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The Future of Electric Power is Bi-Directional and Smart(er) HITACHI
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Energy system 2050: towards a carbon-neutral vision Inspire the Next

@HitaChi Energy Ol Fast facts So what?

Accelerated shift from 66

fossil-based to renewable Global electrification will oital and

power generation be more than 50% of total Digital and energy

“ energy demand platforms are needed...
02 66 ...to manage the
Growing electrification of Electrification improves enormous power
rowing electrification o ener efficienc

Transportation, Industry and 66 9y y syste.rr.l L

Buildings sectors transition challenges:
All market sectors _ _
converting towards mcrggsed Compl_exny

03 electrification additional capacity

Sustainable energy carriers, 66 .
complementary to direct Energy sector-coupling

electrification beneficial

for reduction of
CO, emissions

i Ahe

Accelerating the transition to a carbon-neutral energy system requires adapting and
adopting policies and regulations to enable technology and new business models
to support Scalable, Flexible and Secure energy systems
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Goal of This Talk... HITACHI
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« Highlight the importance of energy / electricity

« Give insights to solving industrial-scale
scheduling problems (demand-side
management)

* Present some strategies to speed up large-
scale optimization problems

« Share some personal experiences from
working with MILP problems

» Melt-shop (steel) scheduling
* Unit Commitment

MILP is an important (although not only) component in solving industrial scheduling problems

bli . .
4 glJZOIgZ Hitachi Energy. All rights reserved. @ HltaChl Energy
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Outline of the Talk

Why MILP?

Demand-side Management — Short Introduction
Steel Production Scheduling (continuous-time)
Unit Commitment Problem (discrete-time)

a bk w0 D PE

Conclusions
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Why MILP?
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Several Optimization Layers — Potential of Conflicting Actions

Public
7 © 2022 Hitachi Energy. All rights reserved.

Demands, costs

7

Optimization!

Production targets Produced amounts

Optimization!

Batch sizes, assignments, start times Progress, equipment availability

Set-points, constraints End times, yields, quality parameters

Optimization!

Targets Measured and estimated variables

Optimization!
References Controls variables, measured data

Optimization!

Manipulated variables Measurements, binary feedback

Products
Waste

Raw materials
Utilities

!
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Why MILP? HITACHI
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MILP models are flexible and

“elastic’

« Consider physical and
business constraints
No adaptation to old
model needed when

adding new constraints
Commercial solvers — ‘ |
benefit from top OR - i e ondlesi
achievements LT P =
Separate modeling .
experts and software
developers

Scheduling only one part
of automation systems

Public
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Demand-side Management
Short Introduction
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Changing Energy Markets: Challenges and Opportunities HITACHI
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Volatile energy prices Consumption & generation Market liberalization
Renewable generation Covering consumption peaks Grid availability and stability
80 60 €
60 k‘“ 50 €
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Sl e T 30€
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%'20 | —2030 0€
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80 L 17.3.2015
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source: dena — Integration EE

Demand side management offers benefits in new market environment

Public
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Automation & Industrial Demand Side Management HITACHI
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Using process flexibility for iDSM Reduce critical load of power grids

Shifting loads of energy intensive process steps to low- 3 'Y
cost times

—

=y

60 €
50 €
w8
30 €
20 € —
10 €
0€
1 3 5 7 9 11 13 15 17 19 21 23

—EEX Day Ahead Price 17.3.2015

IDSM allows important cost savings

Publi H =
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Scheduling of Energy-Intensive Processes HITACHI
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Committed load

Contracts portfolio

100 _
% s
i =
N — P 2
50 /- N~ yd N\ E
> a0 / SN e N S
g 30 I/ ~— ™~ Z
¥ 5
2 20 =
“ 10 — _/ E
0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 15 20 21 22 23 24
Hour

