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 RESOURCE CONSTRAINED PROJECT SCHEDULING PROBLEM (RCPSP)

 DECOMPOSITION INTO CUMULATIVE SCHEDULING PROBLEMS (CuSP) CONNECTED

WITH THE PRECEDENCE GRAPH

 THE CuSP, THE 𝑚-MACHINE SCHEDULING PROBLEM (Carlier 1987, EJOR ) (Haouari et

al. 2007, JOS)

 CONSTRUCTIVE AND DESTRUCTIVE BOUNDS (Brucker 1990)

 ENERGETIC CONSTRUCTIVE BOUNDS

INTRODUCTION
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 𝑚-MACHINE OPTIMISATION
 Schedule 𝑛 non preemptive tasks in a minimal makespan

 Each task 𝑖 has:

• a release date 𝑟𝑖,
• a processing time 𝑝𝑖
• a tail 𝑞𝑖.

 It requires 𝑐𝑖=1 machine during all its processing (𝑚 = 𝐶)

 𝑚-MACHINE DECISION (𝐶𝑚𝑎𝑥) ( constraint programming )

 A value 𝐶𝑚𝑎𝑥 is chosen

 In the 𝑚-machine decision, we replace tails by deadlines (𝑑𝑖(𝐶𝑚𝑎𝑥) = 𝐶𝑚𝑎𝑥 − 𝑞𝑖)
 Each task 𝑖 has to be scheduled within the interval [𝑟𝑖 , 𝑑𝑖]

 THE CUMULATIVE SCHEDULING PROBLEM (CuSP):
 A task can need more than one machine:

 𝑐𝑖 is no more necessarily equal to 1

THE CUMULATIVE SCHEDULING PROBLEM (CuSP)
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PART 1 - DESTRUCTIVE  BOUNDS
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THREE CHECKERS

 𝐸𝐵 𝛼, 𝛿 : Energetic Balance of an interval [𝛼, 𝛿]

 Energetic Balance of all intervals

 𝐸𝐵 = min 𝐸𝐵 𝛼, 𝛿

 Energetic Reasoning (ER) (Erschler and Lopez)

 If 𝐸𝐵 < 0, the instance is infeasible and 𝐶𝑚𝑎𝑥 + 1 is a valid lower bound. 



 TAILS ARE REPLACED BY DEADLINES

 Energetic Reasoning (ER) (Erschler and Lopez, Baptiste, Le Pape

and Nuijten)

 Given a time interval [𝛼, 𝛿]
 Let 𝑝𝑖

+(𝛼) the length of time during which task 𝑖 after 𝛼 if it is left-

shifted

 Let 𝑝𝑖
−(𝛿) the length of time during which task 𝑖 before 𝛿 if it is

right-shifted

 𝑊𝑖 𝛼, 𝛿 = 𝑐𝑖 ×min 𝑝𝑖
+ 𝛼 , 𝑝𝑖

− 𝛿 , 𝛿 − 𝛼

 The total energy over the time interval [𝛼, 𝛿] is defined by 𝑊 𝛼, 𝛿 =

σ𝑖=1
𝑛 𝑊𝑖 𝛼, 𝛿 .

 𝐸𝐵 𝛼, 𝛿 = 𝐶 𝛿 − 𝛼 −𝑊 𝛼, 𝛿 and 𝐸𝐵 = min 𝐸𝐵 𝛼, 𝛿

Clearly, if 𝐸𝐵 < 0, the instance is infeasible. Otherwise it could be

feasible.

ENERGETIC REASONING: A DESTRUCTIVE BOUND

6

DESTRUCTIVE AND CONSTRUCTIVE BOUNDS FOR THE 𝒎-MACHINE 

SCHEDULING PROBLEM 

Jacques CARLIER, , Abderrahim SAHLI, Antoine JOUGLET, Eric PINSON 

ri α ri + pi δ

pi
+(α)

di

pi
-(δ)

left

shift

right 

shift

di - pi

ri α
ri + pi

δ di

di - pi

left

shift

right 

shift



THE FAMILY OF INTERVALS 𝜶, 𝜹 : (the pinning points)

