ for some τ ′ ∈ {0, 1, . . . . , P}.

For each τ ∈ {0, 1, . . . . , P}, we use T (τ) to denote the optimal value of the problem

1|(dj, d̄j)|
∑
Tj on instance J (τ).

It is clear that T (τ) ≥ T ′ for all τ ∈ {0, 1, . . . . , P}.

We have the following statement for τ ′.

• τ ′ is the minimum value of τ ∈ {0, 1, . . . , P} such that T (τ) = T ′, i.e., the optimal

value of the problem 1|(dj, d̄j)|
∑
Tj on instance J (τ) is T ′.

For an integer τ ∈ {0, 1, . . . , P},
if T (τ) = T ′, we know that τ ′ ≤ τ ;

if T (τ) > T ′, we know that τ ′ > τ .

Thus, τ ′ can be determined by binary search on τ ∈ {0, 1, . . . , P} with the deci-

sion “T (τ) = T ′ or not” being answered by applying ALGORITHM[1] for solving

problem 1|(dj, d̄j)|
∑
Tj on instance J (τ).



We finally observe that

• A schedule of J is optimal for problem 1||Lex(
∑
Tj, Lmax) if and only if it is

optimal for the problem 1|(dj, d̄j)|
∑
Tj on instance J (τ ′).

As a result, problem 1||Lex(
∑
Tj, Lmax) can be solved by the following procedure.

PROCEDURE[2]: For solving problem 1||Lex(
∑
Tj, Lmax) on instance J .

• Determine the value T ′ by solving problem 1||
∑
Tj on instance J .

• Apply binary search for τ ∈ {0, 1, . . . , P} to determine the value τ ′, where we

need to solve O(logP ) problems 1|(dj, d̄j)|
∑
Tj on instance J (τ) for the picked

values τ , each problem is solved by using ALGORITHM[1] in O(n5pmax) time.

• Set L′ = L∗ + τ ′. Output the optimal vector (T ′, L′).

Thus, problem (10), i.e., 1||Lex(
∑
Tj, Lmax), is solvable in O(n5pmax logP ) time.



9 Problem (11)
(11) 1||Lex(fmax,

∑
Tj), OU-open.

The work of Chen and Yuan [CY2019] implies that this problem is unary NP-hard.

Reference:

[CY2019] Chen, R. B., & Yuan, J. J. (2019). Unary NP-hardness of single-machine

scheduling to minimize the total tardiness with deadlines. Journal of Scheduling,

22(5), 595-601.

Chen and Yuan [CY2019] showed that problem 1|d̄j|
∑
Tj is unary NP-hard.

Again, by setting, for each time t and each index j, fj(t) =

 0, if t ≤ d̄j,

+∞, if t > d̄j,

we see that the problem 1|d̄j|
∑
Tj on feasible instances polynomially reduces to

the problem 1||Lex(fmax,
∑
Tj).

Thus, problem (11), i.e., 1||Lex(fmax,
∑
Tj), is also unary NP-hard.



10 Problem (12)
(12) 1||Lex(

∑
wjUj,

∑
ŵjUj), OU-open.

A work of Agnetis et al. [ABGPS2014] implies that this problem is ordinary

NP-hard.

Reference:

[ABGPS2014] Agnetis, A., Billaut, J. C., Gawiejnowicz, S., Pacciarelli, D., &

Soukhal, A. (2014). Multiagent Scheduling: Models and Algorithms. Berlin

Heidelberg, Springer.

In Agnetis et al. [ABGPS2014], the authors showed that the constraint problem

1||
∑
ŵjUj :

∑
wjUj ≤ Q is solvable in pseudo-polynomial time.

By setting Q to be the optimal value of problem 1||
∑
wjUj, which can be obtained

in O(nP ) time, we see that problem (12), i.e., 1||Lex(
∑
wjUj,

∑
ŵjUj), is pseudo-

polynomially solvable, and so, ordinary NP-hard.



11 Problems (13) and (14)
(13) 1||Lex(

∑
Uj,

∑
Cj), open.

(14) 1||Lex(
∑
Uj,

∑
Tj), open.

