
On the Parameterized Tractability of
Machine Scheduling Problems

Dvir Shabtay

Department of Industrial Engineering and Management

Ben Gurion University of the Negev, Israel

schedulingseminar. com

schedulingseminar. com

Parameterized Complexity

 The theory of parameterized complexity is a branch of

the theory of computational complexity developed by

the computer science community at the end of the 90’s.

 It deals with the tractability of NP-hard problems with

respect to their natural parameters.

 i.e., it deals with the question whether an NP-hard problem becomes

tractable when a subset of its parameters is of a limited size.

Motivation in Scheduling

 Consider for example the classical problem.

 Instance:

 n - # of jobs to be scheduled;

 pj – the processing time of job Jj (j=1,…,n);

 dj – the due date of job Jj (j=1,…,n).

 Objective:

 Determine a schedule (job processing permutation) that

minimizes where =max{0,Cj-dj}, and Cj is the completion

time of job Jj .

Motivation in Scheduling

 This problem is NP-hard in general (Du and Leung

(1990)).

However

 In many real-life instances, the value of at least one of

the following parameters is bounded:

 The number of different processing times, p.

 The number of different due-dates, d.

Motivation in Scheduling
 The value of the first parameter, p, is bounded

when only a limited number of different products is

produced in the shop.

 The value of the second parameter, d , is bounded

when shipment cost is high, and therefore only few

different due dates are assigned to the jobs.

Motivation in Scheduling

 Although the problem is NP-hard in general, it is well-

known to be solvable in polynomial time when:

 All processing times are equal (p=1);

 All due dates are equal (d=1).

 A natural question:

 Is the problem solvable in polynomial time when

the value ofp (ord) is upper bounded by a constant?

Motivation in Scheduling

 The answer is…

YES

 We can design a quite simple O(nk) time algorithm

(k{p,d}) to solve the problem (using DP).

 The main question in parameterized complexity:

Can we make the exponent of n independent of k ?

– e.g., 2O(k) n3 , or more generally f(k) nO(1) ?

Fixed Parameterized Complexity

– The difference between
“good” 2k nand “bad” nk :

– graph plot for k =2.

A new battle between “good” and “bad” algorithms.

“Classical”

“Parameterized”

)1(On 2
)1(On

)k(fn)1(On) k(f

“Good” “Bad”

n22
2n

n =

Parameterized Complexity

 Definition 1: Problem belongs to the fixed-

parameter tractable (FPT) set, wrt. parameter k, if

there exists an algorithm that solves any instance of

 in f(k)nO(1) time, for some computable f function

that solely depends on k.

 Definition 2: Problem belongs to the XP set, wrt.

parameter k, if there exists an algorithm that solves

any instance of in nf(k) time.

Parameterized Complexity

 FPTXP.

Hardness Proofs

Given problem and a parameter k:

 If is NP-hard for a constant value of k, then

(unless P=NP) it cannot be solved in XP time wrt. k.

Parameterized Complexity

 Definition 3: A decision problem is W[i]-hard

wrt. parameter k if being FPT with respect to k

leads to that all problems in W[i] are FPT as well

(which is believed to be very unlikely).

Parameterized Complexity

 To prove that a problem is W[i]-hard we can provide

a parametrized reduction from a known W[i]-hard

problem.

 An example for a problem that is known to be W[1]-

hard:

k-sum problem: Given a set A={a1,…,an} of integers. Is

there a subset of exactly k elements of A that adds up

to a specific target.

History
Parametrized Complexity

 Late 80’s: The development of FPT theory by Rodney

Downey and Michael Fellows .

Downey, R., and Fellows, M., 1999, Parameterized Complexity.

Springer, Berlin.

History
Parametrized Complexity

 Ever Since: It is a well-established area with hundreds

of articles published every year in the most prestigious

TCS journals and conferences.

 The area of scheduling was almost neglected up to 2015.

History
Parametrized Complexity and Scheduling

Papers I found (up to 2015):

 Bodlaender, HL., & Fellows, MR., 1995, W[2]-hardness of

precedence constrained k-processor scheduling.

Operations Research Letters, 18(2),93–97.

 Fellows MR, & McCartin C., 2003, On the parametric

complexity of schedules to minimize tardy tasks.

Theoretical Computer Science, 298(2), 317–324 .

