- Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems
- Twin Cranes Policies Results

CCSP

Solution Approach Master Problem Subproblem Comp. Study

Conflict-Free Crane Scheduling in a Seaport Terminal

Erwin Pesch

University of Siegen, Department of Management Information Science, Germany

Scheduling Seminar, 24. May 2023

Outline

- Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems
- Twin Cranes Policies Results

CCSP

- 1 Problem Setting: Automated Container Terminal
 - Terminal Layouts
 - Yard Layouts
 - Container Flow
 - Yard Crane Systems
- 2 Twin Cranes
- 3 Policies and Results
- **4** Crossover Crane Scheduling Problem (CCSP)
- **5** Solution Approach: Logic-Based Benders Decomposition
- 6 Computational Results

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems

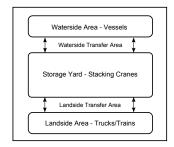
Twin Cranes Policies Results

CCSP

Solution Approach Master Problem Subproblem Comp. Study

Problem Setting

Outline


- Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems
- Twin Cranes Policies Results

CCSP

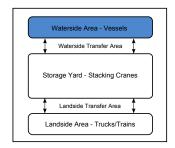
Solution Approach Master Problem Subproblem Comp. Study

Container Terminal Layouts

- Waterside Area: Vessels are moored at the berth and quay cranes are used to load and unload containers.
- Landside Area: Handles the hinterland container transportation on trucks and trains.
- Storage Yard: Containers are temporarily stored by yard cranes and are exchanged between the waterside and the landside.
- Waterside Transfer Area: Operated by internal vehicles (e.g., straddle carriers, automated guided vehicles, trucks) and performs the container transport from the waterside to the storage yard and vice versa.

• Landside Transfer Area: Containers are picked up/delivered by external trucks or internal trucks are employed to deliver (receive) containers to (from) trains.

Outline


- Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems
- Twin Cranes Policies Results

CCSP

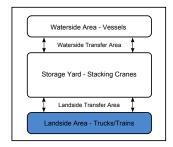
Solution Approach Master Problem Subproblem Comp. Study

Container Terminal Layouts

- Waterside Area: Vessels are moored at the berth and quay cranes are used to load and unload containers.
- Landside Area: Handles the hinterland container transportation on trucks and trains.
- Storage Yard: Containers are temporarily stored by yard cranes and are exchanged between the waterside and the landside.
- Waterside Transfer Area: Operated by internal vehicles (e.g., straddle carriers, automated guided vehicles, trucks) and performs the container transport from the waterside to the storage yard and vice versa.

 Landside Transfer Area: Containers are picked up/delivered by external trucks or internal trucks are employed to deliver (receive) containers to (from) trains.

Outline


- Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems
- Twin Cranes Policies Results

CCSP

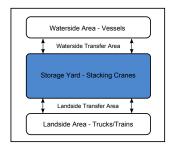
Solution Approach Master Problem Subproblem Comp. Study

Container Terminal Layouts

- Waterside Area: Vessels are moored at the berth and quay cranes are used to load and unload containers.
- Landside Area: Handles the hinterland container transportation on trucks and trains.
- Storage Yard: Containers are temporarily stored by yard cranes and are exchanged between the waterside and the landside.
- Waterside Transfer Area: Operated by internal vehicles (e.g., straddle carriers, automated guided vehicles, trucks) and performs the container transport from the waterside to the storage yard and vice versa.

• Landside Transfer Area: Containers are picked up/delivered by external trucks or internal trucks are employed to deliver (receive) containers to (from) trains.

Outline


- Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems
- Twin Cranes Policies Results

CCSP

Solution Approach Master Problem Subproblem Comp. Study

Container Terminal Layouts

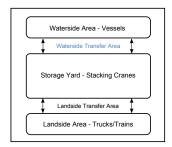
- Waterside Area: Vessels are moored at the berth and quay cranes are used to load and unload containers.
- Landside Area: Handles the hinterland container transportation on trucks and trains.
- Storage Yard: Containers are temporarily stored by yard cranes and are exchanged between the waterside and the landside.
- Waterside Transfer Area: Operated by internal vehicles (e.g., straddle carriers, automated guided vehicles, trucks) and performs the container transport from the waterside to the storage yard and vice versa.

 Landside Transfer Area: Containers are picked up/delivered by external trucks or internal trucks are employed to deliver (receive) containers to (from) trains.

Outline

- Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems
- Twin Cranes Policies Results

CCSP


Solution Approach Master Problem Subproblem Comp. Study

Container Terminal Layouts

- Waterside Area: Vessels are moored at the berth and quay cranes are used to load and unload containers.
- Landside Area: Handles the hinterland container transportation on trucks and trains.
- Storage Yard: Containers are temporarily stored by yard cranes and are exchanged between the waterside and the landside.

• Waterside Transfer Area:

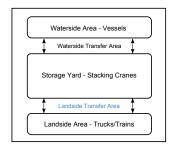
Operated by internal vehicles (e.g., straddle carriers, automated guided vehicles, trucks) and performs the container transport from the waterside to the storage yard and vice versa.

 Landside Transfer Area: Containers are picked up/delivered by external trucks or internal trucks are employed to deliver (receive) containers to (from) trains.

Outline

- Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems
- Twin Cranes Policies Results

CCSP


Solution Approach Master Problem Subproblem Comp. Study

Container Terminal Layouts

- Waterside Area: Vessels are moored at the berth and quay cranes are used to load and unload containers.
- Landside Area: Handles the hinterland container transportation on trucks and trains.
- Storage Yard: Containers are temporarily stored by yard cranes and are exchanged between the waterside and the landside.

• Waterside Transfer Area:

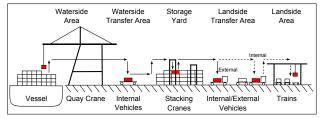
Operated by internal vehicles (e.g., straddle carriers, automated guided vehicles, trucks) and performs the container transport from the waterside to the storage yard and vice versa.

• Landside Transfer Area:

Containers are picked up/delivered by external trucks or internal trucks are employed to deliver (receive) containers to (from) trains.

Container Flow

Outline


Problem Setting Terminal Layouts Container Flow

Yard Layouts Yard Crane Systems

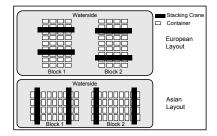
Twin Cranes Policies Results

CCSP

Solution Approach Master Problem Subproblem Comp. Study

Container Flow (motivated by Steenken et al. 2004)

Yard Layouts


Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems

Outline

Twin Cranes Policies Results

CCSP

Solution Approach Master Problem Subproblem Comp. Study

• European Layout: Terminal layouts with a storage yard *perpendicular* to the waterside.

• Asian Layout: Terminal layouts with a storage yard *parallel* to the waterside.

Problem Setting Terminal Lavouts Container Flow Yard Layouts

Outline

Twin Cranes Policies Results

Solution Approach Master Problem Subproblem Comp. Study

Yard Crane Systems

Different yard crane systems are employed at a storage yard. Systems vary, e.g., in their installation of rail-mounted (RMG) or rubber-tyred (RTG) gantry cranes.

Rail-Mounted Gantry Cranes

- Twin Cranes: Denote two RMGs of equal size which operate on the same
- Crossover or Dual Cranes: Refer to two RMGs (outer and inner crane) of

Twin Cranes

Dual Cranes

Triple Cranes

Problem Setting Terminal Lavouts Container Flow Yard Layouts

Outline

Twin Cranes Results

Solution Approach Subproblem Comp. Study

Outline

Problem Setting Terminal Lavouts Container Flow Yard Layouts

Twin Cranes Results

Solution Approach Subproblem Comp. Study

Rail-Mounted Gantry Cranes

- Twin Cranes: Denote two RMGs of equal size which operate on the same rail tracks and cannot pass each other.
- Crossover or Dual Cranes: Refer to two RMGs (outer and inner crane) of

Twin Cranes

Dual Cranes

Triple Cranes

Outline

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems

Twin Cranes Policies Results

CCSP

Solution Approach Master Problem Subproblem Comp. Study

Rail-Mounted Gantry Cranes

- Twin Cranes: Denote two RMGs of equal size which operate on the same rail tracks and cannot pass each other.
- Crossover or Dual Cranes: Refer to two RMGs (outer and inner crane) of different sizes that run on different tracks and have the possibility to cross each other.
- Triple Cranes: Consist of two twin cranes and one larger crane that moves on a different track and can pass both twin cranes.

