schedulingseminar. com

On the Parameterized Tractability of Machine Scheduling Problems

Dvir Shabtay Department of Industrial Engineering and Management Ben Gurion University of the Negev, Israel

schedulingseminar. com

 The theory of parameterized complexity is a branch of the theory of computational complexity developed by the computer science community at the end of the 90's.

- It deals with the tractability of NP-hard problems with respect to their natural parameters.
 - i.e., it deals with the question whether an NP-hard problem becomes tractable when a subset of its parameters is of a limited size.

Motivation in Scheduling

- Consider for example the classical 1| $|\Sigma T_j|$ problem.
 - Instance:
 - *n* # of jobs to be scheduled;
 - p_j the processing time of job J_j (j=1,...,n);
 - d_j the due date of job J_j (j=1,...,n).
 - Objective:
 - Determine a schedule (job processing permutation) that minimizes $\sum T_j$, where $T_j = \max\{0, C_j - d_j\}$, and C_j is the completion time of job J_j .

Motivation in Scheduling

• This problem is NP-hard in general (Du and Leung (1990)).

However

- In many real-life instances, the value of at least one of the following parameters is bounded:
 - The number of different processing times, v_p .
 - The number of different due-dates, v_d .

• The value of the first parameter, v_p , is bounded when only a limited number of different products is produced in the shop.

 The value of the second parameter, v_d, is bounded when shipment cost is high, and therefore only few different due dates are assigned to the jobs.

Motivation in Scheduling

- Although the problem is NP-hard in general, it is wellknown to be solvable in polynomial time when:
 - All processing times are equal $(v_p=1)$;
 - All due dates are equal (v_d =1).

- A natural question:
 - Is the 1| $|\sum T_j$ problem solvable in polynomial time when the value of v_p (or v_d) is upper bounded by a constant?

Motivation in Scheduling

• The answer is...

YES

• We can design a quite simple $O(n^k)$ time algorithm $(k \in \{v_p, v_d\})$ to solve the $1 \mid |\Sigma^{T_j}|$ problem (using DP).

The main question in parameterized complexity:
 Can we make the exponent of n independent of k?

- e.g., $2^{O(k)} n^3$, or more generally $f(k) n^{O(1)}$?

Fixed Parameterized Complexity

A new battle between "good" and "bad" algorithms.

<u>Definition 1</u>: Problem π belongs to the fixed-parameter tractable (FPT) set, *wrt*. parameter *k*, if there exists an algorithm that solves any instance of π in *f*(*k*)*n*^{O(1)} time, for some computable *f* function that solely depends on *k*.

<u>Definition 2</u>: Problem π belongs to the *XP* set, *wrt*.
 parameter k, if there exists an algorithm that solves any instance of π in n^{f(k)} time.

• $FPT \subseteq XP$.

Hardness Proofs

Given problem π and a parameter *k*:

If π is NP-hard for a constant value of k, then
 (unless P=NP) it cannot be solved in XP time wrt. k.

Definition 3: A decision problem π is W[i]-hard wrt. parameter k if π being FPT with respect to k leads to that all problems in W[i] are FPT as well (which is believed to be very unlikely).

- To prove that a problem is W[i]-hard we can provide a parametrized reduction from a known W[i]-hard problem.
- An example for a problem that is known to be W[1]hard:

<u>k-sum problem</u>: Given a set $\mathbf{A} = \{a_1, \dots, a_n\}$ of integers. Is there a subset of <u>exactly *k*</u> elements of **A** that adds up to a specific target.

History Parametrized Complexity

Late 80's: The development of FPT theory by Rodney Downey and Michael Fellows .

Downey, R., and Fellows, M., 1999, *Parameterized Complexity*. Springer, Berlin.

History

 Ever Since: It is a well-established area with hundreds of articles published every year in the most prestigious TCS journals and conferences.

• The area of scheduling was almost neglected up to 2015.