= Day-ahead — Time-of-Use — Base load contract

Multiple contracts — time
dependent price levels

Pre-agreed load curve —
penalties for deviation

ﬁiﬁ Demand frm productio

process

On-site generation — with Selling back to grid
special constraints

Public
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Steel Production Scheduling

Continuous Time

3 gu;(l)igz Hitachi Energy. All rights reserved. @ H itaCh i E ne rgy



Melt Shop in the Steel Production Supply Chain HITACHI
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. Melt Shop

Typical Electricity Costs >100 MEUR/year (EAF)

. Continuous Casting

Hot Rolling Mills

Profile Rolling Mills

Central Operation
and Monitoring

Logistics and Distribution

Processing Lines

Warehouse

Public
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iDSM in Steel Production: Melt Shop Process HITACHI
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From scrap to steel Electricity
Step 1: Electric Arc Furnace (EAF) }

o EAF AOD
» The largest electricity consumer ' :

* Done in batches (called heats) Scrap .

LF CC
— ) —
Slabs
| ]
3 4

Steps 2-3: Adapt the chemical properties 1

« Argon-oxygen decarburization (AOD)

. Ladle Furnace (LF) Electricity-intensive process with many constraints
« Avoid intermediate cooling (quality problems)

Step 4: Continuous Casting (CC) « Sequence-dependent changeovers

« Cast multiple heats without interruption * Grade incompatibilities

« Transfer times between equipment
« Coordination of production steps

Public = .
15 © 2022 Hitachi Energy. All rights reserved. Harjunkoski and Grossmann, 2001, Castro et al., 2009; Hadera and Harjunkoski, 2013 @ HltaChl Energy



Optimization step | — Grouping and Scheduling HITACHI
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Sorting based on steel ' (] I I
types (potential casting = I &=,
groups) |
Batches

Minimization of the total
number of casting groups :
through optimal product Detailed schedule for

Public distribution (width, continuous casting . .
16 © 2022 Hitachi Energy. All rights reserved. su bgroups) @ HltaChl Energy




Optimization step Il — Aggregation and Finalization HITACHI
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Optimal sequenc;ofthe\_/v

casting groups

(maximum throughput /
minimum setup-times) /
| [ ] == Il .
sl =—— m e

[
B e mE====m. N I I ] I
H & m [ (1 00 =E= 118 B =
Il | [ —— Tl e
time
Public Source: Harjunkoski, I., & Grossmann, |. E. (2001). A decomposition approach for the scheduling of a steel plant - .
17 © 2022 Hitachi Energy. All rights reserved. production. Computers and Chemical Engineering, 25(11-12), 1647-1660 @HltaChl Energy
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Production Management HITACHI
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Volatile Prices as Opportunity
ABB [Gantt Viewer v1.0(d) | [Mon 25 Feb 13] (Tue 26 Feb 13]

6 12 18
ﬁ Resources i
Melt Shop - EAF1 s | ps | po i pul |
Melt Shop - EAF2 2 W pe | pio [ Pi2 W ri6 P14 P18
Melt Shop - AOD1 [ p5 | | P11 | Pi7 P19
Melt Shop - AOD2 | po N ps | po | P10 | P12 |
Melt Shop - LF1 [ Po [ P10
Melt Shap - LF2 [ 6 | = (P11 P12
Melt Shop - CC1
Melt Shop - CC2 PL P2 P3 P4 PS5

Load schedule
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Electricity consumption [MWAh]

Public
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Production Scheduling under Volatile Energy Prices HITACHI
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Volatile Prices as Opportunity ~ Load schedule
£ 400
Enable energy-intensive industry to g 350
 Participate in future energy markets (virtual power § 228
plant) E 200

il v
o u
o o

 Actively support grid stability and reliability

Use process flexibility to intelligently schedule the
production in order to

Electricity cons
a1
o O

* Lower energy cost
« Efficiently manage resources 250

200

150 -

100

Electricity price [€]