Twin Cranes

Dual Cranes

Triple Cranes

Outline

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems

Twin Cranes Policies Results

CCSP

Solution Approach Master Problem Subproblem Comp. Study

Rail-Mounted Gantry Cranes

- Twin Cranes: Denote two RMGs of equal size which operate on the same rail tracks and cannot pass each other.
- Crossover or Dual Cranes: Refer to two RMGs (outer and inner crane) of different sizes that run on different tracks and have the possibility to cross each other.
- **Triple Cranes:** Consist of two twin cranes and one larger crane that moves on a different track and can pass both twin cranes.

Twin Cranes

s Triple Cranes

Outline

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems

Twin Cranes Policies Results

CCSP

Solution Approach Master Problem Subproblem Comp. Study

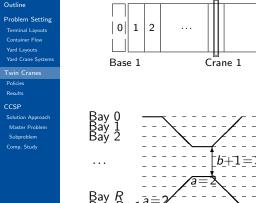
Rail-Mounted Gantry Cranes

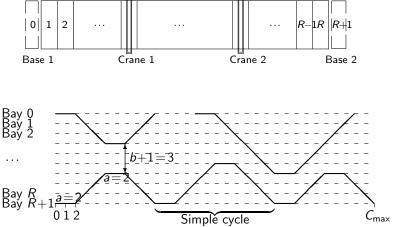
- Twin Cranes: Denote two RMGs of equal size which operate on the same rail tracks and cannot pass each other.
- Crossover or Dual Cranes: Refer to two RMGs (outer and inner crane) of different sizes that run on different tracks and have the possibility to cross each other.
- **Triple Cranes:** Consist of two twin cranes and one larger crane that moves on a different track and can pass both twin cranes.

Twin Cranes

Dual Cranes

Triple Cranes


- Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems
- Twin Cranes Policies Results


CCSF

Solution Approact Master Problem Subproblem Comp. Study

Twin Cranes

Example of a Solution

Outline

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems

Twin Cranes

Policies

Results

CCSP

Solution Approach Master Problem Subproblem Comp. Study

- (1) two fixed sequences policy where a container processing sequence is given for each crane, C2|FixFix|C_{max}
- dedicated crane policy where containers are pre-assigned to the cranes, C2|Dedic|C_{max}
- (3) one fixed, one arbitrary sequence policy where a container processing sequence is given for one crane and it can be arbitrary for the other crane, C2|FixAny|C_{max}
- (4) flexible policy where any container can be assigned to any crane at any time, C2|Flex|C_{max}
- (5) global fixed sequence policy where the container sequence is given and the relative processing order of containers in this sequence must be preserved by any crane, C2|GlobFix|C_{max}

Outline

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems

Twin Cranes

Policies

Results

CCSP

Solution Approach Master Problem Subproblem Comp. Study

- (1) two fixed sequences policy where a container processing sequence is given for each crane, C2|FixFix|C_{max}
- (2) dedicated crane policy where containers are pre-assigned to the cranes, $C2|Dedic|C_{\max}$
- (3) one fixed, one arbitrary sequence policy where a container processing sequence is given for one crane and it can be arbitrary for the other crane, C2|FixAny|C_{max}
- flexible policy where any container can be assigned to any crane at any time, C2|Flex|C_{max}
- (5) global fixed sequence policy where the container sequence is given and the relative processing order of containers in this sequence must be preserved by any crane, C2|GlobFix|C_{max}

Outline

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems

Twin Cranes

Policies

Results

CCSP

Solution Approach Master Problem Subproblem Comp. Study

- (1) two fixed sequences policy where a container processing sequence is given for each crane, C2|FixFix|C_{max}
- (2) dedicated crane policy where containers are pre-assigned to the cranes, $C2|Dedic|C_{max}$
- (3) one fixed, one arbitrary sequence policy where a container processing sequence is given for one crane and it can be arbitrary for the other crane, $C2|FixAny|C_{max}$
- (4) flexible policy where any container can be assigned to any crane at any time, C2|Flex|C_{max}
- (5) global fixed sequence policy where the container sequence is given and the relative processing order of containers in this sequence must be preserved by any crane, C2|GlobFix|C_{max}

Outline

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems

Twin Cranes

Policies

Results

CCSP

Solution Approach Master Problem Subproblem Comp. Study

- (1) two fixed sequences policy where a container processing sequence is given for each crane, C2|FixFix|C_{max}
- (2) dedicated crane policy where containers are pre-assigned to the cranes, $C2|Dedic|C_{\max}$
- (3) one fixed, one arbitrary sequence policy where a container processing sequence is given for one crane and it can be arbitrary for the other crane, C2|FixAny|C_{max}
- (4) flexible policy where any container can be assigned to any crane at any time, C2|Flex|C_{max}
- (5) global fixed sequence policy where the container sequence is given and the relative processing order of containers in this sequence must be preserved by any crane, $C2|GlobFix|C_{max}$

Outline

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems

Twin Cranes

Policies

Results

CCSP

Solution Approach Master Problem Subproblem Comp. Study

- (1) two fixed sequences policy where a container processing sequence is given for each crane, C2|FixFix|C_{max}
- (2) dedicated crane policy where containers are pre-assigned to the cranes, $C2|Dedic|C_{\max}$
- (3) one fixed, one arbitrary sequence policy where a container processing sequence is given for one crane and it can be arbitrary for the other crane, C2|FixAny|C_{max}
- (4) flexible policy where any container can be assigned to any crane at any time, C2|Flex|C_{max}
- (5) global fixed sequence policy where the container sequence is given and the relative processing order of containers in this sequence must be preserved by any crane, C2|GlobFix|C_{max}

Outline

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems

Twin Cranes Policies

CCSP

- Problem $C2|FixFix|C_{max}$: Briskorn and Angeloudis (2016) suggested a reduction of this more general problem to finding shortest path in a specially designed acyclic digraph with arc weights in $O(n^4)$ time.
- Problem C2|Dedic|C_{max}: strongly NP-hard; Erdogan et al. (2014) proved NP-hardness in the ordinary sense
- Problem $C2|FixAny|C_{max}$: NP-hard in the strong sense; Boysen, Briskorn, Emde (2015) proved for a special case a = b = 0, strong NP-hardness. The proof can be adjusted to show strong NP-hardness of $C2|Dedic|C_{max}$ and $C2|FixAny|C_{max}$ even if a = 1 and b = 0
- Problem C2|Flex|C_{max}
- Problem C2 GlobFix Cmax

Outline

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems

Twin Cranes Policies

CCSP

- Problem $C2|FixFix|C_{max}$: Briskorn and Angeloudis (2016) suggested a reduction of this more general problem to finding shortest path in a specially designed acyclic digraph with arc weights in $O(n^4)$ time.
- Problem C2|Dedic|C_{max}: strongly NP-hard; Erdogan et al. (2014) proved NP-hardness in the ordinary sense
- Problem $C2|FixAny|C_{max}$: NP-hard in the strong sense; Boysen, Briskorn, Emde (2015) proved for a special case a = b = 0, strong NP-hardness. The proof can be adjusted to show strong NP-hardness of $C2|Dedic|C_{max}$ and $C2|FixAny|C_{max}$ even if a = 1 and b = 0
- Problem C2|Flex|C_{max}
- Problem C2 GlobFix Cmax