Parametrized Complexity and Scheduling

History

Papers I found (up to 2015):

 Bodlaender, HL., & Fellows, MR., 1995, W[2]-hardness of precedence constrained *k*-processor scheduling.
 Operations Research Letters, 18(2),93–97.

Fellows MR, & McCartin C., 2003, On the parametric complexity of schedules to minimize tardy tasks.
 Theoretical Computer Science, 298(2), 317-324.

Parametrized Complexity and Scheduling

History

Since 2015 many papers with 2 main groups:

Group 1: Matthias Mnich, René van Bevern, Rolf

Niedermeier, Mathias Weller, Andreas Wiese and Ondra Suchý

Group 1 – Selected Papers

History

- Mnich, M., & Wiese, A., 2015, Scheduling meets fixedparameter tractability. *Mathematical Programming*, 154(1), 533-562.
- van Bevern, R., Mnich, M., Niedermeier, R., & Weller, M., 2015, Interval scheduling and colorful independent sets.
 Journal of Scheduling, 18(5), 449–469.

Group 1 – Selected Papers

History

van Bevern, R., Niedermeier, R., & Suchý, O., 2017, A parameterized complexity view on non-preemptively scheduling interval-constrained jobs: few machines, small looseness, and small slack. *Journal of Scheduling*, 20(3), 255–265.

Mnich, M., & van Bevern, R., 2018, Parameterized
 complexity of machine scheduling: 15 open problems.
 Computers and Operations Research, 100, 254-261.

Group 2: Danny Hermilen, Dvir Shabtay, Mike Pinedo, Gerhard J. Woeginger, Nimrod Talmon, Liron Yedidsion, Shlomo Karhi, George Manoussakis.

Group 2 – Selected Papers

History

- Hermelin, D., Kubitza, J., Shabtay, D., Talmon, N., & Woeginger, G., 2019, Scheduling two agents on a single machine: A parameterized analysis of NP-hard problems, *Omega*, 83, 275-286.
- Hermelin, D., Pinedo, M., Shabtay, D., Talmon, N., & Woeginger, G., 2019, On the parameterized tractability of single machine scheduling with rejection, *European Journal of Operational Research*, 273(1), 67-73.
- Hermelin, D., Karhi, S., Pinedo, M., & Shabtay, D., 2021, New algorithms for minimizing the total weighted number of tardy jobs on a single machine, *Annals of Operations Research*, 298 (1), 271-287.

Group 2 – Selected Papers

 Hermelin, D., Shabtay, D., and Talmon, N., 2019, On the parameterized tractability of the just-in-time scheduling problem, *Journal of Scheduling*, 22(6), 663-676.

 Hermelin, D., George Manoussakis, Pinedo, M., Shabtay, D., & Yedidsion, L., 2020, Parameterized multi-scenario singlemachine scheduling problems, *Algoritmica*, 82 (9), 2644-2667.

History Among the Other Papers

 Knop, D., & Koutecký, M., 2018, Scheduling meets n-fold integer programming, Journal of Scheduling, 21(5), 493-503.

- Bessy, S., & Giroudeau, R., 2019, Parameterized complexity of a coupledtask scheduling problem, Journal of Scheduling, 22, 305–313.
- Bodlaender, H.L., and van der Wegen, M., 2020, Parameterized complexity of scheduling chains of jobs with delays, arXiv preprint arXiv:2007.09023.

Problem 1*

• Consider the classical $1 | \sum w_j U_j$ problem.

Instance:

- *n* # of jobs to be scheduled;
- p_j the processing time of job J_j (j=1,...,n);
- d_j the due date of job J_j (j=1,...,n).
- *w_j* the weight of job *J_j* (*j*=1,...,*n*) (a penalty for the job being tardy).

* Annals of Operations Research, 298 (1), 271-287.

 A solution (schedule) is simply a job processing permutation, π, on the single machine.

 The objective is to determine a solution that minimizes the weighted number of tardy jobs,
 ∑w_j U_j, where U_j=1 if job J_j is completed after its due date, and U_j=0, otherwise.

An importance problem?