50

1 23456 7 8 9101112131415161718192021222324
Time

Public
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Global General Precedence HITACHI
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MAJOR MODEL VARIABLES };Lﬁi‘\
g | L2 B s R s |
BINARY VARIABLES  vy;;,, Xijs Just o el
/TN I B R R
Note: The same : : T~y
. job/batch unit stage —>
AU LY ot Lsten 6 BATCHES, 2 UNITS
in multiple stages! (6*5)/2= 15 SEQUENCING VARIABLES

y;i, = 11f batch i’ is processed after batch i, else zero (global precedence)

Xijs =1 If batch i is processed in unit j on stage s (stage-based assignment)

CONTINUOUS VARIABLES

. Can be easily generalized to
t;, = start time of batch i on stage s Y9

f multistage processes
t;; = end time of batch i on stage s and to several resources

Public Source: Méndez, C. A., & Cerda, J. (2003). Dynamic scheduling in multiproduct batch plants. Computers and Chemical

20 © 2022 Hitachi Energy. Al rights reserved. Engineering, 27(8-9), 1247-1259 @ Hitachi Energy



Global General Precedence

HITACHI
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Sets
(Méndez and Cerda, 2003) S; = stages needed for job i
.= units that can execute
. ALLOCATION CONSTRAINT Jis .
Xijs =1 Vi€els€S; stage s for job i
J€Jis ]iS,i’S/ € ]is N ]i’Sl
f . End time = start time + duration
t:. = tr. + z Tijsxijs Vi€l s€S; PROCESSING TIME (depends on equipment choice)
je]is
l setu Sequencing only makes sense
tf’s’ = t{s‘ + Tii‘,ier%? + Ti/S, P for jobs on the same machine
Vi,i' €,i<i',s €55 €Si,j € Jisus

SEQUENCING CONSTRAINTS
£S5 > tf + Tclean + TSBtUP
Is = i's’! J IS

Indices and variables
i1s1,is [ = job
s = production stage
X = assignment variable
S f tr ;
P>t . . . .
tis 2t + Tl Vi€l s€S;,s>1 STAGE PRECEDENCE y = sequencing variable
Public Source: Méndez, C. A., & Cerda, J. (2003). Dynamic scheduling in multiproduct batch plants. Computers and Chemical
21 © 2022 Hitachi Energy. All rights reserved. Engineering, 27(8-9), 1247-1259
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Energy Awareness — Altenative Formulation Inspire the Next

Accounting for Electricity Consumption
Model the relation between tasks i1 and time slots s
through a discrete time-grid (MILP)

Model structure

electricity Task i contribution to
Production price es ' S, —considered electricity Event binaries Y
scheduling : time slot : consumption [min] of c.le.notlng start or
e, =4 i . atime slot s finish of a task
1 1
1 1 | g
Energy I task | i g . =1 ! s _ f _
awareness S1 ' ' Lo pstm __em ] Yp's'l L ng; 1
€1 I I S
1 1 3
Price response e T ! : Prr—————— z
I — —
Deviation | :__bf’_s'_i'_"i____tf’_"__fi____i p,Sl =0, YP,SL =1
response :."" : R S
! | task | L C i =ty — ¢S I s _ f _
i T ppsim =22 Tom 1 V=1V, =0
Image on right 1 1 R s
. dyoim=t, —t; ' ys —qa vl —
IrIIIIIIIIIIIIIIIIIIIIIIIIII‘I :_--p;s-'ll-rr-l----z----l-----: YpSl 0 YpSl = 0’
task 1 1 s—2 S —
——— . i i Zs '=0 Yp S’l =1,
'Time spent i _ X X lel =1
: task ' ® task =s+1 srz
Wlthln a time slot ! : . Jtask $=S p
t, = start ty t, t,  time

Source: Nolde, K., & Morari, M. (2010). Electrical load tracking scheduling of a steel plant. Computers and Chemical

