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Scheduling with Machine Learning

- Scheduling is field of study concerned with optimal allocation
of resources, over time, to a set of tasks.

- Semiconductor/LCD, steel, automotive, battery, biopharmaceutical

- Machine learning approaches are used for scheduling in
manufacturing, such as determining weights of dispatching
rules, assigning jobs to machines, etc.

Sources:

https://spectrum.ieee.org/chips-act-of-2022

https://www.howden.com/en-gb/industries/industrial/metal-processing/steel-making
https://inc42.com/buzz/ril-ola-electric-rajesh-exports-pli-scheme-pacts-ev-battery-manufacturing/
https://www.europeanpharmaceuticalreview.com/news/173809/trends-in-biopharma-contract-manufacturing-2022/ 3



Semiconductor Manufacturing

- Scheduling problems in semiconductor manufacturing

 Production scheduling
* Flexible job shops with reentrant flows
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Semiconductor Manufacturing
Weights of dispatching rules

Dispatching ., | Weight Job 1 “
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Sum Selection : :
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Rule N N

« Dispatching rules

« SPT, LPT, EDD, etc Experiments Feature
« Weights  of  dispatching  rules m [> simlation [> d>
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Source:
https://www.ibm.com/uk-en/cloud/learn/neural-networks
https://blog.tensorflow.org/2021/05/introducing-tensorflow-decision-forests.html



Semiconductor Manufacturing

- Weights of dispatching rules

Input: Initial sample size
Number of iterations
Key performance indicator (KPI)
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» Sample initial

1. Initial Sampling

2. KPI Evaluation [

= Obtain KPI with

m Steps 2 ~ 6

Output: The best weight set

3. Search Space
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Weight of rule 1

J.-H. Lee, Y. Kim, Y. B. Kim, B.-H. Kim, G.-H. Jung, and H.-J. Kim*, "A sequential search method of dispatching rules for scheduling

Weight of rule 1

Weight of rule 1

Weight of rule 1

of LCD manufacturing systems," IEEE Transactions on Semiconductor Manufacturing, vol. 33, no. 4, pp. 496-503, 2020.

Weight of rule 1

Weight of rule 1
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Semiconductor Manufacturing

"_| Agent |

* Job shop scheduling )
. . . state reward action
 Reinforcement learning is often used. sl|e A
- State, Action, Reward <3| Environment ]4—
E jgg ; 0;;: j™ operation of job i Makespan
L Job 3 :
Ml 031 021 013 :
MZ 011 032 022
M3 012 033 :
I
. time
< A job shop schedule >
jOb Color : Machine type
011 —> 012 —f,, 013 —> . Conjunctive arc 011 —> 012 —> 013
/ - 277

N --» : Disjunctive arc /
a

Start ™ 021 77 ?» 05 —» End

N

031

> 033 > 033

S

Source: https://towardsdatascience.com/reinforcement-learning-101-e24b50e1d292

Start —™ 074

N

031

> 033

—> 05, ——* End

S

> 033



Semiconductor Manufacturing

- Cluster tool scheduling

« Multiple processing modules (PMs), a
ErLlf)teriaI handling robot, and loadlocks

« Wafers need to be processed in PMs in
sequence.

 Diverse wafer flows
« Robot task sequence
 Systematic analysis for cyclic scheduling

« Reinforcement learning is applied for noncyclic scheduling with diverse

products.
Sh
Cluster Tool Environment - Look-ahead based RL
A(sp)
,‘/"\‘r ,./“\., an(€ AGs) + O
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J.-H. Lee and H.-J. Kim*, "Reinforcement learning for robotic flow shop scheduling with processing time variations,"
International Journal of Production Research, vol. 60, no. 7, pp. 2346-2368, 2022.



Steel Manufacturing

Scheduling problems in steelmaking process
 When charges arrive at the converter, engineers assign them to one of
machines (RH (Ruhrstahl-Heraues) or LF (Ladle Furnace)).

RH and LF machines often require maintenance operations.

It is required to improve performance and assist engineers simultaneously.

Issues
» Engineers have different
preferences.
 Hard to obtain some data,
especially for the maintenance
operations
Proposed approach
« MILP + ML
« MILP for improving the
performance with limited
Information

« ML for assisting engineers
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Steel Manufacturing

- Scheduling problems in steelmaking process

« MILP model

« Objective function
« Maximize the average time each charge spends between RH/LF and CC

P _ <+—> Objective function
Charge 1 Converter RH - cC | > Transportation time
Charge 2 Converter RH t— cC
Charge 3 Converter RH T < R g CcC

time
 Decision variables
Variables Definitions

Xisk 1, if machine k is allocated to charge i in stage s. 0, otherwise.

