

Sports scheduling: from consulting to science

Dries Goossens (Ghent University)

Contact dries.goossens@ugent.be www.sportscheduling.ugent.be

Scheduling seminar, May 10 2023

DEPARTMENT OF BUSINESS INFORMATICS AND OPERATIONS MANAGEMENT

SPORTS SCHEDULING

The problem: given a set of matches, given a set of rounds (time slots),

decide which matches are scheduled on which rounds.

Each match A – B is played at the venue of the home team (A), with the opponent (B) being the away team.

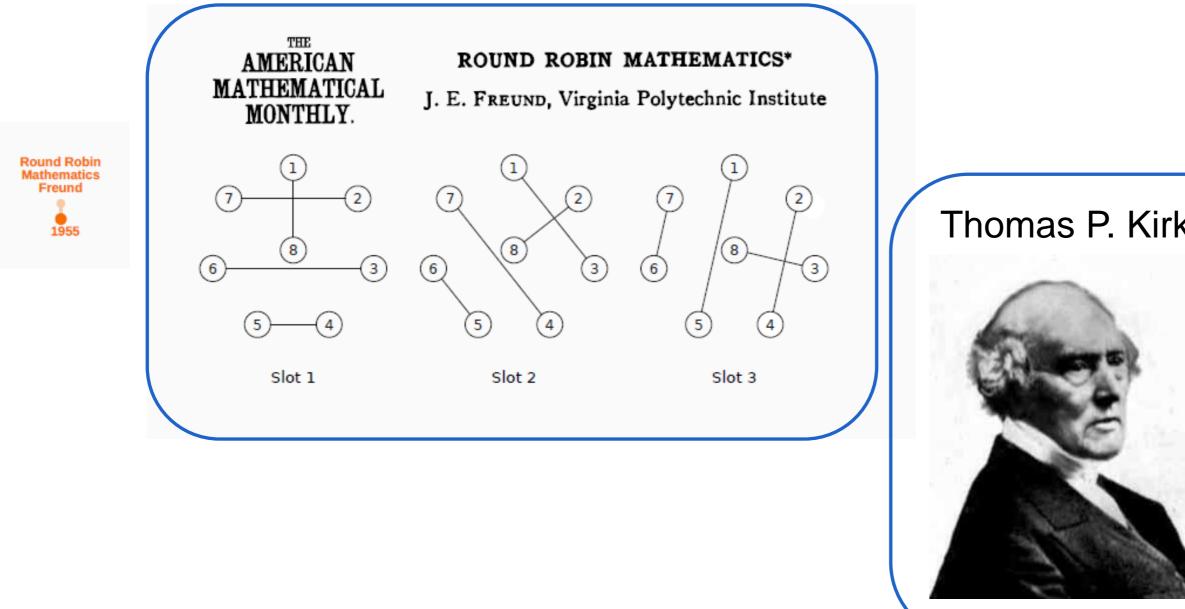
We focus on double round robin tournament (2RR): each team plays twice against each other team: once at home, once away

SPORTS SCHEDULING

The problem: given a set of matches, given a set of rounds (time slots),

decide which matches are scheduled on which rounds.

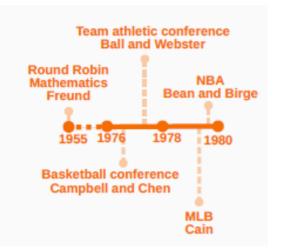
Assumptions:


- a team can play at most ulletone match per round
- time-constrained ulletschedules

R1	R2	R3	R4	R5	R6	R7	R8	R9	R10
A-B	B-E	B-D	B-C	F-B	B-A	E-B	D-B	C-B	B-F
C-D	D-A	A-F	E-A	D-E	D-C	A-D	F-A	A-E	E-D
E-F	F-C	E-C	F-D	A-C	F-E	C-F	C-E	D-F	C-A

A time-constrained schedule for a 2RR tournament with 6 teams (A-F)

Scheduling round robin tournaments



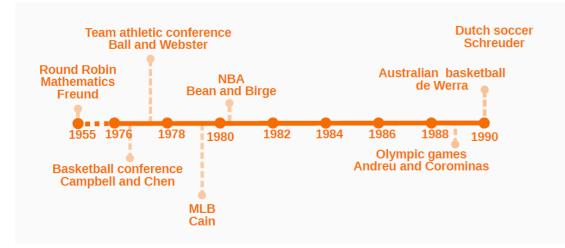
Thomas P. Kirkman (1806 – 1895)

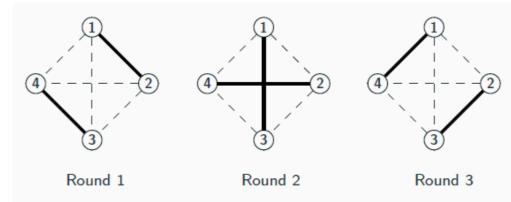
Constructs a feasible schedule (for any number of teams) with the clock method (1847)

The resulting schedule is called a "canonical schedule".