Public Engineering, 34, 1899-1903; Hadera, H. et al. (2015). Optimization of steel production scheduling with complex time- . .
22 © 2022 Hitachi Energy. All rights reserved. sensitive electricity cost. Computers and Chemical Engineering, 76, 117-136 @ HltaChl Energy



Link Event Binaries to the Start/End Variables HITACHI
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ST stages in the original scheduling formulation
S: time slots for electricity tracking

- idered
t;,st = Ts—1° Yps,st’S Vp € P, St € ST,S ES ! § —considere

" meslot |
thst <Ts+M—75) (1 —=Y)ss) VDEP,steST,sES | g
tgj;,st > To_q° Yp];tis Vp € P,steST,s €S tS
t) e ST+ M—1)-(1—Y[ ) VDEP,stEST,s€S TES_Z'“ . rs

For more information on how to link the auxiliary variables a, b, c, d to the scheduling problem, see paper
by Hadera et al. (2015)

Public Source: Hadera, H. et al. (2015). Optimization of steel production scheduling with complex time-sensitive electricity cost. . .
23 © 2022 Hitachi Energy. All rights reserved. Computers and Chemical Engineering, 76, 117-136 @ HltaChl Energy
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IDSM for Electric Arc Furnace Steelmaking Inspire the Next

|nte|||gent PrOdUCt|On Plannlng Makespan — driven schedule
Gantt Viewer VL) | [Mon 23 5 13} e
Lower energy costs by — : : 2
- . . .. Mol Shop - EF1 T N N T T T (T T
« Utilization of variable pricing werso-c2 | N N N T ] | T T
et shop- 001 N T O T (T OO T T T
o i I i el shp - AODZ I D BT BT BT | T T T
Keeping committed load profiles . - m me . . -
Mot Shop- 17 m ;o @ M| m Mm@ m
Ml Shap - CC1

Melt Shop - €C2 N

Electricity price ... | . |

Electricity cos — drive schedule

Scenario | Bin Vars MIP Gap MIP Gap AB Gt Vewer 100 [on T3S 3] 5 ‘||‘ ‘||‘ 5 . ezt
(600s) | (600s) | (3600s) | (3600 s) Fyw—

1(20-hi) 4065 29508 247838 29,30% 241136  26,80% i e ] [

2(20-o) 4065 29508 200038  24,90% 180023  16,10% e T T T .
3(16-hi) 3229 23428 155226 22,81% 146339  17,93% s 2 = o = m mom m
4(1640) 3229 23428 204173  22,50% 180965  12,10% o R — E—

Hadera et al. (2015), Merkert et al. (2015), Castro et al. (2013)

Benefits of Collaboration: 5% Savings at pilot plant

Publi H =
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IDSM in Steel Production: Basic RTN Formulation HITACHI
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Modeling Approach Based on Resource Balances

Re _Rert 1+ZZNk|t/urk| +ZZNk|t Hk,lurkl +ZZ ZNklté:klr_i_ﬂr,tvr’t

I t=t-6,;+1
o
v
— Electricity
—a = 3 |
CL e || EAF LF cc
i
Scrap .
< |-~
Slabs
I : —
| . | 1 3 4
l o |
S
; [ 1 (I 1
<i> PRCCRCONCC

Public
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IDSM: End of Isolated Solutions HITACHI
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Integrated Production Planning & Energy Management

“ IDSM
module
Coordination through

Energy Systems . Monolithic model (PP&EM)mm’ —
Scheduling « Model decomposition Planning

« Data exchange

4 Reduce energy cost using = Connect to existing

time varying energy prices environment
+ Increase flexibility / agility = Steel/TMP mills: 3-20%
wrt. energy availability energy cost savings