 Family of intervals Ω1
 𝛼 ∈ 𝑟𝑖 , 𝑟𝑖 + 𝑝𝑖 , 𝑑𝑖 − 𝑝𝑖 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 𝑡𝑎𝑠𝑘 𝑖 ∈ 1,… , 𝑛 }
 𝛿 ∈ 𝑑𝑖 , 𝑟𝑖 + 𝑝𝑖 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 𝑡𝑎𝑠𝑘 𝑖 ∈ 1,… , 𝑛 }

 Family of intervals Ω2
 𝛼 ∈ 𝑟𝑖 , 𝑑𝑖 − 𝑝𝑖 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 𝑡𝑎𝑠𝑘 𝑖 ∈ 1,… , 𝑛 }
 𝛿 ∈ 𝑟𝑘 + 𝑑𝑘 − 𝛼 𝑘 𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔 𝒆𝒒𝒖𝒊𝒍𝒊𝒃𝒓𝒊𝒖𝒎 𝑡𝑎𝑠𝑘}

 where 𝑘 is a function of 𝛼

 Family of intervals Ω3
 𝛿 ∈ 𝑑𝑖 , 𝑟𝑖 + 𝑝𝑖 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 𝑡𝑎𝑠𝑘 𝑖 ∈ 1,… , 𝑛 }
 𝛼 ∈ 𝑟𝑘 + 𝑑𝑘 − 𝛿 𝑘 𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔 𝒆𝒒𝒖𝒊𝒍𝒊𝒃𝒓𝒊𝒖𝒎 𝑡𝑎𝑠𝑘}

 where 𝑘 is a function of 𝛿

Total number of intervals : 𝑛2 + 4𝑛𝑚 + 𝑚2

THE   FAMILY OF  INTERVALS
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 Baptiste, Le Pape and Nuijten (1999) proposed a quadratic checker. They also derived a cubic algorithm

for computing heads and tails adjustments.

 Challenges of ulterior researches: 

 Can we do better than quadratic complexity for checker?

 Can we do better than cubic algorithms for adjustments?

 Brief history of adjustment improvements:
 𝑂 𝑛2 log 𝑛 (Bonifas 2018, Tesch 2018, Ouellet Quimper 2018)

 𝑶(𝒏𝟐): OUR ADJUSTMENTS ALGORITHM (Incremental evaluation and Cooling box: hare, tortoises etc.)
 Carlier, J., Pinson, E., Sahli, A. and, Jouglet, A.  (2020). An O(n^2) algorithm for time-bound adjustments for the cumulative scheduling 

probem. European Journal of Operational Research, vol 286(2), 468-476.  

 Carlier, J., Jouglet, A  Pinson, E., Sahli, A. (2020). A new data structure for some scheduling problems: the cooling box. JOCO.

 We have evaluated the incremental addition of the constraint ri= 𝛼 to the evaluation of energy in the double 

loop of Baptiste et al. The method is made efficient by using adapted data structure including a new one: the 

cooling box.

ENERGETIC REASONING: LITERATURE REVIEW  
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THE QUADRATIC CHECKER OF BAPTISTE, LE PAPE AND NUIJTEN
 Let us define the sets:

𝑂1 𝑖 = 𝑟𝑖 , 𝑟𝑖 + 𝑝𝑖 , 𝑑𝑖 − 𝑝𝑖 , ∀𝑖 ∈ 1, … , 𝑛 𝑂1 =∪𝑖∈ 1,…,𝑛 𝑂1(𝑖)

𝑂2 𝑖 = 𝑟𝑖 + 𝑝𝑖 , 𝑑𝑖 − 𝑝𝑖 , 𝑑𝑖 , ∀𝑖 ∈ {1, … , 𝑛} 𝑂2 =∪𝑖∈ 1,….,𝑛 𝑂2(𝑖)

𝑂𝑡 𝑖 = 𝑟𝑖 + 𝑑𝑖 − 𝑡 , ∀𝑖 ∈ {1, … , 𝑛} 𝑂𝑡 =∪𝑖∈ 1,…,𝑛 𝑂𝑡(𝑖)

 The number of such intervals is equal to 15𝑛2

 Improved by Derrien and Petit to 3𝑛2 (us: nearly n square)

 Thanks to two double loops on 𝜶 and 𝜹 and incremental evaluations. They also derived a cubic

algorithm for computing heads and tails adjustments.