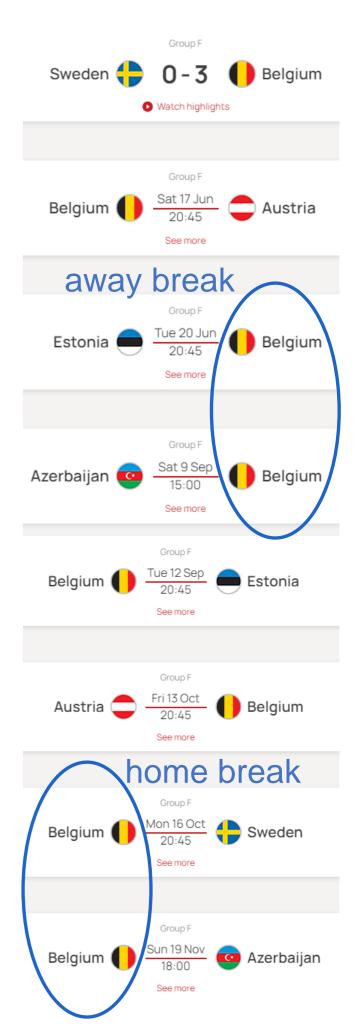
The 60's and 70's: a lack of computational tools

Although the above formulation shows that zero-one programming is a method for solving the problem, the number of decision variables and constraints required makes existing algorithms too large to handle on the available computer facilities. [1, p. 66-91].

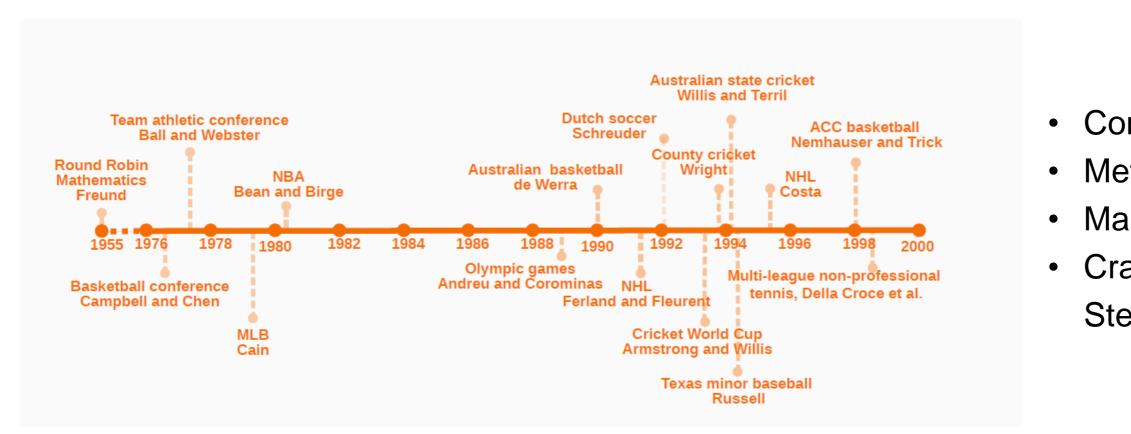

This program has 41976 constraints and 873,136 variables. Suggested formulations of this type for the real problem are at least twice this size. The cost of solving such a program by standard methods would most likely outweigh the savings derived from the improved schedule.