Source: Hadera, H. et al. (2015). Optimization of steel production scheduling with complex time-sensitive electricity cost.
Public Computers and Chemical Engineering, 76, 117-136; Hadera, H. et al. (2019). Integration of production scheduling and . .
26 © 2022 Hitachi Energy. All rights reserved. energy-cost optimization using mean value cross decomposition. Computers and Chemical Engineering, 129, 106436 @ HltaChl Energy



Grid vs. Plant Perspectives Brought Together HITACHI
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Power Grids Focus Different Industrial Processes

Coordination of Energy Production and Consumption is a Very Large Scheduling Problem

Public - -
27 © 2022 Hitachi Energy. All rights reserved. Virtual Power Plants vs. Physical Power Plants HltaChl Energy



Two Worlds Separated — Cannot See all Details of the Other HITACHI
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CoocolGietien

v Blueivaroe Pholo

Public - .
© 2022 Hitachi Energy. All rights reserved. Source: https://www.uwphotographyguide.com/over-under-split-photography @HltaChl Energy



How Are Things Related Together? HITACHI
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Traditional Power System — main concern sufficient electricity availability at each time

s o —

O

[

Publi H =
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How Are Things Related Together? HITACHI
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Modern Power System — main concerns electricity availability at each time as well as network capacity

Publi H =
30 ©u20I§2 Hitachi Energy. All rights reserved. @ HltaChl Energy
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Unit Commitment Problem
Discrete Time
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Unit Commitment Problem ]EJ;';%?]!.'!L

Electricity Production = Consumption
Ensure that the Electricity Production = Consumption

» Schedule and coordinate electrical generation in
order to match the energy demand and supply at
minimum cost

Optimal (lowest cost) balance between the “players” by
solving MILP-based models

* Including: Generators, Renewables, Energy storage,
Industrial sites, Power markets (buy & sell)

fle

. . . )
* Ensuring: Demand being met also with strong p— @ 4% ik @ g
renewable participation e B (R e S
« Most economical operations ) fﬂ@ i
: =
[ ] Healthy ramp'up / ramp'down phaSeS Storage Industrial side Gas turbine

Technical Units / Microgrids

* Feasible w.r.t. power grid limitations

Publi H =
32 ©u20I§2 Hitachi Energy. All rights reserved. @ HltaChl Energy



Unit Commitment Problem

Mathematical Formulation (5 units, 5 time points) llustration

Indices

i generation unit (I)

t time slot (T)

Parameters

pdem electricity demand at time t (MW)

crer variable generation cost (EUR/MW)
Variables

Dit generation level, e.g. in MW (continuous)
Constraints

Yipie = PE™ vt

Objective function

miny, % G - pis

Unit allocation can be done based on unit-specific costs (still simple)!

« However, a unit may be turned on/off... (we need a binary variable)
« Each unit also has a lower and upper operation limits (MW)

Public
33 © 2022 Hitachi Energy. All rights reserved.
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Power Demand & Production (MW)
- —
1 2 3 4 5

Gen2

Gen3 mmm Gen4

Gen5 ==@==demand (MW)

@ Hitachi Energy



Unit Commitment Problem

Individual Generator Limitations

Parameters
Cif x fixed generation cost (EUR/time step)
ctart start-up cost of generator (EUR)
ceoP shut-down cost of generator (EUR)
LY minimum uptime (time steps)
L? minimum downtime (time steps)
up .. .
AP, ramp-up limit (MW/time step)
AP ramp-down limit (MW/time step)
pmin minimum feasible (stable) generation (MW)
p/nax maximum feasible (stable) generation (MW)
Variables
Dit generation level, e.g. in MW (continuous)
N ¢ state of generator i at time t: on/off (binary)
niert start-up indicator of generator i s at time t (binary)
n;top shut-down indicator of generator i at time t (binary)