Outline

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems

Twin Cranes Policies

CCSP

- Problem $C2|FixFix|C_{max}$: Briskorn and Angeloudis (2016) suggested a reduction of this more general problem to finding shortest path in a specially designed acyclic digraph with arc weights in $O(n^4)$ time.
- Problem C2|Dedic|C_{max}: strongly NP-hard; Erdogan et al. (2014) proved NP-hardness in the ordinary sense
- Problem $C2|FixAny|C_{max}$: NP-hard in the strong sense; Boysen, Briskorn, Emde (2015) proved for a special case a = b = 0, strong NP-hardness. The proof can be adjusted to show strong NP-hardness of $C2|Dedic|C_{max}$ and $C2|FixAny|C_{max}$ even if a = 1 and b = 0
- Problem C2|Flex|C_{max}
- Problem C2 GlobFix C_{max}

Outline

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems

Twin Cranes Policies

CCSP

- Problem $C2|FixFix|C_{max}$: Briskorn and Angeloudis (2016) suggested a reduction of this more general problem to finding shortest path in a specially designed acyclic digraph with arc weights in $O(n^4)$ time.
- Problem C2|Dedic|C_{max}: strongly NP-hard; Erdogan et al. (2014) proved NP-hardness in the ordinary sense
- Problem $C2|FixAny|C_{max}$: NP-hard in the strong sense; Boysen, Briskorn, Emde (2015) proved for a special case a = b = 0, strong NP-hardness. The proof can be adjusted to show strong NP-hardness of $C2|Dedic|C_{max}$ and $C2|FixAny|C_{max}$ even if a = 1 and b = 0
- Problem C2|Flex|C_{max}
- Problem C2 GlobFix C_{max}

Outline

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems

Twin Cranes Policies

CCSP

- Problem $C2|FixFix|C_{max}$: Briskorn and Angeloudis (2016) suggested a reduction of this more general problem to finding shortest path in a specially designed acyclic digraph with arc weights in $O(n^4)$ time.
- Problem C2|Dedic|C_{max}: strongly NP-hard; Erdogan et al. (2014) proved NP-hardness in the ordinary sense
- Problem $C2|FixAny|C_{max}$: NP-hard in the strong sense; Boysen, Briskorn, Emde (2015) proved for a special case a = b = 0, strong NP-hardness. The proof can be adjusted to show strong NP-hardness of $C2|Dedic|C_{max}$ and $C2|FixAny|C_{max}$ even if a = 1 and b = 0
- Problem C2|Flex|C_{max}
- Problem C2|GlobFix|C_{max}

Outline

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems

Twin Cranes Policies

CCSP

Solution Approach Master Problem Subproblem Comp. Study

• Problem C2|Flex|C_{max}

- There exists an optimal schedule E for problem $C2|Flex|C_{\max}$ such that $\max\{r_j \mid j \in X_1^{(E)}\} \le \min\{r_j \mid j \in X_2^{(E)}\}.$
- There exists an optimal schedule for the problem $C2|Flex|C_{max}$ and a separation number k, $1 \le k \le n-1$, such that containers $1, \ldots, k$ are assigned to crane 1 and containers $k+1, \ldots, n$ are assigned to crane 2.
- relaxed problem $C2|Flex, meet|C_{max}$ can be solved in $O(n \log n)$ time
- There is feasible schedule for the problem C2|Flex|C_{max} with the makespan C^I_{max} ≤ C^{Flex}_{max} + (a+1)n_{max}/2. Run time is O(nlog n), is a 3/2-approximation algorithm for C2|Flex|C_{max}.
- There is an optimal algorithm for the problem $C2|Flex|C_{max}$ if $n_{max} \le n/2$, with a running time $O(n \log n)$.

Outline

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems

Twin Cranes Policies Results

CCSP

Solution Approach Master Problem Subproblem Comp. Study

- There exists an optimal schedule *E* for problem $C2|Flex|C_{\max}$ such that $\max\{r_j \mid j \in X_1^{(E)}\} \le \min\{r_j \mid j \in X_2^{(E)}\}.$
- There exists an optimal schedule for the problem $C2|Flex|C_{max}$ and a separation number k, $1 \le k \le n-1$, such that containers $1, \ldots, k$ are assigned to crane 1 and containers $k+1, \ldots, n$ are assigned to crane 2.
- relaxed problem $C2|Flex, meet|C_{max}$ can be solved in $O(n \log n)$ time
- There is feasible schedule for the problem C2|Flex|C_{max} with the makespan C^I_{max} ≤ C^{Flex}_{max} + (a+1)n_{max}/2. Run time is O(nlog n), is a 3/2-approximation algorithm for C2|Flex|C_{max}.
- There is an optimal algorithm for the problem $C2|Flex|C_{\max}$ if $n_{\max} \le n/2$, with a running time $O(n \log n)$.

Outline

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems

Twin Cranes Policies

CCSP

Solution Approach Master Problem Subproblem Comp. Study

- There exists an optimal schedule E for problem $C2|Flex|C_{\max}$ such that $\max\{r_j \mid j \in X_1^{(E)}\} \le \min\{r_j \mid j \in X_2^{(E)}\}.$
- There exists an optimal schedule for the problem $C2|Flex|C_{max}$ and a separation number k, $1 \le k \le n-1$, such that containers $1, \ldots, k$ are assigned to crane 1 and containers $k+1, \ldots, n$ are assigned to crane 2.
- relaxed problem C2|Flex, meet|C_{max} can be solved in O(n log n) time
- There is feasible schedule for the problem C2|Flex|C_{max} with the makespan C^I_{max} ≤ C^{Flex}_{max} + (a+1)n_{max}/2. Run time is O(nlog n), is a 3/2-approximation algorithm for C2|Flex|C_{max}.
- There is an optimal algorithm for the problem $C2|Flex|C_{\max}$ if $n_{\max} \le n/2$, with a running time $O(n \log n)$.

Outline

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems

Twin Cranes Policies

CCSP

Solution Approach Master Problem Subproblem Comp. Study

- There exists an optimal schedule E for problem $C2|Flex|C_{\max}$ such that $\max\{r_j \mid j \in X_1^{(E)}\} \le \min\{r_j \mid j \in X_2^{(E)}\}.$
- There exists an optimal schedule for the problem $C2|Flex|C_{max}$ and a separation number k, $1 \le k \le n-1$, such that containers $1, \ldots, k$ are assigned to crane 1 and containers $k+1, \ldots, n$ are assigned to crane 2.
- relaxed problem C2|Flex, meet|C_{max} can be solved in O(n log n) time
- There is feasible schedule for the problem C2|Flex|C_{max} with the makespan C^I_{max} ≤ C^{Flex}_{max} + (a+1)n_{max}/2. Run time is O(nlog n), is a 3/2-approximation algorithm for C2|Flex|C_{max}.
- There is an optimal algorithm for the problem $C2|Flex|C_{\max}$ if $n_{\max} \le n/2$, with a running time $O(n \log n)$.

Outline

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems

Twin Cranes Policies

CCSP

Solution Approach Master Problem Subproblem Comp. Study

- There exists an optimal schedule E for problem $C2|Flex|C_{\max}$ such that $\max\{r_j \mid j \in X_1^{(E)}\} \le \min\{r_j \mid j \in X_2^{(E)}\}.$
- There exists an optimal schedule for the problem $C2|Flex|C_{max}$ and a separation number k, $1 \le k \le n-1$, such that containers $1, \ldots, k$ are assigned to crane 1 and containers $k+1, \ldots, n$ are assigned to crane 2.
- relaxed problem $C2|Flex, meet|C_{max}$ can be solved in $O(n \log n)$ time
- There is feasible schedule for the problem C2|Flex|C_{max} with the makespan C^I_{max} ≤ C^{Flex}_{max} + (a+1)n_{max}/2. Run time is O(nlog n), is a 3/2-approximation algorithm for C2|Flex|C_{max}.
- There is an optimal algorithm for the problem C2|Flex|C_{max} if n_{max} ≤ n/2, with a running time O(n log n).