1975: IBM 5100

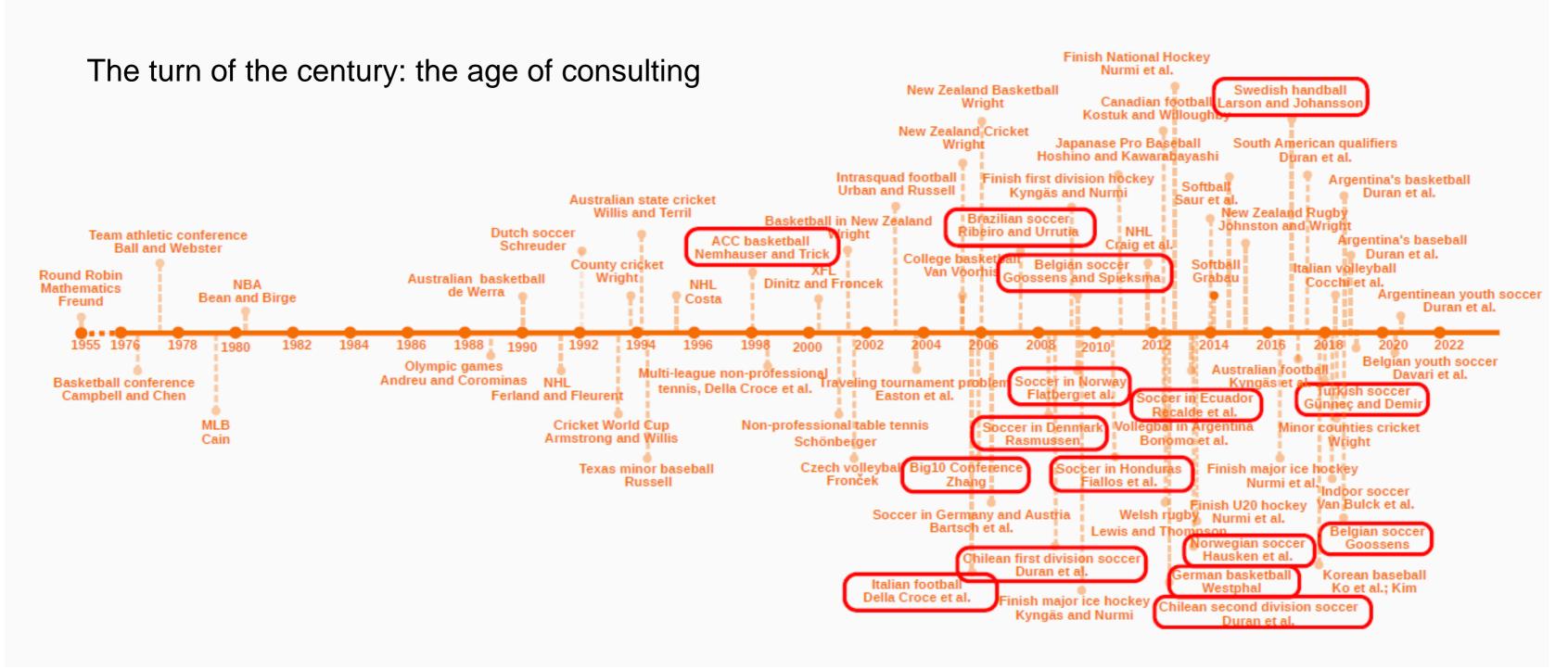
The 80's: how to minimize breaks


Theoretical work by de Werra

1RR ~ 1-factorization of K_{2n}


• Orientation of edges to minimize breaks

The (late) 90's: first real-life applications



Computing power increases
Methodological breakthroughs
Manual solutions still dominant
Craftspeople, e.g. Henri & Holly Stephenson (MLB)

The turn of the century: the age of consulting

Lack of benchmarking

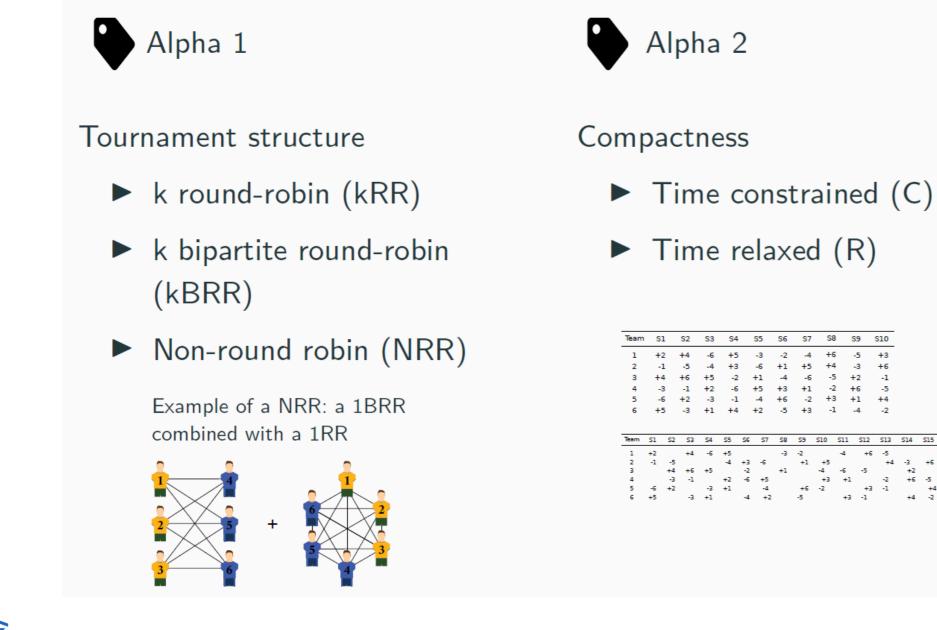
- The literature consists mostly of specific case studies, with tailormade algorithms.
- Problem instances are rarely shared.
- Algorithms are almost never benchmarked.

Lack of generality & understanding

- To what extent do approaches work well on other sports scheduling problems?
- When do algorithms work well, and why? •
- Can we develop a general solver that can handle a wide variety of • constraints?

FROM CONSULTING TO SCIENCE

- 1. A classification scheme for round robin tournament timetabling problems
- 2. A standard problem instance data format
- 3. A benchmark instance set
- 4. General sport scheduling solvers
- Algorithm selection & insights 5.