Public
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llustration

nie =1

an

max
Iy gen

nie =1

HITACHI
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nie =1 Nie =0

stop _
Ny = 1

U
ni,l + ni‘z + ni‘g = Li

Objective function

. ix sto sto
mlnz Z(Civar Die F Cif ‘Mo + Cistart Start + C P, ngy p

T

[ 29

Pi1 —

Q
=
n
©
(D)
(el
=

min
F gen

Q
0
n
qv]
(D)
(€
=

Pit

t=4
@ Hitachi Energy




Unit Commitment Problem HITACHI

Inspire the Next

Additional Constraints for Every Generator lllustration
Generation level Ni¢ = 1 Nt = 1 Nyt = 1 Ni¢ = 0
P™MM ey S ppe< PN oy, Vit Tl:siOp=1
: : : i
- . . max
Ramp-up/down limits Pg en
Pie — Pie—1 < APP + P ni it Vit > 1 ngq+ni,+nz =LY
dn min ,  Stop . an [ [
Pit-1 — DPit < AP/ + P; ‘n. Vi,t>1 . . .
o vt Objective function
Start-stop constraints
- var fix start . start stop . stop
Mo — Ny = NEEOTE — 02t wi e > 1 min E § (CP* pie + €™ oy + C Mie o 0T mg,
nStat 4 nXP <1 Vit >1 t ! —
Minimum up/down-times Pi1— Diz S APF"
ni. =nit vit,t=t+ 1,min{t + LY — 1,T} pmin
’ gen
. . )

ni:<1- nl.SiOp Vit, t=t+ 1,m1n{t + Lll? — 1,T} re)

‘0

3
+ Reserve variables & constraints, network constraints (iterative e

rocess), ... B _
P ) Pit
t=1 t=4

Publi H =
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Unit Commitment Problem

Problem Size

Number of units significantly increasing (small
renewable units, energy storage units, ...)

* Yesterday: 50-200 generation units
» Today: >1000 plannable units
* Future: >5000+ units...

Planning horizon: 24 hours, time grid of 1 hour, 30 or
15 min - 24, 48 or 96 time points.

» A problem with at least 24000 binary variables (1000
units) 2> 5.24*107224 combinations

Any brute force method will fail ...

We need to be able to solve several UC problem runs
(iterative procedure) typically within 5-10 minutes!

Public
36 © 2022 Hitachi Energy. All rights reserved.
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Optimality

Optimization plays a crucial role as we are often
optimizing the power use for an entire country or state

Assume
« a typical consumption of 40 GW...
« Average power price 40 EUR/MWh (4 cents / kWh)

This result in a daily generation cost of 38.4 MEUR (in
a year 14 billion EUR)

« Each 1% away from the optimal solution means 384
KEUR loss / day (this is still acceptable) - 140
MEUR / year

Optimization matters!!!

@ Hitachi Energy



Unit Commitment Problem — LP-based Heuristics

Proposed Approach

Basic target: Speed up the solution of the UC problem
without loss off (near) optimality!

LP problem much faster than corresponding MILP

* Rounding e.qg. fractional values 0.9 - 1 (binary)
does not work well!

Idea: Analyze LP solution and fix binary variables for
generators respecting the physical generation limits
(Fjer, Bjen ) In the relaxed solution by checking the key

equation: .
Nit* Pie = P

If this is satisfied, then the generator operates on a
valid region even in the relaxed solution - assume
also needed in MIP = fixn;; =1

Public
37 © 2022 Hitachi Energy. All rights reserved.
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n=1 Piet-n<p < PJ3*-n
Pmax Pgnggx
n € {0,1}
p n =04
Pmax
<«— Possible region
i Py
<+— Allowed but infeasible
"R
MIP solution Relaxed MIP solution (LP)

@ Hitachi Energy



Unit Commitment Problem — LP-based Heuristics

Proposed Approach

Basic target: Speed up the solution of the UC problem
without loss off (near) optimality!

LP problem much faster than corresponding MILP

* Rounding e.qg. fractional values 0.9 - 1 (binary)
does not work well!