History
Parametrized Complexity and Scheduling

Since 2015 many papers with 2 main groups:

Group 1: Matthias Mnich, René van Bevern, Rolf

Niedermeier, Mathias Weller, Andreas Wiese and

Ondra Suchý

History
Group 1 – Selected Papers

 Mnich, M., & Wiese, A., 2015, Scheduling meets fixed-

parameter tractability. Mathematical Programming,

154(1), 533–562.

 van Bevern, R., Mnich, M., Niedermeier, R., & Weller, M.,

2015, Interval scheduling and colorful independent sets.

Journal of Scheduling, 18(5), 449–469.

History
Group 1 – Selected Papers

 van Bevern, R., Niedermeier, R., & Suchý, O., 2017, A

parameterized complexity view on non-preemptively

scheduling interval-constrained jobs: few machines, small

looseness, and small slack. Journal of Scheduling, 20(3),

255–265.

 Mnich, M., & van Bevern, R., 2018, Parameterized

complexity of machine scheduling: 15 open problems.

Computers and Operations Research, 100, 254-261.

History
Group 2

Group 2: Danny Hermilen, Dvir Shabtay, Mike Pinedo, Gerhard J.

Woeginger, Nimrod Talmon, Liron Yedidsion, Shlomo Karhi,

George Manoussakis.

 Hermelin, D., Kubitza, J., Shabtay, D., Talmon, N., & Woeginger, G.,

2019, Scheduling two agents on a single machine: A

parameterized analysis of NP-hard problems, Omega, 83, 275-

286.

 Hermelin, D., Pinedo, M., Shabtay, D., Talmon, N., & Woeginger, G.,

2019, On the parameterized tractability of single machine

scheduling with rejection , European Journal of Operational

Research, 273(1), 67-73.

 Hermelin, D., Karhi, S., Pinedo, M., & Shabtay, D., 2021, New

algorithms for minimizing the total weighted number of

tardy jobs on a single machine, Annals of Operations

Research, 298 (1), 271-287.

History
Group 2 – Selected Papers

 Hermelin, D., Shabtay, D., and Talmon, N., 2019, On the

parameterized tractability of the just-in-time scheduling

problem, Journal of Scheduling, 22(6), 663-676.

 Hermelin, D., George Manoussakis, Pinedo, M., Shabtay, D., &

Yedidsion, L., 2020, Parameterized multi-scenario single-

machine scheduling problems, Algoritmica, 82 (9), 2644-

2667.

History
Group 2 – Selected Papers

 Knop, D., & Koutecký, M., 2018, Scheduling meets n-fold integer

programming, Journal of Scheduling, 21(5), 493-503.

 Bessy , S., & Giroudeau, R., 2019, Parameterized complexity of a coupled-

task scheduling problem, Journal of Scheduling, 22, 305–313.

 Bodlaender, H.L., and van der Wegen, M., 2020, Parameterized complexity

of scheduling chains of jobs with delays , arXiv preprint arXiv:2007.09023 .

History
Among the Other Papers

Problem 1*

 Consider the classical problem.

 Instance:

 n - # of jobs to be scheduled;

 pj – the processing time of job Jj (j=1,…,n);

 dj – the due date of job Jj (j=1,…,n).

 wj – the weight of job Jj (j=1,…,n) - (a penalty for the

job being tardy).

* Annals of Operations Research, 298 (1), 271-287.

Problem Definition

 A solution (schedule) is simply a job processing

permutation, π, on the single machine.

 The objective is to determine a solution that

minimizes the weighted number of tardy jobs,

where =1 if job Jj is completed after its

due date, and =0, otherwise.

An importance problem?

 The problem is a fundamental problem in

the field of combinatorial optimization in general,

and particularly in scheduling theory.

 It is one out of the problems that appears in the

seminal work by Karp [1972] about reducibility

between combinatorial problems.

An importance problem?

 It is one out of a set of three problems in which the

concept of FPTAS has been originally presented

(Sahni [1976]).

 The problem is an extension of the well known 0-1

knapsack problem.

Known Results

 The problem is

 NP-hard even if all due dates are equal (Karp (1972));

 Solvable in pseudo-polynomial time (Lawler and

Moore (1969) and Sahni (1976));

 Solvable in O(nlogn) time when all weights are equal

(Moore (1968));

 Solvable in O(nlogn) time when all processing times

are equal (Peha (1995)).

Research Goals

 We analyze the tractability of the problem

with respect to the following three parameters:

 vd - the number of different due dates.

 vp - the number of different processing times.

 vw - the number of different weights.

Are those “natural” parameters?