Complexities of the two problems were updated by Huo et al. [HLZ2007].

Reference:

[HLZ2007] Huo, Y. M., Leung, J. Y-T., & Zhao, H. R. (2007). Complexity of two-

dual criteria scheduling problems. Operations Research Letters, 35(2), 211-220.

Huo et al. [HLZ2007] showed that problems (13) and (14) are binary NP-hard.

By our knowledge, the exact complexity (pseudo-polynomially solvable, or unary

NP-hard) of any of the two problems is still unaddressed.

Thus, problems (13) and (14) are OU-open now.

Conjecture 1. Problems (13) and (14) are unary NP-hard.



12 Problem (15)
(15) 1||Lex(

∑
Tj,

∑
Uj), OU-open.

Recently, Yuan and Zhao [YZ2021] showed that this problem is pseudo-

polynomially solvable, and so, ordinary NP-hard.

Reference:

[YZ2021] Yuan J. J., & Zhao Q. L. (2021). Single-machine primary-secondary

scheduling for minimizing the total tardiness and the number of tardy jobs. In Sub-

mission.

Recall that Lawler (1977) presented an O(n5pmax)-time algorithm for solving prob-

lem 1||
∑
Tj based on the following separation theorem.

The Separation Theorem: Suppose that d1 ≤ d2 ≤ · · · ≤ dn and let Jj be a job of

the longest processing time. Then there is an index k ∈ {j, j + 1, . . . , n} and there

is an optimal schedule σ in which the jobs are scheduled in the order

{J1, J2, . . . , Jk} \ {Jj} ≺σ Jj ≺σ {Jk+1, Jk+2, . . . , Jn}.



Very accidentally, we found the following modified separation theorem for problem

1||Lex(
∑
Tj,

∑
Uj).

The Modified Separation Theorem: Suppose that d1 ≤ d2 ≤ · · · ≤ dn, where

“di = dj and pi < pj” will lead to i < j. Let Jj be a job such that Jj has the longest

processing time, and subject to this condition, dj is as small as possible. Then there

is an index k ∈ {j, j+ 1, . . . , n} and there is an optimal schedule σ in which the jobs

are scheduled in the order

{J1, J2, . . . , Jk} \ {Jj} ≺σ Jj ≺σ {Jk+1, Jk+2, . . . , Jn}.

With this modified separation theorem in hand, by using the similar procedure as

that in Lawler (1977), we present an O(n5pmax)-time pseudo-polynomial algorithm

for solving problem 1||Lex(
∑
Tj,

∑
Uj).

Thus, problem (15) is ordinary NP-hard.



13 Problems (16)-(25)
There is no progress on these problems.

(16) 1||Lex(
∑
Tj, fmax), OU-open.

(17) 1||Lex(
∑
Tj,

∑
Cj), OU-open.

(18) 1||Lex(
∑
Tj,

∑
wjUj), OU-open.

(19) 1||Lex(
∑
Tj,

∑
wjTj), OU-open.

Conjecture 2. Problems (16)-(19) are pseudo-polynomially solvable, possibly

based on some new separation theorems together with some new techniques.

• But simple separation theorems as that in Yuan and Zhao [YZ2021] do not exist.

(20) 1||Lex(Lmax,
∑
Uj), open.

(21) 1||Lex(
∑
Uj, Lmax), open.

Conjecture 3. Problems (20) and (21) are polynomially solvable.



(22) 1||Lex(Lmax,
∑
wjUj), OU-open.

(23) 1||Lex(
∑
wjUj, Lmax), OU-open.

Conjecture 4. Problems (22) and (23) are pseudo-polynomially solvable.

(24) 1||Lex(
∑
wjUj,

∑
Cj), OU-open.

(25) 1||Lex(
∑
wjUj,

∑
Tj), OU-open.

We have conjectured that problems (13) and (14), i.e., 1||Lex(
∑
Uj,

∑
Cj) and

1||Lex(
∑
Uj,

∑
Tj), are unary NP-hard.

Thus, we also have the following conjecture.

Conjecture 5. Problems (24) and (25) are unary NP-hard.



Thank You!
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