Outline

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems

Twin Cranes Policies

CCSP

Solution Approach Master Problem Subproblem Comp. Study

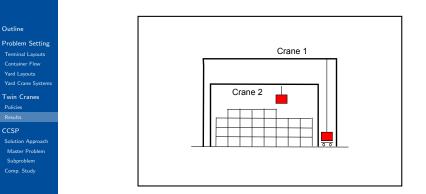
- There exists an optimal schedule E for problem $C2|Flex|C_{\max}$ such that $\max\{r_j \mid j \in X_1^{(E)}\} \le \min\{r_j \mid j \in X_2^{(E)}\}.$
- There exists an optimal schedule for the problem $C2|Flex|C_{max}$ and a separation number k, $1 \le k \le n-1$, such that containers $1, \ldots, k$ are assigned to crane 1 and containers $k+1, \ldots, n$ are assigned to crane 2.
- relaxed problem C2|Flex, meet|C_{max} can be solved in O(n log n) time
- There is feasible schedule for the problem C2|Flex|C_{max} with the makespan C^I_{max} ≤ C^{Flex}_{max} + (a+1)n_{max}/2. Run time is O(nlog n), is a 3/2-approximation algorithm for C2|Flex|C_{max}.
- There is an optimal algorithm for the problem $C2|Flex|C_{\max}$ if $n_{\max} \le n/2$, with a running time $O(n \log n)$.

$C2|GlobFix|C_{max}$

Outline

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems

Twin Cranes Policies


CCSP

Solution Approach Master Problem Subproblem Comp. Study

• Problem C2|GlobFix|C_{max}

Similar algorithms guarantee an absolute deviation of $(a+1)n_{max}/2$ and a relative deviation of 3/2 from the optimal value.

Sea Port

J. Nossack, D. Briskorn, E. Pesch: Container Dispatching and Conflict-Free Yard Crane Routing in an Automated Container Terminal, *Transportation Science* 52 (2018), 1059–1076

Outline

- Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems
- Twin Cranes Policies Results

CCSP

Solution Approach Master Problem Subproblem Comp. Study

Crossover Crane Scheduling Problem

Problem Setting: European Layout, Crossover Cranes Outline Problem Setting Terminal Lavouts Container Flow Yard Layouts Yard Crane Systems Twin Cranes Policies Results Solution Approach Master Problem Subproblem Comp. Study

Outline

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems

Twin Cranes Policies Results

CCSP

Solution Approach Master Problem Subproblem Comp. Study

Problem Setting: European Layout, Crossover Cranes

- Transportation requests arise at the water- and landside transfer area and have to be handled by the yard cranes.
- Each transportation request defines an origin and destination.
- An inbound request is initially located at the waterside/landside transfer area and has to be transported to a predefined yard location. This yard location is typically determined beforehand by a pre-executed stacking algorithm (cf. Dorndorf / Schneider 2010).
- An **outbound request** starts at a well-defined position in the storage yard and has to be transported to the waterside/landside transfer area.
- Housekeeping requests are handled inside the storage yard and improve the storage location of containers in the block (Kemme 2011).

Outline

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems

Twin Cranes Policies Results

CCSP

Solution Approach Master Problem Subproblem Comp. Study

Problem Setting: European Layout, Crossover Cranes

- Transportation requests arise at the water- and landside transfer area and have to be handled by the yard cranes.
- Each transportation request defines an origin and destination.
- An inbound request is initially located at the waterside/landside transfer area and has to be transported to a predefined yard location. This yard location is typically determined beforehand by a pre-executed stacking algorithm (cf. Dorndorf / Schneider 2010).
- An **outbound request** starts at a well-defined position in the storage yard and has to be transported to the waterside/landside transfer area.
- Housekeeping requests are handled inside the storage yard and improve the storage location of containers in the block (Kemme 2011).

Outline

- Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems
- Twin Cranes Policies Results
- CCSP
- Solution Approach Master Problem Subproblem Comp. Study

Problem Setting: European Layout, Crossover Cranes

- Transportation requests arise at the water- and landside transfer area and have to be handled by the yard cranes.
- Each transportation request defines an origin and destination.
- An inbound request is initially located at the waterside/landside transfer area and has to be transported to a predefined yard location. This yard location is typically determined beforehand by a pre-executed stacking algorithm (cf. Dorndorf / Schneider 2010).
- An **outbound request** starts at a well-defined position in the storage yard and has to be transported to the waterside/landside transfer area.
- Housekeeping requests are handled inside the storage yard and improve the storage location of containers in the block (Kemme 2011).

Outline

- Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems
- Twin Cranes Policies Results
- CCSP
- Solution Approach Master Problem Subproblem Comp. Study

Problem Setting: European Layout, Crossover Cranes

- Transportation requests arise at the water- and landside transfer area and have to be handled by the yard cranes.
- Each transportation request defines an origin and destination.
- An inbound request is initially located at the waterside/landside transfer area and has to be transported to a predefined yard location. This yard location is typically determined beforehand by a pre-executed stacking algorithm (cf. Dorndorf / Schneider 2010).
- An **outbound request** starts at a well-defined position in the storage yard and has to be transported to the waterside/landside transfer area.
- Housekeeping requests are handled inside the storage yard and improve the storage location of containers in the block (Kemme 2011).

Outline

- Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems
- Twin Cranes Policies Results

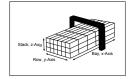
CCSP

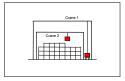
Solution Approach Master Problem Subproblem Comp. Study

Problem Setting: European Layout, Crossover Cranes

- Transportation requests arise at the water- and landside transfer area and have to be handled by the yard cranes.
- Each transportation request defines an origin and destination.
- An inbound request is initially located at the waterside/landside transfer area and has to be transported to a predefined yard location. This yard location is typically determined beforehand by a pre-executed stacking algorithm (cf. Dorndorf / Schneider 2010).
- An **outbound request** starts at a well-defined position in the storage yard and has to be transported to the waterside/landside transfer area.
- Housekeeping requests are handled inside the storage yard and improve the storage location of containers in the block (Kemme 2011).

Outline


- Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems
- Twin Cranes Policies Results


CCSP

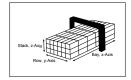
Solution Approach Master Problem Subproblem Comp. Study

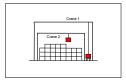
Crane Interferences - Crossover Cranes

- If dual cranes are employed in a single yard block, crane interferences have to be prevented.
- Since both cranes run on different rail tracks, they can move freely from water- to landside and in the reverse direction.
- Interferences may occur if the outer crane works (i.e. picks up or delivers a container) in a certain bay and the inner crane wants to pass or work in the same bay as well.

Outline

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems


Twin Cranes Policies Results


CCSP

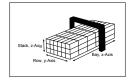
Solution Approach Master Problem Subproblem Comp. Study

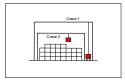
Crane Interferences - Crossover Cranes

- If dual cranes are employed in a single yard block, crane interferences have to be prevented.
- Since both cranes run on different rail tracks, they can move freely from water- to landside and in the reverse direction.
- Interferences may occur if the outer crane works (i.e. picks up or delivers a container) in a certain bay and the inner crane wants to pass or work in the same bay as well.

Outline

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems


Twin Cranes Policies Results


CCSP

Solution Approach Master Problem Subproblem Comp. Study

Crane Interferences - Crossover Cranes

- If dual cranes are employed in a single yard block, crane interferences have to be prevented.
- Since both cranes run on different rail tracks, they can move freely from water- to landside and in the reverse direction.
- Interferences may occur if the outer crane works (i.e. picks up or delivers a container) in a certain bay and the inner crane wants to pass or work in the same bay as well.

Outline

- Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems
- Twin Cranes Policies Results

CCSP

Solution Approach Master Problem Subproblem Comp. Study

Crossover Crane Scheduling Problem (CCSP)

- evaluates in which order (i.e., crane routing) and
- by which crane (i.e., **container dispatching**) the transportation requests are carried out
- such that crane interferences (i.e., conflict-free crane scheduling) are prevented, and
- the makespan is minimized.

Outline

- Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems
- Twin Cranes Policies Results

CCSP

Solution Approach Master Problem Subproblem Comp. Study

Crossover Crane Scheduling Problem (CCSP)

- evaluates in which order (i.e., crane routing) and
- by which crane (i.e., **container dispatching**) the transportation requests are carried out
- such that crane interferences (i.e., conflict-free crane scheduling) are prevented, and
- the makespan is minimized.