Each sport scheduling problem can be classified using 3 fields:

- $-\alpha$: competition format
- $-\beta$: constraints in use
- $-\gamma$: objective function

[inspired by the notation for machine scheduling problems by Graham et al. (1979)]

α : competition format

Symmetry

- ▶ None (\emptyset)
- Phased (P)
- Mirrored (M)
- ► Inverse (I)
- English (E)
- ► French (F)

-4 -6 +3 +1

$$M = \begin{array}{c} 1 & 2 & 3 & 4 & 5 & 1 & 2 & 3 & 4 & 5 \\ 1 & 1 & 2 & 3 & 4 & 5 & 5 & 4 & 3 & 2 & 1 \\ \end{array}$$

$$E = \begin{array}{c} 1 & 2 & 3 & 4 & 5 & 5 & 1 & 2 & 3 & 4 \\ \hline F = \begin{array}{c} 1 & 2 & 3 & 4 & 5 & 5 & 1 & 2 & 3 & 4 \\ \hline \end{array}$$

β: constraints in use

5 constraint groups:

- Capacity constraint (CA1 CA5)
- Game constraints (GA1 GA2)
- Break constraints (BR1 BR4)
- Fairness constraints (FA1 FA6)
- Separation constraints (SE1 SE2)

β: constraints in use

For each constraint c, we define:

- hard or soft constraint
- a deviation vector $\mathbf{D}_{\rm c}$
- cost function f_c
- constraint weight w_c

 $p_c = w_c f_c(D_c)$

Five cost functions:

- **•** Sum: $\sum_{i=1}^{q} d_i$
- **•** Sum-squares: $\sum_{i=1}^{q} d_i^2$
- Square-sum: $(\sum_{i=1}^{q} d_i)^2$
- Min: $\min_{d_i \in D_c} d_i$
- Max: $\max_{d_i \in D_c} d_i$

- γ: objective function
- No objective (Ø)
- Minimum (weighted) breaks (BR)
- Travel distance minimization (TR)
- Cost minimization (CR)
- Minimum (weighted) carry-over effect value (CO)
- Minimum soft constraint violation (SC)

ct value (CO) C)

Notation overview

kRR, kBRR, NRR $lpha_1$ C,R $lpha_2$ α \emptyset , M, I, E, F, P $lpha_3$ CA1, CA2, CA3, CA4, CA5 β_1 GA1, GA2 β_2 BR1, BR2, BR3, BR4 β_3 В FA1, FA2, FA3, FA4, FA5, FA6 β_4 SE1, SE2 β_5 \emptyset , BR, TR, CR, CO, SC γ_1

Classifying the literature

	Paper reference	Description
-	Bean and Birge (1980)	NRR, R, \emptyset CA1, CA3 TR
	Ball and Webster (1977)	2RR, R, P GA2, CA3, TR
	Bao and Trick (2010)	2RR, R, \emptyset CA3, SE1 TR
	Bartsch et al. (2006)	2RR, C, M $BR1^{H,S}$, $BR2^{H}$, $CA1^{H}$, (
	Bartsch et al. (2006)	2RR, C, E $BR1^{H}$, $CA1^{H,S}$, $CA2^{H}$, (
	Bonomo et al. (2012)	2RR, C, M BR1, CA1, CA3 TR
	Briskorn and Drexl (2009a)	1RR, C, \emptyset BR1, BR2, CA1, CA3,
	Westphal (2014)	2RR, C, P $BR2^{S}$, $CA1^{H,S}$, $FA6^{S}$, (
	Wright (2006)	2RR, C, $\emptyset \mid$ CA1 ^s , CA2 ^s , CA4 ^s , FA
	Zhang (2002)	NRR, C, \emptyset CA1, CA2, CA3, CA4