 In many practical instances at least one of those

parameters is indeed of a limited size.

 vd when delivery costs are high and thus products are

batched to only few shipments;

 vp when the number of job types that the manufacturer

produces is limited; and

 vw when customers are batched into few subsets according to

their importance.

Our Results for the the problem

 The hardness results is straightforward from Karp’s NP-hardness proof for the

common due date case.

 The XP algorithms are based on extensions of the well-known Moore’s algorithm that

solves the unit weight case.

 The FPT algorithms are based on MILP formulation with O(k) integer variables.

Remains Open:

 Is the problem FPT w.r.t vw and vp?

(vp,vw) (vd,vw)

(vd,vp)

vp vw vd Parameter

FPT FPT FPT XP XP Hard Result

An FPT with respect to (vp,vw)
 Sketch of how we obtain the result:

 We formulate the problem as an ILP

with (too many…) O(k+n) integer variables (k=

vpvw). Let F be the corresponding formulation.

 We relax F to a MILP formulation, F’, that has

only k integer variables; and then

 Use Lenstra’s algorithm from 1983 to solve F’ in

FPT time.

An FPT with respect to (vp,vw)
 Continue: Sketch of how we obtain the result:

 If the optimal solution for F’ (obtained by solving

the MILP) is an integer solution, it is also optimal

to F and we are done.

 Otherwise, we provide a polynomial time rounding

procedure to obtain an alternative optimal integer

solution for F’, which is also optimal for F.

An FPT with respect to (vp,vw)

 We begin by partitioning the set of jobs into k

classes, S1,...,Sk, such that all jobs in Si have the

same processing time pi, and weight wi (i=1,…,k).

 Let ni = |Si| denote the number of jobs in each Si.

An FPT with respect to k = (vp,vw)

 The following lemma is used to formulate F:

Lemma 1: There exists an optimal solution for

the problem, where the non-tardy jobs

are scheduled first in an EDD order, followed by

the tardy jobs in an arbitrary order.

An FPT with respect to (vp,vw)

 Let d1, . . . , dv_d be the set of different due dates in

our input job set J, and assume without loss of

generality that d1<d2<...<dv_d.

 Moreover, let δij be the number of jobs in Si having a

due date of dj, for i = 1,...,k and j =1, . . . , vd.

The Formulation of F

 Decision variables:

 yi be an integer variable representing the number of

tardy jobs in job set Si, for each i=1,...,k.

 xij be an integer variable representing the number of

early jobs in Si that have a due date of dj.

The Formulation of F

Min Z=

s.t

xij, yi=int

 F has O(n+k) integer variables (too many).

 ,

௩

ୀଵ

ୀଵ

ୀଵ
 ௗ

The construction of F’

MILP relaxation:

 We construct formulation F’ out of F by relaxing

the xij variables, such that we only require that

they have to be non-negative.

 F’ is an MILP formulation with only k integer

variables. Therefore, according to Lenstra

[1983], it is solvable in FPT time.

Using the solution of F’ to solve F

 Let S*=(x*, y*), where i=1,…,k and j=1,…,vd

and i=1,…,k be the solution obtained by

solving for F’ and let .

 Note that is an integer value for i =1,...,k due to

the constraint that

and the fact that both ni and yi are integer values.

 ,

௩

ୀଵ

Using the solution of F’ to solve F

 If S* is a feasible solution for F (i.e., all values

are integer), then S* is feasible (and therefore

also optimal) solution for F.

 Otherwise, we use a simple rounding procedure

to obtain an alternative optimal solution for F’.

Rounding Procedure

 The rounding procedure is based on exploiting

the following lemma:

 Lemma 2: If xi is the optimal number of early

jobs in Si then there exists an optimal solution in

which the xi jobs with the latest due date in Si

are early.

Rounding Procedure

For each i=1,...,k, let ri be the integer satisfying

and define

Result

Theorem: is an optimal integer solution

for F’. Therefore, it is an optimal solution for F.

An XP algorithm with respect νw

 Following Lemma 1, we renumber the jobs

according to the EDD rule, such that

d1 d2≤...≤dn.

 We say that a job is of type i if its weight is wi

(i=1,..,νw).

 Let S1 and S2 be two partial schedules on job set

{J1,…,Jj}, both with ei early jobs of type i

(i=1,..,νw).

An XP algorithm with respect νw

 Moreover, let P(Si) be the total processing time of

the ೢ early jobs in partial schedule Si for

i=1,2.

 Lemma 3: If P(S1)≤P(S2) then S2 is dominated by

S1.