Theorem

The Crossover Crane Scheduling Problem is strongly NP-hard.

Proof.

Reduction to 3-PARTITION.

Outline

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems

Twin Cranes Policies Results

CCSP

Solution Approach Master Problem Subproblem Comp. Study

Solution Approach

Solution Approach: Logic-Based Benders Decomposition

Outline

- Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems
- Twin Cranes Policies Results

CCSP

Solution Approach Master Problem Subproblem Comp. Study

The CCSP simultaneously solves

- a dispatch and routing problem,
- and a conflict-free scheduling problem.

Iaster Problem: Dispatch and Routing Problem

The dispatch and routing problem evaluates in which order and by which crane the requests are conducted.

Subproblem: Conflict-Free Scheduling Problem

The conflict-free scheduling problem guarantees that cranes do not interfere.

Solution Approach: Logic-Based Benders Decomposition

Outline

- Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems
- Twin Cranes Policies Results

CCSP

Solution Approach Master Problem Subproblem Comp. Study

The CCSP simultaneously solves

- a dispatch and routing problem,
- and a conflict-free scheduling problem.

Master Problem: Dispatch and Routing Problem

The dispatch and routing problem evaluates in which order and by which crane the requests are conducted.

Subproblem: Conflict-Free Scheduling Problem

The conflict-free scheduling problem guarantees that cranes do not interfere.

Solution Approach: Logic-Based Benders Decomposition

Outline

- Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems
- Twin Cranes Policies Results

CCSP

Solution Approach Master Problem Subproblem Comp. Study

The CCSP simultaneously solves

- a dispatch and routing problem,
- and a conflict-free scheduling problem.

Master Problem: Dispatch and Routing Problem

The dispatch and routing problem evaluates in which order and by which crane the requests are conducted.

Subproblem: Conflict-Free Scheduling Problem

The conflict-free scheduling problem guarantees that cranes do not interfere.

utline	

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems

Twin Cranes Policies Results

CCSP

Solution Approach Master Problem Subproblem Comp. Study Example: Storage area with 8 bays, outer crane starts at bay 1, inner crane starts at bay 8 $\,$

Request No.	Origin (Service Time)	Destination (Service Time)
1	3 (1)	5 (1)
2	3 (1)	5 (2)
3	4 (2)	3 (2)

Outline

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems

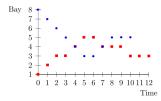
Twin Cranes Policies Results

CCSP

Solution Approach Master Problem Subproblem Comp. Study Example: Storage area with 8 bays, outer crane starts at bay 1, inner crane starts at bay 8 $\,$

Request No.	Origin (Service Time)	Destination (Service Time)	Dispatch	Route Position
1	3 (1)	5 (1)	Outer Crane	1
2	3 (1)	5 (2)	Inner Crane	1
3	4 (2)	3 (2)	Outer Crane	2

Outline


Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems

Twin Cranes Policies Results

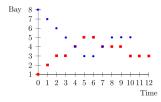
CCSP

Solution Approach Master Problem Subproblem Comp. Study Example: Storage area with 8 bays, outer crane starts at bay 1, inner crane starts at bay 8 $\,$

Request No.	Origin (Service Time)	Destination (Service Time)	Dispatch	Route Position
1	3 (1)	5 (1)	Outer Crane	1
2	3 (1)	5 (2)	Inner Crane	1
3	4 (2)	3 (2)	Outer Crane	2

Outline

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems


Twin Cranes Policies Results

CCSP

Solution Approach Master Problem Subproblem Comp. Study Example: Storage area with 8 bays, outer crane starts at bay 1, inner crane starts at bay 8 $\,$

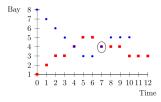
Table of Requests:

Request No.	Origin (Service Time)	Destination (Service Time)	Dispatch	Route Position
1	3 (1)	5 (1)	Outer Crane	1
2	3 (1)	5 (2)	Inner Crane	1
3	4 (2)	3 (2)	Outer Crane	2

Are their any crane interferences?

Outline

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems


Twin Cranes Policies Results

CCSP

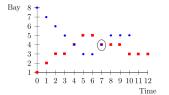
Solution Approach Master Problem Subproblem Comp. Study Example: Storage area with 8 bays, outer crane starts at bay 1, inner crane starts at bay 8 $\,$

Table of Requests:

Request No.	Origin (Service Time)	Destination (Service Time)	Dispatch	Route Position
1	3 (1)	5 (1)	Outer Crane	1
2	3 (1)	5 (2)	Inner Crane	1
3	4 (2)	3 (2)	Outer Crane	2

Are their any crane interferences?

Outline


Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems


Twin Cranes Policies Results

CCSP

Solution Approach Master Problem Subproblem Comp. Study Example: Storage area with 8 bays, outer crane starts at bay 1, inner crane starts at bay 8 $\,$

Request No.	Origin (Service Time)	Destination (Service Time)	Dispatch	Route Position
1	3 (1)	5 (1)	Outer Crane	1
2	3 (1)	5 (2)	Inner Crane	1
3	4 (2)	3 (2)	Outer Crane	2

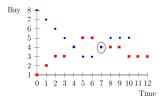
Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems

Twin Cranes Policies Results

CCSP

Solution Approach Master Problem Subproblem Comp. Study

Master Problem: Dispatch & Routing

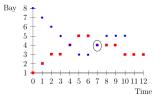

Twin Cranes Policies Results

CCSP

Solution Approach Master Problem Subproblem Comp. Study

Master Problem: Dispatch & Routing

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems


Twin Cranes Policies Results

CCSP

Solution Approach Master Problem Subproblem Comp. Study

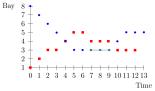
Master Problem: Dispatch & Routing

Subproblem: Conflict-Free Crane Schedule

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems

Twin Cranes Policies Results

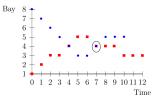
CCSP


Solution Approach Master Problem Subproblem Comp. Study

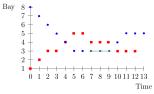
Master Problem: Dispatch & Routing

Subproblem: Conflict-Free Crane Schedule

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems


Twin Cranes Policies Results

CCSP


Solution Approach Master Problem Subproblem Comp. Study

Master Problem: Dispatch & Routing

Subproblem: Conflict-Free Crane Schedule

Logic-Based Benders Constraints

$$\hat{W}^{h}(1-\sum_{k\in\mathcal{K}}\sum_{(i,j)\in J_{k}^{h}}(1-y_{i,j}^{k}))\leq W \quad \forall h\in H$$

Outline

- Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems
- Twin Cranes Policies Results

CCSP

Solution Approach Master Problem Subproblem Comp. Study

Master Problem: Dispatch & Routing

Master Problem: Dispatch & Routing

Notation

Outline

Problem Setting Terminal Lavouts

Container Flow

Yard Crane Systems

Solution Approach

Subproblem

Comp. Study

Yard Layouts

Twin Cranes

Policies

Results

Parameter Parameter Description Κ cranes, $K := \{1, 2\}$ with 1 outer crane and 2 inner crane Q vard bays, $Q := \{1, ..., l\}$ R set of transportation requests, $R := \{1, ..., n\}$ O; origin location of request $i \in R$. $O_i \in Q$ Di destination location of request $i \in R$. $D_i \in Q$ Sι initial location of crane k. $S_k \in Q$ service time at origin O_i , $s_{O_i} \ge 0$ **s**O; service time at destination \dot{D}_i , $s_{D_i} \ge 0$ SD; travel time from the destination D_i of request *i* to the origin O_i of request *i*. t_{i.i} $t_{i,i} := |D_i - O_i|$ travel time from the origin O_i to the destination D_i of request i, $t_i := |O_i - D_i|$ t_{i.i}