GA1^s | SC A2^s, FA5^s, GA1^s | SC | \emptyset

, CA4, GA1 CR

CA3^{H,S}, CA4^H, GA1^H, SE1^H | SC CA3^S, CA4^H, GA1^H, SE1^H | SC

Online query tool

Alpha: competition format

Search

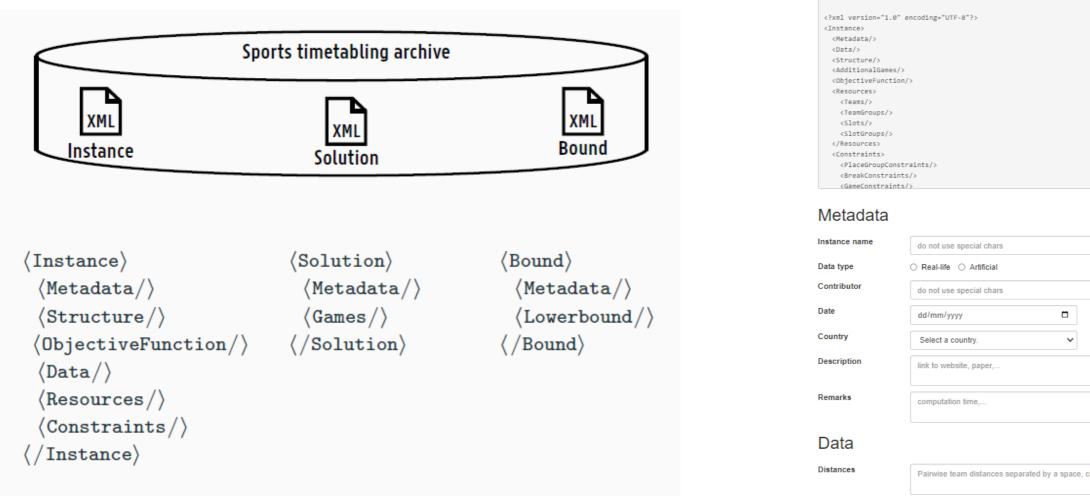
Data set	Ref.	No. Teams	No. Slots	Classification
XFL American Football	Dinitz & Froncek [1]	8	10	NRR, C, Ø BR1, BR2, CA1, CA2, CA3, CA4, SE1 SC
Finish U20 hockey	Nurmi et al. [2]	15	62	3RR, R, Ø BR2, CA1, CA2, CA4, FA2, GA1, SE1 SC
Belgian soccer	Goossens & Spieksma [3]	18	34	2RR, C, M BR1, BR2, CA1, CA2, CA3, CA4, GA1 SC
Brazilian soccer	Ribeiro & Urrutia [4]	20 - 22	38 - 42	2RR, C, M BR1, BR2, CA1, CA2, CA4, FA1 SC
Danish soccer	Rasmussen [5]	12	3 - 33	3RR, C, P BR1, BR2, CA1, CA2, CA3, CA4, GA1, SE1 SC
Swedish handball	Larson & Johansson [6]	14	33	NRR, C, Ø BR2, CA1, CA2, CA4, FA1, FA3, SE2 SC
Italian volleyball	Cocchi et al. [7]	14	26	2RR, C, M BR1, BR2, CA1, CA2, CA3, CA4, FA1, FA6, GA1 SC
Non-professional table tennis 3	Knust [8]	10	100	1RR, R, Ø BR2, CA1, CA2, CA3, FA1, GA1 SC
English soccer holidays	Kendall [9]	92	2	ML, C, Ø BR2, CA1, CA2, CA4, FA6 SC
Australian Football	yng\a [10]	18	138	NRR, R, Ø BR1, BR2, CA1, CA2, CA3, CA4, FA5, GA1, SE1 SC

www.sportscheduling.ugent.be/RobinX/query.php

Objective function

FROM CONSULTING TO SCIENCE

- 1. A classification scheme for round robin tournament timetabling problems
- 2. A standard problem instance data format
- 3. A benchmark instance set
- 4. General sport scheduling solvers
- Algorithm selection & insights 5.



RobinX: an XML-driven classification for round-robin sports timetabling

Instance XML

User-friendly web-application

Competition format

•

www.sportscheduling.ugent.be/RobinX

	Copy
	-
comma, or tab (lexicographical order).	
10	

Open-source C++ library to read, write, validate XML files

Problem instance repository

Soft constraints objective repository

cification XML files Down	nloads						
Instance name	Contributor	Teams	Slots	Classification	Best LB	Best UB	Histo
AUS1	Bartsch, Drexl, Kroger	10	18	2RR, C, BR2, CA1, CA4, GA1, SE1 SC	(/, /)	(0, 89)	histor
GER1	Bartsch, Drexl, Kroger	18	34	2RR, C, M BR2, CA1, CA4, GA1, SE1 SC	(/, /)	(/, /)	histor
GER2	Bartsch, Drexl, Kroger	18	34	2RR, C, M BR1, BR2, CA1, CA4, GA1 SC	(/, /)	(/, /)	histor
BEL1	Goossens, Spieksma	18	34	2RR, C, M BR1, BR2, CA1, CA2, CA3, CA4, GA1 SC	(/, /)	(0, 122)	histo
BEL2	Goossens, Spieksma	18	34	2RR, C, M BR1, BR2, CA1, CA2, CA3, CA4, GA1 SC	(/, /)	(0, 102)	histo
BEL3	Goossens, Spieksma	18	34	2RR, C, M BR1, BR2, CA1, CA2, CA3, CA4, GA1 SC	(/, /)	(0, 150)	histo
СНІ	Duran, Guajardo, Miranda, Saure, Souyris, Weintraub, Wolf	20	19	1RR, C, NULL BR1, CA1, CA3, CA4, GA1 SC	(/, /)	(/, /)	histo
DanishFootball	Rasmussen	12	33	3RR, C, P BR1, BR2, CA1, CA2, CA3, SE1 SC	(/, /)	(0, 49)	histo
FIN1	Kyngas, Nurmi	14	30	2RR, R, NULL BR1, BR2, CA1, CA3, CA4, FA1, FA2, FA3, GA1, SE1 SC	(/, /)	(/, /)	histo
FIN2	Kyngas, Nurmi	12	22	2RR, C, NULL BR1, BR2, CA1, CA3, CA4, FA1, GA1, SE1 SC	(/, /)	(0, 87)	histo
FootballEcuador_2012	Recalde, Torres, Vaca	12	22	2RR, C, I BR1, CA2, CA3, CA4 SC	(/, /)	(0, 12)	histo
FootballSouthAmerica	Duran, Guajardo, Saure	10	18	2RR, C, F BR1, CA1, CA3 SC	(/, /)	(0, 0)	histo
NorwegianFootball_1_2009	Hausken, Andersson, Fagerholt, Flatberg	6	10	2RR, C, P BR1, BR2, CA1, CA3, CA4, GA1, SE1 SC	(/, /)	(0, 14)	histo