An XP algorithm with respect νw

 Based on Lemma 3, we developed a DP

algorithm that construct the set of non

dominated partial schedules. To do so,

define:

ೢ

as the minimum total processing time

of the early jobs among all partial schedules on

job set {J1,…,Jj} with ei early jobs of type i

(i=1,..,).

ೢ

be the corresponding early sets.

An XP algorithm with respect

 Each of the early sets,
ೢ

, is

maintained during the DP as a list ordered

according to the LPT rule.

 Note that the job in
ೢ

with the

largest processing time in the set is at the

head of the list.

An XP algorithm with respect

 Consider now the case where job Jj is of type i. We

can reach state
ೢ

at stage j from either one

of the following states in stage j-1:

 State ଵ ௩ೢ
by setting

 ଵ ௩ೢ
= ,ିଵ ଵ ௪# and then excluding

the job at the head of ଵ ௩ೢ
from the list.

 State ଵ ିଵ ାଵ ௩ೢ
by setting

 ଵ ௩ೢ
= ,ିଵ ଵ ାଵ ௩ೢ This is

feasible only if ଵ ାଵ ௩ೢ .

An XP algorithm with respect

 Accordingly, the following recursive relation holds:

 If ଵ ାଵ ௩ೢ

 ଵ ௩ೢ ିଵ ଵ ௩ೢ

 ,ିଵ

ଵ ௩ೢ

 If ଵ ାଵ ௩ೢ

 ଵ ௩ೢ

ିଵ ଵ ାଵ ௩ೢ

ିଵ ଵ ௩ೢ ,ିଵ

ଵ ௩ೢ

An XP algorithm with respect

 Initial Condition:

ೢ
ೢ

#

ೢ

problem is solvable in

ೢ

Problem 2**
 We study the problem.

 In a flow shop systems, all jobs follow the same route trough

the machines.

 Instance: the number of machines (m); the number of jobs (n);

and for each job Jj, we are also given:

 Its processing time on each one of the machines, pij;

 Its due date, dj;

 Its weight, wj (a gain for being completed in a JIT mode).

 Problem: Find a schedule that m , where if

job Jj is completed exactly at its due date, and =0, otherwise.

** Journal of Scheduling, 22 (6), 663-676.

Known Results
 Known Results: The problem is

 Strongly NP-hard when m=3 (Choi and Yoon [2007].

 Ordinary NP-hard when m=2 (Choi and Yoon [2007] and Shabtay

and Bensoussan [2012]);

 Solvable in O(n3) time when m=2 and all weights are equal

(Shabtay [2012]).

 Objective: To analyze the parameterized tractability of the

 problem with respect to d, which is the number of

different due dates.

Problem 2 - Table of Results

* even if all processing time on the second machine are of unit

length.

Methods:

 The W[1]-hardness results have been obtained by a parametrized

reduction from the k-sum problem.

 The XP and FPT algorithms are specially designed algorithms.

3 2

W[1]-hard*, XP W[1]-hard*, XP d
W[1]-hard* FPT)w,d(
W[1]-hard* FPT)#

1p,d(

Problem 3***

 There are two agents each of which has its own set

of jobs.

 All jobs are available at time zero and are to be

processed on a single machine.

 Let and

be the two set of jobs.

*** Omega, 83, 275-286.

Problem Definition

 Input:

 – the processing time of job .

 Ai – a given bound on the objective value of agent i.

When relevant also:

()– the due date of job

().

() – the weight of job

().

Problem Definition
 Given a schedule of the n+k jobs on the single machine, let

be the completion time of job .

 We measure the quality of a solution by two criteria, one

for each agent.

 We focus on the following criteria:

Problem Definition
 The weighted sum of completion times, denoted by .

 The weighted number of tardy jobs, denoted by ,

where if and , otherwise.

 The weighted number of JIT jobs, denoted by , where

if and , otherwise.

Problem Definition
 For each possible combination of the three criteria to the two

agents, we consider the following problem:

 Given two bounds A1 and A2, one for each agent, find if there

exists a job schedule that meets both bounds.

 We refer to the problem by , where

for i=1,2.

Problem Definition

 The set of problems we define is well-studied in the

literature and all relevant problems are NP-hard.

 We study the parametrized tractability of these set

of problems w.r.t k (the number of jobs belong to

the second agent).

-

Summary of Results – Problem 3
-

Special Thanks to My Academic
Mentors/Advisors

Any questions?