Decision Variables

$$y_{ij}^{k} = \begin{cases} 1, & \text{if request } j \text{ is conducted after request } i \\ & \text{by crane } k \\ 0, & \text{otherwise} \end{cases}$$

$$W \in \mathbb{R}^+_0$$
 $=$ makesp

Master Problem: Dispatch & Routing

Master Problem: Mathematical Model Outline

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems

Twin Cranes Policies Results

CCSP

Solution Approach Master Problem Subproblem Comp. Study

$$\begin{split} \min W \\ \sum_{i \in R \cup \{n+1\}} y_{0_k,i}^k = 1 & \forall k \in K \\ \sum_{i \in R \cup \{n+1\}} y_{i,j}^k = 1 & \forall j \in R \\ \sum_{\substack{i \in R \cup \{n+1\}\\i \neq j}} y_{i,j}^k - \sum_{\substack{j \in R \cup \{0_k\}\\i \neq j}} y_{j,i}^k = 0 & \forall i \in R; k \in K \\ \sum_{\substack{i \in R \cup \{0_k\}\\i \neq j}} y_{i,j}^k - \sum_{\substack{i \in S \cup \{0_k\}\\i \neq j}} y_{i,j}^k \leq |S| - 1 & \forall S \subseteq R \cup \{0_k\}; k \in K \\ \sum_{\substack{i \in R \cup \{0_k\}\\i \neq j}} y_{i,j}^k \cdot (t_{i,i} + t_{i,j} + s_{0_i} + s_{D_i}) \leq W & \forall k \in K \\ y_{i,j}^k \in \{0,1\} & \forall i \in R \cup \{0_k\}; j \in R \cup \{n+1\}; i \neq j; k \in K \\ W \in \mathbb{R}_1^h & \forall k \in K \end{split}$$

Outline

- Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems
- Twin Cranes Policies Results

CCSP

Solution Approach Master Problem Subproblem

Comp. Study

Subproblem: Conflict-Free Crane Scheduling

Outline

- Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems
- Twin Cranes Policies Results

CCSP

- Solution Approach Master Problem Subproblem
- Comp. Study

• Crane interferences are resolved in the subproblem.

- For a given dispatch and route, the subproblem determines a conflict-free crane schedule with minimum makespan \hat{W} .
- Briskorn / Angeloudis (2016) provide a polynomial algorithm that reduces the conflict-free crane schedule problem to a shortest path problem in specially designed acyclic arc-weighted directed graph.

Outline

- Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems
- Twin Cranes Policies Results

CCSP

- Solution Approach Master Problem Subproblem
- Comp. Study

- Crane interferences are resolved in the subproblem.
- For a given dispatch and route, the subproblem determines a conflict-free crane schedule with minimum makespan \hat{W} .
- Briskorn / Angeloudis (2016) provide a polynomial algorithm that reduces the conflict-free crane schedule problem to a shortest path problem in specially designed acyclic arc-weighted directed graph.

Outline

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems

Twin Cranes Policies Results

CCSP

Solution Approach Master Problem Subproblem

Comp. Study

- Crane interferences are resolved in the subproblem.
- For a given dispatch and route, the subproblem determines a conflict-free crane schedule with minimum makespan \hat{W} .
- Briskorn / Angeloudis (2016) provide a polynomial algorithm that reduces the conflict-free crane schedule problem to a shortest path problem in specially designed acyclic arc-weighted directed graph.

Outline

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems

Twin Cranes Policies Results

CCSP

Solution Approach Master Problem Subproblem

Comp. Study

- Crane interferences are resolved in the subproblem.
- For a given dispatch and route, the subproblem determines a conflict-free crane schedule with minimum makespan \hat{W} .
- Briskorn / Angeloudis (2016) provide a polynomial algorithm that reduces the conflict-free crane schedule problem to a shortest path problem in specially designed acyclic arc-weighted directed graph.

Logic-Based Benders Constraints

$$\hat{W}^h(1-\sum_{k\in K}\sum_{(i,j)\in J_k^h}(1-y_{i,j}^k))\leq W \qquad \quad \forall h\in H$$

Outline

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems

Twin Cranes Policies Results

CCSP

Solution Approach Master Problem Subproblem

Computational Study

Computational Study

Outline

Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems

Twin Cranes Policies Results

CCSP

Solution Approach Master Problem Subproblem

System Specifications, Data Set, Implementation

- System specifications: Intel Pentium Core 2 Duo, 2.2 GHz PC, 4GB system memory
- Mathematical model: CPLEX 12.5 Concert Technology
- Data set: Instance Generator by Briskorn / Jaehn / Wiehl 2019

Computational Study (1 Hour)

	_			# Rec	quests = 15					# Rec	uests = 20		
Outline	_	Туре	LB	Obj. Val.	CPU (in sec)	#SEC	#LBC	Туре	LB	Obj. Val.	CPU (in sec)	#SEC	#LBC
Problem Setting		6/6/3	258.00 240.50	261.00 243.00	14.09 28.60	70 146	6 56	10/9/1	414.00 348.00	415.00 349.00	3600(0.24%) 300.45	5008 1042	6543 1230
Froblem Setting		5/7/3 4/8/3	240.50	243.00	28.60	146	50 41	9/7/4 13/6/1	348.00	379.00	3600(0.53%)	4456	5944
Terminal Layouts		4/0/3 7/5/3	236.50	237.00	3.00	70	*1	5/10/5	345.50	346.00	3600(0.14%)	242	31
Container Flow		7/5/3	262.50	264.00	22.42	448	112	7/10/13	349.50	350.00	142.64	84	3
Yard Layouts		7/6/2	298.50	300.00	9.26	72	29	5/11/4	337.50	338.00	431.81	142	24
		4/7/4	254.50	258.00	9.52	170	29	9/8/3	354.50	355.00	5.98	110	19
Yard Crane Systems	3	3/8/4	257.00	257.00	2.98	164	31	8/8/4	384.00	387.00	3600(0.78%)	5622	4236
		B/4/3	231.50	234.00	14.39	382	311	9/8/3	321.00	323.00	3600(0.62%)	2298	5104
Twin Cranes	4	4/8/3	263.00	263.00	6.00	156	31	6/10/4	315.50	317.00	393.15	712	1378
Policies													
		6/7/2	215.50	217.00	2.33	58	24	9/8/3	315.50	316.00	30.03	138	22
Results		6/6/3	246.00	247.00	68.79	434	383	8/8/4	298.50	299.00	265.28	352	45
CCSP		9/4/2	286.00	287.00	471.50	882	2594	10/8/2	355.50	356.00	113.28	186	50
LCOP		6/5/4	241.00	241.00	1.41	44	6	8/9/3	328.00	328.00	2.45	158	30
Solution Approach		6/5/4	235.50	237.00	3.93	182	46	9/10/1	379.50	380.00	327.38	200	21
Master Problem		5/7/3	248.00	249.00	0.42	34	4	9/10/1	378.00	379.00	3600(0.26%)	2030	9179
		6/5/4	235.50 260.00	237.00 260.00	1.32 3.37	148 236	20 62	10/4/6	322.00 355.00	325.00 355.00	3600(0.92%) 8.49	3780 106	5098 22
Subproblem		6/6/3	282.00	283.00	297.10	230	214	9/7/4 9/7/4	365.00	366.00	0.27	1738	8635
Comp. Study		6/6/3 7/6/2	282.00 284.50	283.00	297.10	308	214	9/7/4 9/8/3	365.00 298.50	299.00	0.27	1738	8635
	3	3/9/3	279.50	281.00	7.46	48	1	8/10/12	365.50	367.00	3600(0.41%)	3822	2925
		3/9/3	322.50	323.00	489.85	64	5	10/8/2	353.50	355.00	23.01	274	47
	3	3/9/3	241.00	241.00	0.41	30	4	11/6/3	355.50	356.00	9.81	266	100
	6	6/6/3	234.00	236.00	0.96	64	10	7/10/3	366.50	367.00	8.72	372	99
	5	5/8/2	265.50	266.00	3.85	164	20	9/9/2	321.50	322.00	357.71	260	29
		9/4/2	266.00	266.00	5.63	152	42	10/6/4	413.00	413.00	2.32	276	31
		3/8/4	254.50	256.00	67.97	254	89	9/9/2	329.00	329.00	2.63	228	16
		7/8/0	284.00	287.00	7.79	40	2	7/10/3	373.00	373.00	0.96	72	5
		7/4/4	300.50	302.00	19.67	188	61	8/7/5	381.00	382.00	3600(0.26%)	3186	3611
	5	5/7/3	247.50	248.00	1.14	34	1	4/10/6	373.50	374.00	914.51	510	106
		Avg.	260.05	261.23	54.45	175.20	141.50		352.47	353.33	1191.55	1259.00	1820.13