• The $1 \mid \sum w_j U_j$ problem is a fundamental problem in the field of combinatorial optimization in general, and particularly in scheduling theory. • It is one out of the problems that appears in the seminal work by Karp [1972] about reducibility between combinatorial problems.

An importance problem?

It is one out of a set of three problems in which the concept of FPTAS has been originally presented (Sahni [1976]).

• The problem is an extension of the well known 0-1 knapsack problem.

Known Results

- The 1| $|\sum w_j U_j|$ problem is
 - NP-hard even if all due dates are equal (Karp (1972));
 - Solvable in pseudo-polynomial time (Lawler and Moore (1969) and Sahni (1976));
 - Solvable in O(nlogn) time when all weights are equal (Moore (1968));
 - Solvable in O(nlogn) time when all processing times are equal (Peha (1995)).

Research Goals

• We analyze the tractability of the 1| $|\sum w_i U_i|$ problem

with respect to the following three parameters:

- v_d the number of different due dates.
- v_p the number of different processing times.
- v_w the number of different weights.

Are those "natural" parameters?

- In many practical instances at least one of those parameters is indeed of a limited size.
 - *v_d* when delivery costs are high and thus products are batched to only few shipments;
 - *v_p* when the number of job types that the manufacturer produces is limited; and
 - *v_w* when customers are batched into few subsets according to their importance.

Our Results for the the 1 $|\sum w_j U_j$ problem

Parameter	v_d	v_w	v_p	(v_d, v_p)	(<i>v_d</i> , <i>v_w</i>)	(v_p, v_w)
Result	Hard	ХР	ХР	FPT	FPT	FPT

- The hardness results is straightforward from Karp's NP-hardness proof for the common due date case.
- The XP algorithms are based on extensions of the well-known Moore's algorithm that solves the unit weight case.
- The FPT algorithms are based on MILP formulation with O(k) integer variables.

Remains Open:

• Is the problem FPT w.r.t v_w and v_p ?

- Sketch of how we obtain the result:
 - We formulate the 1| $|\sum w_j U_j|$ problem as an ILP with (too many...) O(k+n) integer variables ($k=v_p v_w$). Let *F* be the corresponding formulation.
 - We relax *F* to a MILP formulation, *F*', that has only *k* integer variables; and then
 - Use Lenstra's algorithm from 1983 to solve *F*' in FPT time.

- Continue: Sketch of how we obtain the result:
 - If the optimal solution for *F*' (obtained by solving the MILP) is an integer solution, it is also optimal to *F* and we are done.
 - Otherwise, we provide a polynomial time rounding procedure to obtain an alternative **optimal integer solution** for *F*', which is also optimal for *F*.

We begin by partitioning the set of jobs into k classes, S₁,...,S_k, such that all jobs in S_i have the same processing time p_i, and weight w_i (i=1,...,k).

• Let $n_i = |S_i|$ denote the number of jobs in each S_i .

• The following lemma is used to formulate *F*:

Lemma 1: There exists an optimal solution for the 1| $|\sum w_j U_j$ problem, where the non-tardy jobs are scheduled first in an EDD order, followed by the tardy jobs in an arbitrary order.

Let d₁, . . . , d_{v_d} be the set of different due dates in our input job set J, and assume without loss of generality that d₁<d₂<...<d_{v_d}.

• Moreover, let δ_{ij} be the number of jobs in S_i having a due date of d_i , for i = 1, ..., k and $j = 1, ..., v_d$.

The Formulation of F

- Decision variables:
 - y_i be an integer variable representing the number of tardy jobs in job set S_i, for each i=1,...,k.
 - *x_{ij}* be an **integer variable** representing the number of early jobs in *S_i* that have a due date of *d_i*.

The Formulation of F

Min $Z=\sum_{i=1}^{k} w_i y_i$

s.t
$$n_i - \sum_{j=1}^{v_d} x_{i,j} = y_i$$
 for all $i \in \{1, \dots, k\}$.

$$\sum_{i=1}^k \sum_{j=1}^l p_i x_{ij} \le d_l \text{ for all } l \in \{1, \dots, v_d\}$$

$$x_{ij} \le \delta_{ij} \text{ for all } i \in \{1, \dots, k\} \text{ and } j \in \{1, \dots, v_d\}$$

$$x_{ij}, y_i = int$$

• F has O(n+k) integer variables (too many).