ENERGETIC REASONING: A DESTRUCTIVE BOUND
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Proposition 1 [Baptiste et al. 2001]: It is sufficient to check intervals [α,δ] in Ω = Ω𝐴 ∪ Ω𝐵 ∪ Ω𝐶 with three

families:

Ω𝐴 = 𝛼, 𝛿 𝛼 ∈ 𝑂1, 𝛿 ∈ 𝑂2, 𝛼 < 𝛿}
Ω𝐵 = 𝛼, 𝛿 𝛼 ∈ 𝑂1, 𝛿 ∈ 𝑂𝛼 , 𝛼 < 𝛿}
Ω𝐶 = 𝛼, 𝛿 𝛿 ∈ 𝑂2, 𝛼 ∈ 𝑂𝛿 , 𝛼 < 𝛿}



 FORMULA (Checker)
𝑝𝑖
+ 𝛼 = max 0,min 𝑝𝑖 , 𝑟𝑖 + 𝑝𝑖 − 𝛼
𝑝𝑖
− 𝛿 = max 0,min 𝑝𝑖 , 𝛿 − 𝑑𝑖 + 𝑝𝑖
𝑊𝑖(𝛼, 𝛿) = min(𝑝𝑖

+(𝛼), 𝑝𝑖
−(𝛿 ) , 𝛿 − 𝛼)

 INTERVALS FAMILIES (Baptiste et al. Checker)

Ω𝐴 = (𝛼, 𝛿)
𝜶 𝒐𝒇 𝒕𝒉𝒆 𝒇𝒐𝒓𝒎: 𝑟𝑖 𝑜𝑟 𝑑𝑖 − 𝑝𝑖 𝑜𝑟 𝑟𝑖 + 𝑝𝑖
𝜹 𝒐𝒇 𝒕𝒉𝒆 𝒇𝒐𝒓𝒎: 𝑑𝑗 𝑜𝑟 𝑑𝑗 − 𝑝𝑗 𝑜𝑟 𝑟𝑗 + 𝑝𝑗

Ω𝐵 = (𝛼, 𝛿)
𝜶 𝒐𝒇 𝒕𝒉𝒆 𝒇𝒐𝒓𝒎: 𝑟𝑖 𝑜𝑟 𝑑𝑖 − 𝑝𝑖
𝜹 𝒐𝒇 𝒕𝒉𝒆 𝒇𝒐𝒓𝒎: 𝑟𝑗 + 𝑑𝑗 − 𝛼

Ω𝐶 = {𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝑎𝑙 𝑐𝑎𝑠𝑒 𝑜𝑓 Ω𝐵}

 FORMULA AND INTERVALS FAMILIES (BOUNDS)
𝑝𝑖
+ 𝛼 = max 0,min 𝑝𝑖 , 𝑟𝑖 + 𝑝𝑖 − 𝛼
𝑝𝑖
− 𝛿 = max 0,min 𝑝𝑖 , 𝛿 − 𝑑𝑖 + 𝑝𝑖 , 𝛿 = 𝐶𝑚𝑎𝑥 − g

𝑊𝑖(𝛼, 𝛿) = min(𝑝𝑖
+(𝛼), 𝑝𝑖

−(𝛿), 𝐶𝑚𝑎𝑥 − g− 𝛼)

ENERGETIC REASONING: A DESTRUCTIVE BOUND
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THE CHECKER OF OUELLET AND QUIMPER

 Ouellet and Quimper have proposed recently a 𝑂(𝑛 log2 𝑛) checker and an 𝑂(𝑛2 log 𝑛) algorithm for ajustments

(2018).

 It answered to the challenge of Baptiste et al.

 They build a very clever algorithm based on range trees for computing the energy of an interval in O(log 𝑛) (tools

issued from algorithmic geometry) PRETREATMENT WITH RANGE TREES

 They prove the following fundamental property: PARADIGM CHANGEMENT

 The matrix of energy interval is a Monge Matrix.

 The lines of the matrix are associated with the values of 𝛼 and the column with the values of 𝛿.

 Two difficulties :

 The Monge Matrix is a Partial Monge Matrix

 There are a quadratic number of lines and of columns.

 They overcome these difficulties by a clever algorithm.