Computational Study (10 Seconds)

			# Requ	ests = 30			# Requests = 40						
utline	Туре	LB	Obj. Val.	Gap (in %)	#SEC	#LBC	Туре	LB	Obj. Val.	Gap (in %)	#SEC	#LBC	
	12/14/4	610.00	618.00	1.29	110	13	20/13/7	695.00	702.00	1.00	200	27	
oblem Setting	10/16/4	531.50	538.00	1.21	98	14	12/19/9	720.00	732.00	1.64	260	2	
erminal Layouts	9/14/7	483.00	498.00	3.01	150	13	15/17/8	621.00	628.00	1.11	224	2	
ntainer Flow	12/14/4	472.50	480.00	1.56	164	17	20/15/5	702.50	710.00	1.06	216	3	
italier Flow	15/10/5	524.00 500.00	529.00 504.00	0.95 0.79	212 234	22	15/17/8	663.50 703.00	671.00 713.00	1.21 1.40	176 308	3	
d Layouts	17/9/4 12/12/6	505.00	504.00	0.79	234 342	53	14/15/11 15/13/12	699.50	705.00	0.78	244	1	
d Crane Systems	12/12/0 13/14/3	517.50	518.00	0.20	342 286	24	19/14/7	675.50	690.00	2.10	244	3	
	12/11/7	576.00	518.00	1.37	402	24 53	12/21/7	706.50	714.00	1.05	238	2	
in Cranes	18/5/7	495.00	500.00	1.00	568	81	16/15/9	645.00	655.00	1.05	232	2	
icies	10/ 5/ 1	155.00	500.00	1.00	500	01	10/10/0	015.00	055.00	1.55	201	-	
icies	14/14/2	550.00	560.00	1.79	464	59	15/16/9	688.00	702.00	1.99	210	2	
sults	10/12/8	525.50	559.00	1.16	524	84	12/19/9	603.50	611.00	1.23	214	1	
	8/16/6	496.50	498.00	0.30	472	71	16/16/8	695.50	713.00	2.45	238	2	
SP	11/14/5	473.50	484.00	2.17	496	68	11/19/10	664.50	670.00	0.82	112	1	
ution Approach	13/14/3	541.50	542.00	0.09	278	38	18/15/7	672.50	682.00	1.39	236	2	
	11/15/4	493.00	496.00	0.60	404	102	19/15/6	719.00	730.00	1.51	144	1	
aster Problem	12/12/6	540.50	549.00	1.55	488	66	18/14/8	708.00	726.00	2.48	196	1	
bproblem	10/16/4	482.50	483.00	0.10	158	22	15/17/8	624.00	629.00	0.79	192	1	
mp. Study	11/16/3	543.50	547.00	0.64	478	73	19/13/8	675.00	682.00	1.03	216	2	
np. Study	19/8/3	491.50	494.00	0.51	444	33	19/14/7	717.50	726.00	1.17	272	1	
	14/10/6	493.50	501.00	1.50	374	49	20/10/10	683.00	687.00	0.58	188	1	
	14/11/5	517.50	526.00	1.62	398	55	20/14/6	693.50	702.00	1.21	154	2	
	10/14/6	482.00	492.00	2.03	446	32	14/18/8	706.00	719.00	1.81	234	3	
	15/11/4	535.00	540.00	0.93	362	51	15/17/8	639.50	643.00	0.54	172	3	
	11/9/10	547.00	554.00	1.26	188	17	12/18/10	701.50	707.00	0.78	212	1	
	9/14/7	517.50	521.00	0.67	172	20	16/16/8	668.00	671.00	0.45	123	1	
	11/12/7	526.50	533.00	1.22	136	22	16/17/7	577.50	582.00	0.77	238	3	
	15/11/4	482.50	486.00	0.72	126	7	20/12/8	713.00	720.00	0.97	182	1	
	12/16/2	560.50	567.00	1.15 0.99	172	11	16/16/8	709.50	723.00	1.87	238 206	2	
	13/10/7	600.00	606.00	0.99	146	15	14/18/8	673.50	678.00	0.66	206		
	Avg.	520.48	527.10	1.08	309.73	39.80		678.80	687.43	1.25	212.63	23.0	

Computational Study (60 Seconds)

			# Requ	ests = 30			# Requests = 40					
Outline	Туре	LB	Obj. Val.	Gap (in %)	#SEC	#LBC	Type	LB	Obj. Val.	Gap (in %)	#SEC	#LBC
Problem Setting	12/14/4 10/16/4	610.00 531.50	613.00 536.00	0.49 0.84	594 488	99 80	20/13/7 12/19/9	695.00 720.00	701.00 722.00	0.86	676 432	171 39
Ŭ.,	9/14/7	483.00	490.00	1.43	686	107	15/17/8	621.00	628.00	1.11	500	82
Terminal Layouts	12/14/4	472.50	473.00	0.11	304	35	20/15/5	702.50	708.00	0.78	882	290
Container Flow	15/10/5	524.00	528.00	0.76	1842	304	15/17/8	663.50	667.00	0.52	1110	201
Yard Layouts	17/9/4	500.00	500.00	0.00	650	53	14/15/11	703.00	705.00	0.28	972	154
Yard Crane Systems	12/12/6	505.00	506.00	0.20	858	616	15/13/12	699.50	705.00	0.78	482	62
Yard Crane Systems	13/14/3	517.50	518.00	0.10	286	24	19/14/7	675.50	687.00	1.67	378	48
Twin Cranes	12/11/7	576.00 495.00	580.00	0.69 1.00	574 646	83 94	12/21/7	706.50 645.00	713.00 646.00	0.91 0.15	370 894	56 224
	18/5/7	495.00	500.00	1.00	040	94	16/15/9	045.00	040.00	0.15	894	224
Policies	14/14/2	550.00	557.00	1.26	772	137	15/16/9	688.00	689.00	0.15	1022	238
Results	10/12/8	525.50	558.00	0.99	1874	298	12/19/9	603.50	605.00	0.25	684	82
	8/16/6	496.50	497.00	0.10	872	169	16/16/8	695.50	699.00	0.50	464	45
CCSP	11/14/5	473.50	475.00	0.32	1042	313	11/19/10	664.50	670.00	0.82	320	47
Solution Approach	13/14/3	541.50	542.00	0.09	278	38	18/15/7	672.50	682.00	1.39	718	106
	11/15/4	493.00	496.00	0.60	472	132	19/15/6	719.00	726.00	0.96	984	260
Master Problem	12/12/6	540.50	546.00	1.01	844	145	18/14/8	708.00	716.00	1.12	1016	157
Subproblem	10/16/4	482.50	483.00	0.10	158	22	15/17/8	624.00	624.00	0.00	318	46
Comp. Study	11/16/3	543.50	545.00	0.28	1212	235	19/13/8	675.00	682.00	1.03	472	63
comp. Study	19/8/3	491.50	493.00	0.30	1280	213	19/14/7	717.50	726.00	1.17	384	31
	14/10/6	493.50	494.00	0.10	1138	212	20/10/10	683.00	687.00	0.58	566	89
	14/11/5	517.50	519.00	0.29	1474	466	20/14/6	693.50	701.00	1.07	850	180
	10/14/6	482.00	484.00	0.41	1082	81	14/18/8	706.00	714.00	1.21	1096	166
	15/11/4	535.00	538.00	0.56	1220	234	15/17/8	639.50	641.00	0.23	670	140
	11/9/10	547.00	550.00	0.55	770	126	12/18/10	701.50	707.00	0.78	328	28
	9/14/7	517.50	519.00	0.29	442	49	16/16/8	668.00	671.00	0.45	138	17
	11/12/7	526.50	527.00	0.09	292	60	16/17/7	577.50	581.00	0.60	346	47
	15/11/4	482.50	483.00	0.10	190	25	20/12/8	713.00	719.00	0.83	620	70
	12/16/2	560.50	561.00	0.09	796	88	16/16/8	709.50	717.00	1.05	1136	174
	13/10/7	600.00	604.00	0.66	1244	288	14/18/8	673.50	678.00	0.66	986	155
	Avg.	520.48	523.83	0.46	812.67	160.87		678.80	683.90	0.74	660.47	115.60

Computational Study

Outline

- Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems
- Twin Cranes Policies Results

CCSP

Solution Approach Master Problem Subproblem

Comparison with Simulated Annealing

- Simulated Annealing (SA) by Vis / Roodbergen 2010
- SA: The basic idea is to randomly assign requests to either crane and to solve for each crane a single-cane routing problem to optimality by a solution approach presented by Vis / Roodbergen 2010.
- We implemented two variants of the SA (SA1 and SA2).