The construction of F'

MILP relaxation:

 We construct formulation *F*' out of *F* by relaxing the x_{ij} variables, such that we only require that they have to be non-negative.

F' is an MILP formulation with only k integer variables. Therefore, according to Lenstra [1983], it is solvable in FPT time.

Using the solution of *F*' to solve *F*

• Let $S^* = (x^*, y^*)$, where $x^* = (x_{ij}^* | i=1,...,k \text{ and } j=1,...,v_d)$ and $y^* = (y_i^* | i=1,...,k)$ be the solution obtained by solving for *F*' and let $x_i^* = \sum_{j=1}^{v_d} x_{ij}^*$.

• Note that x_i^* is an integer value for i = 1, ..., k due to the constraint that $n_i - \sum_{j=1}^{\nu_d} x_{i,j} = y_i$ for all $i \in \{1, ..., k\}$ and the fact that both n_i and y_i are integer values.

Using the solution of F to solve F

If S^{*} is a feasible solution for F (i.e., all x^{*}_{ij} values are integer), then S^{*} is feasible (and therefore also optimal) solution for F.

• Otherwise, we use a simple *rounding procedure* to obtain an alternative optimal solution for *F*'.

Rounding Procedure

- The rounding procedure is based on exploiting the following lemma:
- Lemma 2: If x_i is the optimal number of early jobs in S_i then there exists an optimal solution in which the x_i jobs with the latest due date in S_i are early.

Rounding Procedure

For each i=1,...,k, let r_i be the integer satisfying

$$\sum_{j=r_i+1}^{\nu_d} \delta_{ij} \le x_i^* \le \sum_{j=r_i}^{\nu_d} \delta_{ij}$$

and define

$$\tilde{x}_{ij} = \begin{cases} 0 & \text{for } j = 1, \dots, r_i - 1 \\ x_i^* - \sum_{j=r_i+1}^{v_d} \delta_{ij} & \text{for } j = r_i \\ \delta_{ij} & \text{for } j = r_i + 1, \dots, v_d \end{cases}$$

Result

<u>Theorem:</u> (\tilde{x}, y^*) is an **optimal integer solution** for *F*'. Therefore, it is an optimal solution for *F*.

- Following Lemma 1, we renumber the jobs according to the EDD rule, such that $d_1 \leq d_2 \leq ... \leq d_n$.
- We say that a job is of type *i* if its weight is w_i
 (*i*=1,...,v_w).
- Let S₁ and S₂ be two partial schedules on job set {J₁,...,J_j, both with e_i early jobs of type i
 (i=1,..,v_w).

- Moreover, let *P*(*S_i*) be the total processing time of the ∑^{v_w}_{i=1} e_i early jobs in partial schedule *S_i* for *i*=1,2.
- **Lemma 3**: If $P(S_1) \le P(S_2)$ then S_2 is dominated by

 S_1 .

- Based on Lemma 3, we developed a DP algorithm that construct the set of non dominated partial schedules. To do so, define:
 - P_j(e₁,..., e_{v_w}) as the minimum total processing time of the early jobs among all partial schedules on job set {J₁,...,J_j} with e_i early jobs of type i (i=1,...,v_w).
 - $E_{ij}(e_1, ..., e_{v_w})$ be the corresponding early sets.

- Each of the early sets, $E_{ij}(e_1, ..., e_{v_w})$, is maintained during the DP as a list ordered according to the LPT rule.
- Note that the job in $E_{ij}(e_1, ..., e_{v_w})$ with the largest processing time in the set is at the head of the list.