Bis Start time of charge i in stage s

Ziskt 1, if charge i is the tth process of machine k in stage s. 0, otherwise.

SL; Time that charge i spends between RH and CC

WLy Workload of machine k

OLy; 1, if machine k processes special charges in t — 1th and tth processes. 0, otherwise.
TUp: 1, if machine k uses a transfer car successively in t — 1th and tth processes. 0, otherwise.
NMT,,; 1, if there is enough time for the maintenance before the machine k's tth process. 0, otherwise. 10




Steel Manufacturing

- Scheduling problems in steelmaking process

« MILP model
* Constraints
No. Constraints
(1) Bis + pis + ti SBi,ns(i,s) +M X (Z_Xisk _Xi,ns(i,s),k) Viels ES_{CC}'k EKIEK
Vi,jel,i+js,weESk€eK,
@) Bis + Dis + @i < By + M X (2= Ziske = Zjwke+1) TR
3) ZkerXiskzl VseSi€el’s
4) Bi,CF = fi,CFrXi_CF'kiCF =1 Viel
(5) Bi,CC = fi,CC'XL',C(;_kiCC =1 Viel
(6) SL; = Bicc — (Bigr1 + Pirr1) Vie R
7) lbs, < SL; Viel
(8) SL; < ubg; Viel

1): Flow constraints of each charge

2): Machine conflicts & Minimum idle time (for the logistics)

4)-(5): Converter and CC are given

(
(
(3): Machine allocations
(
(

6)-(8): Time between RH and CC (objective function)
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Steel Manufacturing

- Scheduling problems in steelmaking process
« ML approach

1st stage 3rd stage 1st stage 2nd stage 3rd stage
T T T T T T T T T T
No. Type Converter Cont. Caster 2" refining code Assignment 15t start 15t end 2nd start 2nd end 3rd start 3 end
1 AAA 3 2 D 1RH 0:00 0:30 0:40 1:00 1:10 1:30
2 BBB 2 3 E 2RH 0:10 0:40 0:50 1:10 1:20 1:40
3 ccc 1 4 F 3RH 0:20 0:50 1:00 1:20 1:30 1:50
4 DDD 3 1 G LF 0:30 1:00 1:10 1:30 1:40 2:00
5 AAA 2 2 H 1RH 0:40 1:10 1:20 1:40 1:50 2:10
6 BBB 1 3 D 2RH 0:50 1:20 1:30 1:50 2:00 2:20
7 ccc 3 4 E 3RH 1:00 1:30 1:40 2:00 2:10 2:30
8 DDD 2 1 F LF 1:10 1:40 1:50 2:10 2:20 2:40
9 AAA 1 2 G LF+1RH 1:20 1:50 2:00 2:20 2:30 2:50
10 BBB 3 3 H 1RH 1:30 2:00 2:10 2:30 2:40 3:00
11 ccc 2 4 D 1:40 2:10 2:50 3:10
12 DDD 1 1 E 1:50 2:20 3:00 3:20
13 AAA 3 2 IF 2:00 2:30 3:10 3:30
14 BBB 2 3 G 2:10 2:40 3:20 3:40
15 e 1 4 H 2:20 2:50 3:30 3:50
16 DDD 3 1 D 2:30 3:00 3:40 4:00
17 AAA 2 2 E 2:40 3:10 3:50 4:10
18 BBB 1 3 F 2:50 3:20 4:00 4:20
19 ccc 3 4 G 3:00 3:30 4:10 4:30
20 DDD 2 1 H 3:10 3:40 4:20 4:40

<An example of real data>

 Descriptions of basic features

@ Characteristics: Special charges, Low carbon

@ Secondary refining code: A set of candidate machines

3 Converter, Continuous caster: Machines of 1st and 3 stages
@ Top charge: First charge of a cast

® More features...



Steel Manufacturing

- Scheduling problems in steelmaking process
« MILP+ML model

Accuracy Macro F1
KNN 0.5563 0.5059
» AdaBoost 0.5594 0.5531
Ridge Regression 0.6459 0.5166
SVM 0.6678 0.6438
Re-assign with Logistic Regression 0.6735 0.6475
Reliable? he MILP model | Simulation Random Forest 0.7468 0.6580
Multi-Layer Perceptron 0.7723 0.7006
Gradient Boosting 0.8105 0.7285
Input Assignment with a XGBoost 0.8213 0.7417
ML model CatBoost 0.8451 0.7691
LightGBM 0.8492| 0.7561
LSTM 0.9173 0.8144
GRU 0.9664| 0.9530
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Insulation Manufacturing

 Hybrid flow shop scheduling
« Foaming - Curing - Cutting
No waiting time between stages 1 and 2

No buffer between stages 2 and 3 n =
Tardiness + Makespan

NEH based algorithm
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Source: https://weekly.hankooki.com/news/articleView.html?idxno=6791764



Insulation Manufacturing

» Hybrid flow shop scheduling

« Machine learning for initial sorting

» Features: due dates, processing times at each
stage, factory state, job thickness...