ENERGETIC REASONING: A DESTRUCTIVE BOUND
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ENERGETIC REASONING: A DESTRUCTIVE BOUND
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THE CHECKER OF CARLIER, SAHLI, JOUGLET AND PINSON (IJPR 2021)

 At first we treat the second and third families of intervals by stating an equilibrium property associating with

each value of alpha or delta a single interval.

 It permits to divide by n the number of these intervals in family 2 and family 3.

 We propose Algorithm 1 to compute all these specific intervals in 𝑂(𝑛 log 𝑛).

 Of course for the first family, the submatrix remains an inverse Monge matrix (So we cannot used directly the so-

called SMAWK-algorithm which is linear).

 Note that each entry of the matrix is computed in O(log n) time using the method of (Ouellet and Quimper 2018).

 If for some row, the minimal value is strictly negative, then the considered instance is infeasible. The overall

complexity of this Algorithm 2 is 𝑂(𝛼(𝑛)𝑛 log 𝑛) (𝛼(𝑛)Ackermann coefficient).

Klawe, Maria, and Daniel Kleitman. 1990. An Almost Linear Time Algorithm for Generalized Matrix Searching. SIAM J. Discrete Math. 3: 81–97.
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STRICLY NEGATIVE ENERGETIC BALANCE
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BEFORE TASKS AFTER TASKS

EQUILIBRIUM PROPERTY

Let us suppose that the minimal ENERGETIC BILAN of an

interval [𝛼, 𝛿] is strictly negative (« sursaturated interval »),

ቊ
𝛼∈ 𝑟𝑖,𝑑𝑖−𝑝𝑖 𝑎𝑛𝑑

𝛿∈ 𝑑𝑗,𝑟𝑗+𝑝𝑗,𝑟𝑗+𝑑𝑗−𝛼
or        ቊ

𝛿∈ 𝑑𝑗,𝑟𝑗+𝑝𝑗 𝑎𝑛𝑑

𝛼∈ 𝑟𝑖,𝑑𝑖−𝑝𝑖,𝑟𝑗+𝑑𝑗−𝛿

we have 𝑚 BEFORE TASKS and m AFTER TASKS.

 BEFORE TASKS:
 𝑝𝑖

+ 𝛼 ≤ 𝑝𝑖
− 𝛿

 AFTER TASKS:
 𝑝𝑖

+ 𝛼 ≥ 𝑝𝑖
− 𝛿

 BALANCING TASKS:
 𝑝𝑖

+ 𝛼 = 𝑝𝑖
− 𝛿 and 𝛼 + 𝛿 = 𝑟𝑖 + 𝑑𝑖

K α = 𝑖 𝑟𝑖 ≤ 𝛼 < 𝑟𝑖 + 𝑝𝑖}



STRICLY NEGATIVE ENERGETIC BALANCE
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 Let 𝐾(𝛼) be the set of tasks which meet 𝛼 when they are left shifted. 𝑲 𝜶 = 𝒊 𝒓𝒊 ≤ 𝜶 < 𝒓𝒊 + 𝒑𝒊}

 Let <𝛼 be a total strict total order between tasks:

𝑖 <𝛼 𝑗 ⟺ ቊ
𝑟𝑎𝑛𝑘 𝛼, 𝑖 < 𝑟𝑎𝑛𝑘 𝛼, 𝑗 𝑜𝑟

𝑟𝑎𝑛𝑘 𝛼, 𝑖 = 𝑟𝑎𝑛𝑘 𝛼, 𝑗 and 𝑖 < 𝑗
with: 𝑟𝑎𝑛𝑘 𝛼, 𝑖 = ቊ

0 𝑖𝑓 𝛼 ≥ 𝑑𝑖 − 𝑝𝑖
𝑟𝑖 + 𝑑𝑖 𝑖𝑓 𝛼 < 𝑑𝑖 − 𝑝𝑖

 The set 𝐾 𝛼 is ordered according to <𝛼.

 Let 𝑘 and 𝑘′ be the 𝑚𝑡ℎ and (𝑚 + 1)𝑡ℎ tasks of 𝐾(𝛼) respectively (𝑘’ is supposed to exist):

 Let 𝛿1 = 𝑟𝑘 + 𝑑𝑘 − 𝛼 and 𝛿2 = 𝑟𝑘′ + 𝑑𝑘′ − 𝛼

Critical interval proposition

There exists a critical interval such that 𝛿 is strictly larger than 𝛿1 and smaller or equal to 𝛿2.