- Consider now the case where job J_j is of type *i*. We can reach state (e₁, ..., e_{v_w}) at stage *j* from either one of the following states in stage *j*-1:
 - State (e_1, \dots, e_{v_w}) by setting $E_{ij}(e_1, \dots, e_{v_w}) = E_{i,j-1}(e_1, \dots, e_{w_\#}) \cup \{J_j\}$ and then excluding the job at the head of $E_{ij}(e_1, \dots, e_{v_w})$ from the list.
 - State $(e_1, ..., e_{i-1}, e_i 1, e_{i+1}, ..., e_{v_w})$ by setting $E_{ij}(e_1, ..., e_{v_w}) = E_{i,j-1}(e_1, ..., e_i - 1, e_{i+1}, ..., e_{v_w}) \cup \{J_j\}$. This is feasible only if $P_j(e_1, ..., e_i - 1, e_{i+1}, ..., e_{v_w}) + p_j \le d_j$.

• Accordingly, the following recursive relation holds:

• If
$$P_j(e_1, ..., e_i - 1, e_{i+1}, ..., e_{v_w}) + p_j > d_j$$

 $P_j(e_1, ..., e_{v_w}) = P_{j-1}(e_1, ..., e_{v_w}) +$
 $\min\{0, p_j - p_{i,j-1}^h(e_1, ..., e_{v_w})\}$
• If $P_j(e_1, ..., e_i - 1, e_{i+1}, ..., e_{v_w}) + p_j \le d_j$
 $P_j(e_1, ..., e_{v_w}) =$

$$\min \begin{cases} P_{j-1}(e_1, \dots, e_i - 1, e_{i+1}, \dots, e_{v_w}) + p_j \\ P_{j-1}(e_1, \dots, e_{v_w}) + \min\{0, p_j - p_{i,j-1}^h(e_1, \dots, e_{v_w})\} \end{cases}$$

Initial Condition:

$$P_0(e_1, \dots, e_{v_w}) = \begin{cases} 0 & \text{if} \quad e_1 = e_2 = \dots = e_{v_w} = 0\\ \infty & \text{otherwise} \end{cases}$$

The optimal solution is given by

$$F^* = \min\left\{\sum_{i=1}^{w_{\#}} w_i(n_i - e_i) \left| P_n(e_1, \dots, e_{v_w}) < \infty \right\}\right\}$$

<u>Theorem</u>: The 1| $|\sum w_j U_j|$ problem is solvable in $O(n^{v_w+1}logn)$ time. Thus, it belongs to the XP set w.r.t. parameter v_w .

Problem 2**

- We study the $Fm| |\sum w_j R_j$ problem.
 - In a flow shop systems, all jobs follow the same route trough the machines.
 - Instance: the number of machines (*m*); the number of jobs (*n*);
 and for each job J_i, we are also given:
 - Its processing time on each one of the machines, p_{ij} ;
 - Its due date, d_j ;
 - Its weight, w_j (a gain for being completed in a JIT mode).
 - **Problem**: Find a schedule that **maximizes** $\sum w_j R_j$, where $R_j = 1$ if job J_j is completed **exactly** at its due date, and $R_j = 0$, otherwise.

** *Journal of Scheduling*, **22** (**6**), 663-676.

Known Results

- **Known Results**: The $Fm| |\sum w_j R_j|$ problem is
 - Strongly NP-hard when m=3 (Choi and Yoon [2007].
 - Ordinary NP-hard when *m*=2 (Choi and Yoon [2007] and Shabtay and Bensoussan [2012]);
 - Solvable in O(n³) time when m=2 and all weights are equal (Shabtay [2012]).

• **Objective:** To analyze the parameterized tractability of the $Fm| |\sum w_j R_j$ problem with respect to v_d , which is the number of different due dates.

Problem 2 - Table of Results

	F_2 $\sum w_j R_j$	$F_3 \sum w_j R_j$
V_d	W[1]-hard*, XP	W[1]-hard*, XP
(v_d, v_w)	FPT	W[1]-hard*
$(v_{d,}p_{\#}^{1})$	FPT	W[1]-hard*

* even if all processing time on the second machine are of unit length.