www.sportscheduling.ugent.be/RobinX

Online validator

Select (or generate) your instance 1.

*	Home	🖌 Rob	inX 📎	3-Field	Q Query	๗ XML	Repository -		
¢	Instance	Ē.	Solution		Validator				
Filter	Filter TravelOptimization/Instances/NL4.xml Reset								
Name									
Travel	Optimization/	/Instances	s/NL4.xml						
Travel	TravelOptimization/Instances/NL6.xml								
Travel	TravelOptimization/Instances/NL8.xml								
Travel	TravelOptimization/Instances/NL10.xml								

www.sportscheduling.ugent.be/RobinX/validator.php

Online validator

- Select (or generate) your instance 1.
- Generate / upload your solution 2.

*	Home	🖌 RobinX	🏶 3-Field	Q Query	💩 XML	Repository -
¢	Instance	Solutio	on 💆	Validator		
Filter Name		ization/Solutions/I	NL4_Sol_Eastor	Reset		
Travel	Optimization/	Solutions/NL4_	Sol_Easton_Tr	ick.xml		
TravelOptimization/Solutions/NL6_Sol_Easton_Trick.xml						
TravelOptimization/Solutions/NL8_Sol_Uthus.xml						
TravelOptimization/Solutions/NL10_Sol_Langford.xml						

www.sportscheduling.ugent.be/RobinX/validator.php

🌑 3-Fi KabinX Home Ľ m o Instance Solution Instance file to <?xml version="1.0" encoding be validated: <Instance> <MetaData> <InstanceName>NL4</Inst <DataType>A</DataType> <Contributor>Easton, Nem <Date day="0" month="0" <Country/> <Remarks>Based on Natio Solution file to <?xml version="1.0" encoding be validated: <Solution> <MetaData> <SolutionName>NL4 East <InstanceName>./Reposite <Contributor>Easton, Trick <Date day="28" month="8" <ObjectiveValue infeasibili <Remarks>Solution retriev Validate RobinX Validator 2.0 GNU General Public License See the README for more de Objective:

www.sportscheduling.ugent.be/RobinX/validator.php

- 1. Select (or generate) your instance
- Generate / upload your solution 2.
- Press validate 3.

Online validator

eld	Q Query	෯ XML	Repository -	Contact and more				
	Validator							
g="UT	F-8" standalone=	="no" ?>						
haus	hauser, and Trick /ear="2001"/>							
onal H	ockey League <th>Remarks></th> <td></td> <td>-</td> <td></td>	Remarks>		-				
g="UT	F-8" standalone=	-"NO" ?>		A				
ory/Tra <' year	ickavelOptimization/ ntributor> ="2002"/> objective="8276	Instances/NL4.	xml					
-	m source code w		Remarks>		_			

V3.0.			
tails or typ	e '-h' for mo	re help.	
0	83	276	

FROM CONSULTING TO SCIENCE

- 1. A classification scheme for round robin tournament timetabling problems
- 2. A standard problem instance data format
- 3. A benchmark instance set
- 4. General sport scheduling solvers
- 5. Algorithm selection & insights

Goal: develop a diverse set of challenging and realistic problem instances

Setting the scope

Tournament structure (α)

2RR

Time-constrained

Phased, or no symmetry

Constraints (β)

Capacity constraints (CA1-4)

Break constraints (BR1-2)

Fairness constraints (FA2)

Game constraints (GA1)

Separation constraints (SE1)