 This proposition permits to divide by 𝒏 the number of intervals of families 2 and 3 of Baptiste et al.

 𝛿1 and 𝛿2 depends on 𝛼 and 𝛿, all of them can be computed by Algorithm 1 we elaborate.



PART 2 - CONSTRUCTIVE BOUNDS
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DESTRUCTIVE BOUNDS
 Baptiste, Le Pape and Nuijten: 𝑂 𝑛2

 Ouellet and Quimper: 𝑂(𝑛 log2 𝑛)
 Carlier, Sahli, Jouglet and Pinson: 𝑂(𝛼 𝑛 𝑛 log 𝑛)
 Practical complexity (function depends of n) are confirmed by computational results for any n

 The checker of Baptiste, Le Pape and Nuijten remains valuable because:

 It brings more information (adjustments)

CONSTRUCTIVE BOUNDS

 First alternative:

 Use a checker and apply a dichotomic search

 It is not always good because the complexity is multiplied by 𝑙𝑜𝑔(𝐶𝑚𝑎𝑥) so at least multiplied by 𝑙𝑜𝑔 𝑛

 Second alternative:

 Characterize mathematically the bound and imagine other nice algorithms



PART 2 - CONSTRUCTIVE BOUNDS
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 𝐿𝐵1 = max(𝑟𝑖 + 𝑝𝑖 + 𝑞𝑖)

 Critical Path Bound

 𝐿𝐵2 = a constructive time table bound

 Algorithm 3: 𝑂(𝑛 log 𝑛)

 Degenerate case : the minimal intervals are of lengh 0

 𝐿𝐵3= a constructive critical interval bound

 Algorithm 4: 𝑂(𝑛2)

 𝐿𝐵4= Jackson Pseudo Preemptive Schedule

 𝐿𝐵5= the preemptive Schedule

 imposed idle periods



ENERGETIC REASONING: THREE CONSTRUCTIVE BOUNDS 
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 On this figure you can see 8 types of tasks for an

interval and especially Type 4 which is the

CROSSING TASK Type

 See also the “parties obligatoires” of Lahrichi,

RAIRO 1982

 We look for the smallest value 𝐶𝑚𝑎𝑥 = 𝐸𝑅 accepted

by the checker

 Equilibrium property

 It appears a discontinuity due to crossing tasks so:

𝐸𝑅 = max(𝐿𝐵2, 𝐿𝐵3)
 See: Carlier, Jouglet, Pinson and Sahli, a

quadratic algorithm for computing the energetic

bound, PMS 2021
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ENERGETIC REASONING: 𝑳𝑩𝟐 - THE TIME TABLE BOUND
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 Adjusting the trial makespan to keep at most 𝒎 crossing operations (called cumulative constraint) leads to

the time table lower bound 𝑳𝑩𝟐.

 Given a makespan 𝐶𝑚𝑎𝑥 and a time instant t, a crossing operation satisfies 𝑑𝑖 − 𝑝𝑖 ≤ 𝑡 < 𝑟𝑖 + 𝑝𝑖. Clearly, such an

operation is always running in the interval [𝑡 − 1, 𝑡] for any non-preemptive schedule.

 An immediate consequence is that if there are strictly more than 𝑚 crossing operations at time 𝑡, then no non-

preemptive schedule with a makespan less than or equal to 𝐶𝑚𝑎𝑥 can exist.

 This bound results from an adjustment of the trial makespan 𝐶𝑚𝑎𝑥 ensuring that at any time instant 𝑡, there are at

most 𝑚 crossing operations, which can easily be tested by checking that there is no interval [𝑟𝑖 + 𝑝𝑖 − 1 , 𝑟𝑖 + 𝑝𝑖] in

which 𝑚 + 1 operations are processed.

 This technique is well known, it is called time tabling.