Methods:

- The W[1]-hardness results have been obtained by a *parametrized reduction* from the *k*-sum problem.
- The XP and FPT algorithms are specially designed algorithms.

Problem 3***

- There are two agents each of which has its own set of jobs.
- All jobs are available at time zero and are to be processed on a single machine.
- Let $J^{(1)} = \{J_1^{(1)}, J_2^{(1)}, \dots, J_n^{(1)}\}$ and $J^{(2)} = \{J_1^{(2)}, J_2^{(2)}, \dots, J_k^{(2)}\}$ be the two set of jobs.

- Input:
 - $p_i^{(i)}$ the processing time of job $J_i^{(i)}$.

A_i – a given bound on the objective value of agent *i*.
When relevant also:

- $d_j^{(i)}$ the due date of job $J_j^{(i)}$.
- $w_j^{(i)}$ the weight of job $J_j^{(i)}$.

- Given a schedule of the n+k jobs on the single machine, let $C_j^{(i)}$ be the completion time of job $J_j^{(i)}$.
- We measure the quality of a solution by two criteria, one for each agent.
- We focus on the following criteria:

- The weighted sum of completion times, denoted by $\sum w_i^{(i)} C_i^{(i)}$.
- The weighted number of tardy jobs, denoted by $\sum w_j^{(i)} U_j^{(i)}$,

where $U_j^{(i)} = 1$ if $C_j^{(i)} > d_j^{(i)}$ and $U_j^{(i)} = 0$, otherwise.

• The weighted number of JIT jobs, denoted by $\sum w_j^{(i)} R_j^{(i)}$, where

$$R_{j}^{(i)} = 1$$
 if $C_{j}^{(i)} = d_{j}^{(i)}$ and $R_{j}^{(i)} = 0$, otherwise.

- For each possible combination of the three criteria to the two agents, we consider the following problem:
- Given two bounds A_1 and A_2 , one for each agent, find if there exists a job schedule that meets both bounds.

• We refer to the problem by $1|\mathcal{C}_1, \mathcal{C}_2|$ –, where

$$\mathcal{C}_i \in \left\{ \sum w_j^{(i)} \mathcal{C}_j^{(i)} \le A_i, \sum w_j^{(i)} U_j^{(i)} \le A_i, \sum w_j^{(i)} R_j^{(i)} \ge A_i \right\}$$

for *i*=1,2.

• The set of problems we define is well-studied in the literature and all relevant problems are NP-hard.

• We study the parametrized tractability of these set of problems w.r.t *k* (the number of jobs belong to the second agent).

Summary of Results – Problem 3

	$\sum w_j^{(2)} C_j^{(2)} \leq A_2$	$\sum w_j^{(2)} U_j^{(2)} \leq A_2$	$\sum w_j^{(2)} E_j^{(2)} \geq A_2$
$\sum w_j^{(1)} C_j^{(1)} \leq A_1$	Hard for $w_j^{(2)} = 1$ (Th. 1), FPT for $w_j^{(1)} = 1$ (Th. 2), FPT for $p_j^{(1)} = 1$ (Th. 3).	Hard for $w_j^{(2)} = 1$ (Th. 1), FPT for $w_j^{(1)} = 1$ (Th. 3).	Hard even when $w_j^{(i)} = 1$ (Cor. 1).
$\sum w_j^{(1)} U_j^{(1)} \leq A_1$	Hard in general (Cor. 2), Open for $w_j^{(1)} = 1$.	Hard in general (Cor. 2), FPT for $w_j^{(1)} = 1$ (Th. 6), FPT for $p_j^{(i)} = 1$ (Th. 7).	Hard even when $w_j^{(i)} = 1$ and $d_j^{(1)} = d$ (Cor. 4).
$\sum w_j^{(1)} E_j^{(1)} \geq A_1$	Open in general, FPT when $w_j^{(1)} = 1$ (Th. 8).	FPT (Th. 9)	FPT (Th. 11)

Special Thanks to My Academic Mentors/Advisors