Computational Study (60 Seconds, Simulated Annealing)

				# Reque	ests = 20				# Requ	ests = 30	
Outline	т	ype	LB	Obj. Val. BD	Obj. Val. SA1	Obj. Val. SA2	Туре	LB	Obj. Val. BD	Obj. Val. SA1	Obj. Val. SA2
Problem Setting			384.50 358.00	387.00 (0.65%) 358.00 (0.00%)	388.00 (0.90%) 362.00 (1.10%)	388.00 (0.90%) 363.00 (1.38%)	15/15 19/11	574.00 604.50	576.00 (0.35%) 605.00 (0.08%)	578.00 (0.69%) 606.00 (0.25%)	579.00 (0.86%) 607.00 (0.41%)
Terminal Layouts			405.00	405.00 (0.00%)	405.00 (0.00%)	406.00 (0.25%)	13/17	506.00	509.00 (0.59%)	513.00 (1.36%)	510.00 (0.78%)
Container Flow			353.50 353.00	354.00 (0.14%) 356.00 (0.84%)	357.00 (0.98%) 358.00 (1.40%)	356.00 (0.70%) 360.00 (1.94%)	15/15 15/15	503.00 511.00	503.00 (0.00%) 515.00 (0.00%)	507.00 (0.79%) 517.00 (1.16%)	508.00 (0.98%) 517.00 (1.16%)
Yard Layouts	10	0/10	452.00	452.00 (0.00%)	452.00 (0.00%)	452.00 (0.00%)	17/13	498.00	498.00 (0.00%)	501.00 (0.60%)	504.00 (1.19%)
Yard Crane Systems			356.00 362.50	356.00 (0.00%) 363.00 (0.14%)	360.00 (1.11%) 364.00 (0.41%)	357.00 (0.28%) 363.00 (0.14%)	18/12 13/17	551.00 513.00	551.00 (0.00%) 518.00 (0.97%)	555.00 (0.72%) 518.00 (0.97%)	554.00 (0.54%) 519.00 (1.16%)
Twin Cranes			368.00 360.50	372.00 (1.08%) 362.00 (0.41%)	374.00 (1.60%) 364.00 (0.96%)	372.00 (1.08%) 363.00 (0.69%)	15/15 15/15	543.50 483.00	544.00 (0.09%) 483.00 (0.00%)	551.00 (1.36%) 488.00 (1.02%)	546.00 (0.46%) 487.00 (0.82%)
Policies	c	9/11	299.00	299.00 (0.00%)	302.00 (0.99%)	303.00 (1.32%)	15/15	583.00	587.00 (0.68%)	589.00 (1.02%)	587.00 (0.68%)
Results	8	B/12	313.50	318.00 (1.42%)	320.00 (2.03%)	318.00 (1.42%)	16/14	525.00	529.00 (0.76%)	530.00 (0.94%)	532.00 (1.32%)
CSP			364.00 352.00	365.00 (0.27%) 353.00 (0.28%)	367.00 (0.82%) 356.00 (1.12%)	366.00 (0.55%) 356.00 (1.12%)	16/14 15/15	560.50 463.00	568.00 (1.32%) 467.00 (0.86%)	569.00 (1.49%) 469.00 (1.28%)	569.00 (1.49%) 469.00 (1.28%)
Solution Approach			366.50 397.50	368.00 (0.41%) 398.00 (0.13%)	368.00 (0.41%) 399.00 (0.38%)	370.00 (0.95%) 399.00 (0.38%)	13/17 15/15	556.50 567.00	564.00 (1.33%) 569.00 (0.35%)	561.00 (0.80%) 571.00 (0.70%)	562.00 (0.98%) 569.00 (0.35%)
Master Problem			360.00	361.00 (0.28%)	361.00 (0.28%)	361.00 (0.28%)	13/17	549.00	553.00 (0.72%)	556.00 (1.26%)	555.00 (1.08%)
Subproblem			382.50 382.00	383.00 (0.13%) 384.00 (0.52%)	384.00 (0.39%) 386.00 (1.04%)	386.00 (0.91%) 386.00 (1.04%)	15/15 17/13	562.00 584.50	562.00 (0.00%) 585.00 (0.09%)	564.00 (0.35%) 588.00 (0.60%)	565.00 (0.53%) 587.00 (0.43%)
Comp. Study			353.00	354.00 (0.28%)	355.00 (0.56%)	354.00 (0.28%)	12/18	573.00	573.00 (0.00%)	573.00 (0.00%)	574.00 (0.43%)
		0/10	331.00	331.00 (0.00%)	337.00 (1.78%)	334.00 (0.90%)	17/13	502.50	503.00 (0.10%)	510.00 (1.47%)	509.00 (1.28%)
			396.50	401.00 (1.12%)	404.00 (1.86%)	402.00 (1.37%)	15/15	534.00	537.00 (0.56%)	540.00 (1.11%)	540.00 (1.11%)
			375.00	375.00 (0.00%)	378.00 (0.79%)	376.00 (0.27%)	13/17	504.50	507.00 (0.49%)	507.00 (0.49%)	511.00 (1.27%)
			367.00 320.00	371.00 (1.08%) 320.00 (0.00%)	372.00 (1.34%) 322.00 (0.62%)	372.00 (1.34%) 322.00 (0.62%)	15/15 13/17	491.50 570.50	492.00 (0.10%) 576.00 (0.95%)	495.00 (0.71%) 575.00 (0.78%)	494.00 (0.51%) 577.00 (1.13%)
			367.50	368.00 (0.14%)	368.00 (0.14%)	368.00 (0.14%)	17/13	611.00	612.00 (0.16%)	613.00 (0.33%)	611.00 (0.00%)
			363.00	365.00 (0.55%)	367.00 (1.09%)	367.00 (1.09%)	14/16	550.00	553.00 (0.54%)	556.00 (1.08%)	556.00 (1.08%)
			382.50	384.00 (0.39%)	386.00 (0.91%)	388.00 (1.42%)	11/19	483.00	483.00 (0.00%)	483.00 (0.00%)	484.00 (0.21%)
	g	9/11	369.00	371.00 (0.54%)	372.00 (0.81%)	371.00 (0.54%)	19/11	548.00	553.00 (0.90%)	553.00 (0.90%)	553.00 (0.90%)
	1	11/9	377.00	377.00 (0.00%)	380.00 (0.79%)	380.00 (0.79%)	17/13	539.00	540.00 (0.19%)	543.00 (0.74%)	541.00 (0.37%)
		Avg.	365.72	367.03 (0.36%)	368.93 (0.89%)	368.63 (0.80%)		538.15	540.50 (0.43%)	542.63 (0.83%)	542.53 (0.82%)

Outline

- Problem Setting Terminal Layouts Container Flow Yard Layouts Yard Crane Systems
- Twin Cranes Policies Results

CCSP

Solution Approach Master Problem Subproblem

Conflict-Free Crane Scheduling in a Seaport Terminal

Erwin Pesch

University of Siegen, Department of Management Information Science, Germany

Scheduling Seminar, 24. May 2023