Example: Consider the instance where m=2 machines and involving n=3 operations, each operation having a

processing time equal to 1, a release date equal to 0, and a tail equal to 0. We have: 𝐿𝐵2 = 2

We have proposed an 𝑶(𝒏 𝐥𝐨𝐠𝒏) algorithm for computing 𝑳𝑩𝟐
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 The truncated duration: min 𝑟𝑖 + 𝑝𝑖 − 𝛼, 𝑞𝑖 + 𝑝𝑖 − 𝛾, 𝑝𝑖 , 0, 𝛿 − 𝛼
 Double loop on a and g

 The constructive bound: 𝑳𝑩𝟑 is obtained when there exists a saturated interval (critical interval)

Crossing task
𝛿 − 𝛼

Crossing task
𝛿 − 𝛼

Truncated
duration

𝑝𝑖
′

𝛼 𝛿 𝐶𝑚𝑎𝑥

𝛾

𝑚

Crossing task
𝛿 − 𝛼

Crossing task
𝛿 − 𝛼

Truncated
duration

𝑝𝑖
′

𝛼 𝛿 𝐶𝑚𝑎𝑥

𝛾

𝑚

Increasing 𝑪𝒎𝒂𝒙

An 𝑶 𝒏𝟐 algorithm
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Energy Theorem

A critical interval

1
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THE JPPS CONSTRUCTIVE BOUND 
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  P(t)= ; np(t)=m 

  While np(t)>0 do 

   Compute PA and TA, the sets of non in-process partially (resp. totally) available operations with  

   maximal priority   

   If  PA or TA then 

    If  PA+TAnp(t) then 

         i PA si t np t np t PA, ( ) ; ( ) ( )1  

     If  TA>0 then 

          i TA si t np t PA TA np t, ( ) ( ) ; ( ) 0 

     Endif 

    Else 

          i PA TA si t np t PA TA np t, ( ) ( ) ; ( ) 0  

    Endif 

    P t P t PA TA( ) ( )    

   Else 

    C(JPPS)=t 

   Endif 

  Enddo 

i 1 2 3 4 5

ri 0 1 2 3 3

pi 3 2 2 1 1

qi 4 4 1 0 0

1 1 1

2 2 3

3

6

4
5

3 4

M1

M2

t0           1            2            3             4            5     5+1/2 
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THE PREEMPTIVE BOUND
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 Intervals with idleness periods in some

intermediary intervals which are necessary

𝐿𝐵𝑃𝐵 =
1

𝑚
෍

𝑗∈𝐽𝑎

𝑟𝑗 +
1

𝑚
෍

𝑗∈ ҧ𝐽

𝑝𝑗 + ෍

𝑘∈ഥ𝐾

𝑀𝐻𝑘 +
1

𝑚
෍

𝑗∈𝐽𝑏

𝑞𝑗

 Empirical results: the three bounds have most often

the same value

 Carlier, Pinson, Sahli et Jouglet 2020, Comparison of

three lower bounds for the CusP (submitted)

𝐿𝐵𝐽𝑃𝑃𝑆 , 𝐿𝐵𝐸𝑅 and 𝐿𝐵𝑃𝐵analytical formulations (ghost tasks)

Theorem 3
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CONCLUSION
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 We have three lower bounds for the 𝑚-machines scheduling problem:
 THE PREEMPTIVE BOUND

 JACKSON PSEUDO PREEMPTIVE BOUND

 THE ENERGETIC CONSTRUCTIVE BOUND

 The energetic constructive bound can be expressed similarly as JPPS and preemption

α +∑ (Truncated durations)+γ

 We have proposed a fully quadratic algorithm for computing this bound. It can be applied directly to the CUSP

 We improve the complexities of Checker and adjustment algorithms proposed by Baptiste et al.

 We characterize mathematically the three bounds. They are very similar.

 In practice the three bounds are generally equal.

OPEN QUESTIONS:

 Can we get rid of Ackermann coefficient (generally equal to 3) in practice? In theory?

 Can we improve the data structure based on Range trees?
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, 

 EXTENSION OF ENERGY NOTION (See our talk ROADEF 2022) TO THE CUSP, THEN TO RCPSP BY

USING JPS, JPPS AND LLB.

 THEORETICAL GAP BETWEEN THE THREE BOUNDS (collaboration with Claire Hanen, gap : pmax) Carlier,

Hanen, PMS 2022.

 Illustration: A bandaneon data
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