Starting point

Name	Contributor	No.	Teams	Description
BEL	Goossens & Spieksma (2009)	3	18	2RR, C, P BR1 ^H , BR2 ^H , CA
PRIN	Lewis & Thompson (2011)	10	12-18	2RR, C, Ø CA1 ^H , CA2 ^{H,S} , C
ECUA	Recalde, Torres, & Vaca (2013)	1	12	2RR, C, P BR1 ^{H,S} , CA2 ^H , C
FIN	Kyngäs & Nurmi (2009)	1	14	2RR, C, P BR1 ^s , BR2 ^s , CA
GER	Bartsch, Drexl, & Kröger (2006)	3	18	2RR, C, P BR1 ^H , BR2 ^H , CA
ART	Nurmi et al. (2010)	16	10-16	2RR, C, {P,Ø} BR1 ^H , BR2 ^s ,
SOUTHA	Durán, Guajardo, & Sauré (2017)	1	10	2RR, C, P BR1 ^s , CA1 ^H , CA
ITA	Cocchi et al. (2018)	1	14	2RR, C, P BR1 ^H , BR2 ^s , CA
RRT	Horbach, Bartsch, & Briskorn (2012)	33	10-22	2RR, C, P BR1 ^H , CA1 ^s , CA
NOR	Hausken, Andersson, Fagerholt, & Flatberg (2012)	8	14-16	2RR, C, P BR1 ^H , BR2 ^s , CA

Objective function (y)

Minimize sum of soft constraint penalties (SC) [satisfy all hard constraints]

```
CA1<sup>H,s</sup>, CA2<sup>s</sup>, CA3<sup>H,s</sup>, CA4<sup>H,s</sup>, GA1<sup>s</sup>, SE1<sup>s</sup> | SC
CA3<sup>H,s</sup>, CA4<sup>H</sup>, SE1<sup>s</sup> | SC
CA3<sup>H,s</sup>, CA4<sup>H</sup>, SE1<sup>s</sup> | SC
CA1<sup>H,s</sup>, CA3<sup>s</sup>, CA4<sup>s</sup>, FA2<sup>s</sup>, GA1<sup>H</sup>, SE1<sup>s</sup> | SC
CA1<sup>H,s</sup>, CA3<sup>s</sup>, CA4<sup>H</sup>, SE1<sup>s</sup> | SC
CA1<sup>H,s</sup>, CA4<sup>H</sup>, GA1<sup>H</sup>, SE1<sup>s</sup> | SC
CA3<sup>H</sup>, SE1<sup>s</sup> | SC
CA3<sup>H</sup>, SE1<sup>s</sup> | SC
CA1<sup>H,s</sup>, CA2<sup>H,s</sup>, CA3<sup>H</sup>, CA4<sup>H</sup>, FA2<sup>s</sup>, GA1<sup>s</sup>, SE1<sup>s</sup> | SC
CA4<sup>H</sup>, GA1<sup>s</sup>, SE1<sup>s</sup> | SC
CA1<sup>s</sup>, CA3<sup>s</sup>, CA4<sup>H,s</sup>, GA1<sup>H,s</sup>, SE1<sup>s</sup> | SC
```

26

Goal: develop a diverse set of challenging and realistic problem instances

Setting the scope

Tournament structure (α)

2RR Time-constrained Phased, or no symmetry

Constraints (β)

Capacity constraints (CA1-4) Break constraints (BR1-2) Fairness constraints (FA2) Game constraints (GA1) Separation constraints (SE1)

How to characterize problem instances?

Using problem "features" (= measurable properties of a problem instance)

- Number of teams
- Symmetry (phased or not)
- For each hard constraint type: number
- For each soft constraint type: number

Objective function (y)

Minimize sum of soft constraint penalties (SC) [satisfy all hard constraints]

Goal: develop a diverse set of challenging and realistic problem instances

Setting the scope

Tournament structure (α)

2RR

Time-constrained

Phased, or no symmetry

Constraints (β)

Capacity constraints (CA1-4) Brook constraints (BB1-2)

Break constraints (BR1-2)

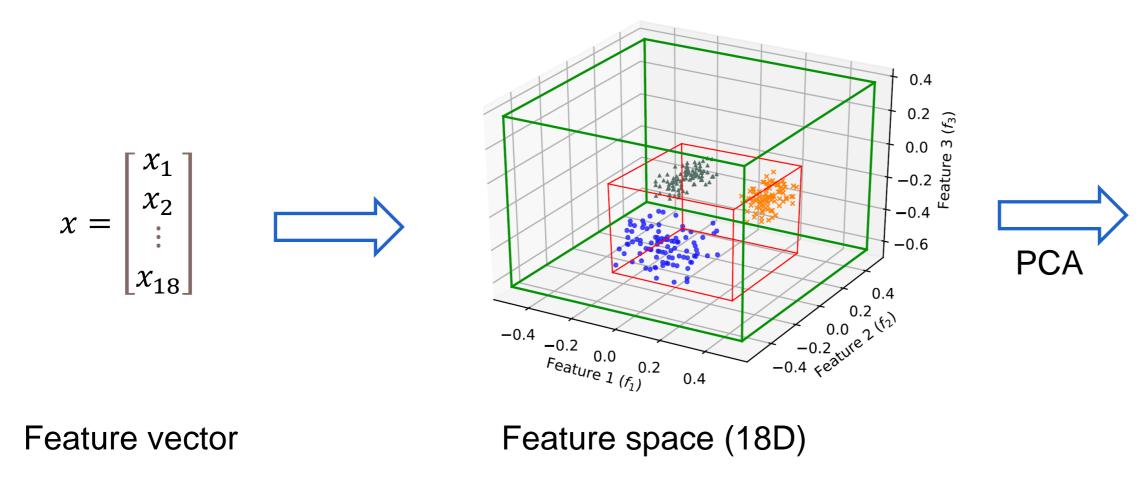
Fairness constraints (FA2)