« Output: ordering rule (EDD, LPT...)

Objective Total tardiness(hr.) Makespan(hr.)
60 40 150
55 35 140
50 30 130 Batch
45 25 Instance
40 20 120
35 15 110 Local search
0 : 109 NEH R A
B NEH mNEH-Adjust m NEH-Beam NEH-Relocate ® NEH-LS m NEH-AII L NG C S G
Initial Batch : : IGA :
L Sorting )i
( NEH \:
* LS-Insertion
___Beam Search L )
NEH + | ! LS-Exchange |
. Batch Relocation | L X 9 )

15
Source: https://weekly.hankooki.com/news/articleView.html?idxno=6791764



Project Scheduling for Shipbuilding

- Project scheduling with reinforcement learning
« Resource-constrained project scheduling problem

» Precedence relations, time lags, activity time uncertainty

* Makespan minimization, resource leveling

Due date

Stochastic processing time

Start-start time lag
Task E

Construction

Project 1 1

Project 2

Source: https://blog.bizvibe.com/blog/top-shipbuilding-companies-world
https://www.insidehousing.co.uk/news/news/engie-sells-construction-and-services-arm-to-bouygues-in-6bn-deal-73267
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Project Scheduling for Shipbuilding
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<Algorithm comparison>
Time la :
" a9 Greedy Simulated
Objective extension

ratio algorithm annealing

0.1 168.194 172.307 160.104
St 0.2 160.500 169.655 153.702
(obj: 175.054) ’ ‘ ‘ )
0.3 152.100 163.792 148.367 . . . .
: | ‘ [
1

Source: http://www.kclng.co.kr/en/Technology/kc.php
https://blog.samsungshi.com/?page=3
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Rule Extraction from Schedule Data

Rule extraction with a decision tree

« Olafsson, S., & Li, X. (2010). Learning effective new single machine dispatching rules from
optimal scheduling data. International Journal of Production Economics, 128(1), 118-126.

( start )

A

Generate schedules

A

Generate a training dataset

A

Learning a decision tree

A

Schedule by using the tree

end

job 1 first?

True True True False True
False False False True False
True True False False True
job1_remain_prt_large <= 0.5
gini=0.5
samples = 860
value = [430, 430]
Triy ‘ilse
tail_buffer_n_same <= 0.5 job1_next_buffer_n_large <= 0.5
gini = 0.462 gini = 0.462
samples = 430 samples = 430
value = [274, 156] value = [156, 274]
A A
job1_prt_large <= 0.5 job1_prt_large <= 0.5 job1_pit_large <= 0.5 ini=00
gini = 0.231 gini = 0.452 gini = 0.453 sasr!n les = 11
samples = 15 samples =415 samples =419 valu:= [11, 0]
value = [2, 13] value = [272, 143] value = [145, 274] !
A r/ \
gini=0.0 gini =0.479 gini = 0.355 gini = 0.346 gini = 0.482
samples = 2 samples = 285 samples = 130 samples = 135 samples = 284
value = [2, 0] value = [172, 113] value = [100, 30] value = [30, 105] value = [115, 169]
False: True: True: True: False: False:
job 2 first  job 1 first job 1 first job 1 first job 2 first job 2 first

18



Scheduling with ML

Simple/Small

Complex/Large

Optimization Algorithms
Mathematical Analysis

Dispatching Rules
Heuristic Algorithms
ML-based Scheduling

Deterministic

Random Varibility/
Disruptions

19



Scheduling with ML

 Scheduling with machine learning
 Imitation learning
 Solving subproblems with machine learning
« Parameter selection for scheduling algorithms
* New dispatching rule working well in a dynamic and unseen environment

Exact Algorithm Meta-heuristic Dispatching rule ML

Performance optimal good poor ?
Real-time scheduling X X @) @)
Dynamic environment X X @) @)
T e 0 0 x :

« ML as one of useful tools for scheduling especially in a dynamic
environment



MSLAB | KAIST
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