Idea: Analyze LP solution and fix binary variables for
generators respecting the physical generation limits
(Fjer, Bjen ) In the relaxed solution by checking the key

equation: .
Nyt it 2 b

If this is satisfied, then the generator operates on a
valid region even in the relaxed solution - assume
also needed in MIP = fixn;; =1

Public
38 © 2022 Hitachi Energy. All rights reserved.

Optional if multiple passes

HITACHI
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START

|

Solve relaxed UC
: problem (LP)
:
1
P .
1 ,’
1 Y \
1 :
g 1
1 1 min
: ! Nt Dt = P :
! v ! :
1 1 1
: ! .
--------- Foralln;; — !
l !
: !
1 5 o
! Fix variable |
1
\ nige=1 !
\ ’
v e ikl et g

Solve full UC
problem (MILP)

!

FINISH
@ Hitachi Energy
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Unit Commitment Problem — LP-based Heuristics Results Inspire the Next

First UC example (1200 units, 44 instances)

oy, T R T

Results: 1200 units (large example)

9.24 . 8002 0.944 0.992
- Average spee.d-u;:.): 3.1 N —— 131.99 10494 13.918 1.004
) liggggsigosfgggz ;:Sr!ne (critical: PUUEEDE 36.63 9.82 10053 0.999
. Average solution improvement pcdian 25.37 9.76 10086 2.553 0.999
Results: 50 units (small example) Total {sum) 1611.78 432,00 A A
» Average speed-up: 1.8 Second UC example (50 units, 225 instances)
- onest s e 226> 0 N T T e T
* In average 0.7% worse solutions 0.168 0.208 0.130 0.994
* One outlier case with 41% Max 226.825 355 6.093 1.410
(caused by inflexible units) Average 0797 = 154 137 1007
Many runs: Better than MIP Median 1.074 0.565 128 1515 1.001
* All runs: mipgap = 1% Total (sum) 1498.903 788.570 N/A N/A N/A
Harjunkoski, I. et al. (2021). Matheuristics for speeding up the solution of the unit commitment problem. Paper presented

Public at the Proceedings of 2021 IEEE PES Innovative Smart Grid Technologies Europe: Smart Grids: Toward a Carbon-Free
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Unit Commitment Problem — Conclusions

Promising results
A simple approach can make a big difference!

* Increasing the robustness of solving the UC problem

 All instances on the same grid - large variations
» Possible to build up on this, combine it with ML etc.

* Nevertheless, due to strong optimality need and
many cost types optimal cost balancing can be
challenging

» Important: enough problem-specific data for
training

Deployment of proposed LP-based heuristic relatively
straightforward in an existing product environment

« Sometimes, relaxed LP-solution took > 50% of
total time (done twice in LP-based heuristics)

Public
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Conclusions
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Goal of This Talk... HITACHI

Inspire the Next

« Highlight the importance of energy / electricity

« Give insights to solving industrial-scale
scheduling problems (demand-side
management)

* Present some strategies to speed up large-
scale optimization problems

« Share some personal experiences from
working with MILP problems

» Melt-shop (steel) scheduling
* Unit Commitment

MILP is an important (although not only) component in solving industrial scheduling problems

Publi H =
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Conclusions

Optimization is critical to many industrial problems

* MILP a good tool, especially for modeling complex constraints
» Commercial MILP solvers embed most advanced algorithms
MILP alone not sufficient in solving many real-size problems

» Need supporting heuristics, decomposition schemes, Al/ML, ...

» Models must be both very tight and expandable
Energy combines different players and becomes more important
« Demand-side management seek to identify process flexibility

« Combination of scheduling processes and energy is hard but
necessary: Need more solutions crossing the domain borders!

Important: Research cultures meet and collaborate: Math,
CS/OR, Engineers (ChemE, Elec, SW, ...) and Natural Scientists

* Not to forget about industrial/academic collaboration...
Still many industrial challenges not even yet been modeled!
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