Game constraints (GA1)

Separation constraints (SE1)

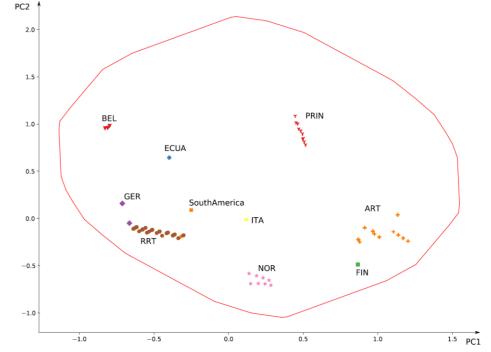
How to characterize problem instances?

	$f_{ T }$	f_P	f_{CA1}^H	$f_{\rm CA1}^{\rm S}$	f_{CA2}^{H}	$f_{\rm CA2}^{\rm S}$	$f_{\rm CA3}^{\rm H}$	$f_{\rm CA3}^{\rm S}$	$f_{\mathrm{CA4}}^{\mathrm{H}}$	$f_{\rm CA4}^{\rm S}$	f_{GA1}^H	$f_{\rm GA1}^{\rm S}$	$f_{\rm BR1}^{\rm H}$	$f_{\rm BR1}^{\rm S}$	$f_{\rm BR2}^{\rm H}$	$f_{\rm BR2}^{\rm S}$	$f_{\rm FA2}^{\rm S}$	$f_{\rm SE1}^{\rm S}$
min	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10% decile	10	0	5	15	6	12	1	12	18	18	2	1	12	10	1	1	1	1
mean	14.83	0.68	5.56	16.35	3.90	27.92	0.27	20,36	32.06	19.01	1.78	64.99	26.14	0.60	0.08	0.31	0.03	0.94
90% decile	20	1	42	32	72	620	2	112	85	340	34	126	44	24	1	1	1	1
max	22	1	116	60	112	620	2	126	198	374	34	4368	602	24	1	1	1	1



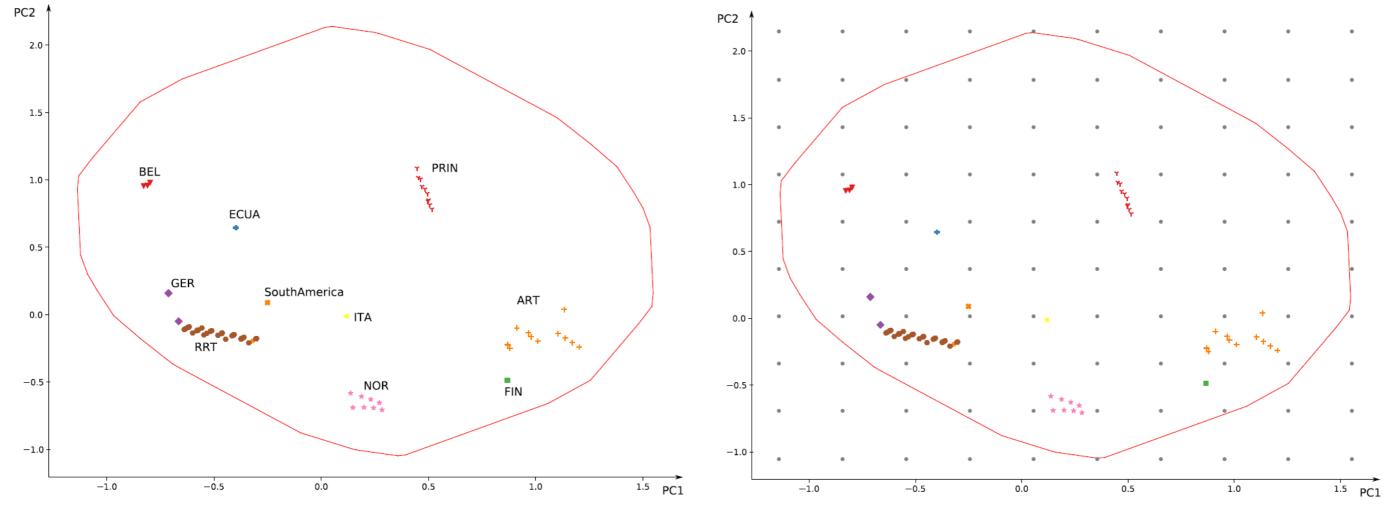
Objective function (y)

Minimize sum of soft constraint penalties (SC) [satisfy all hard constraints]

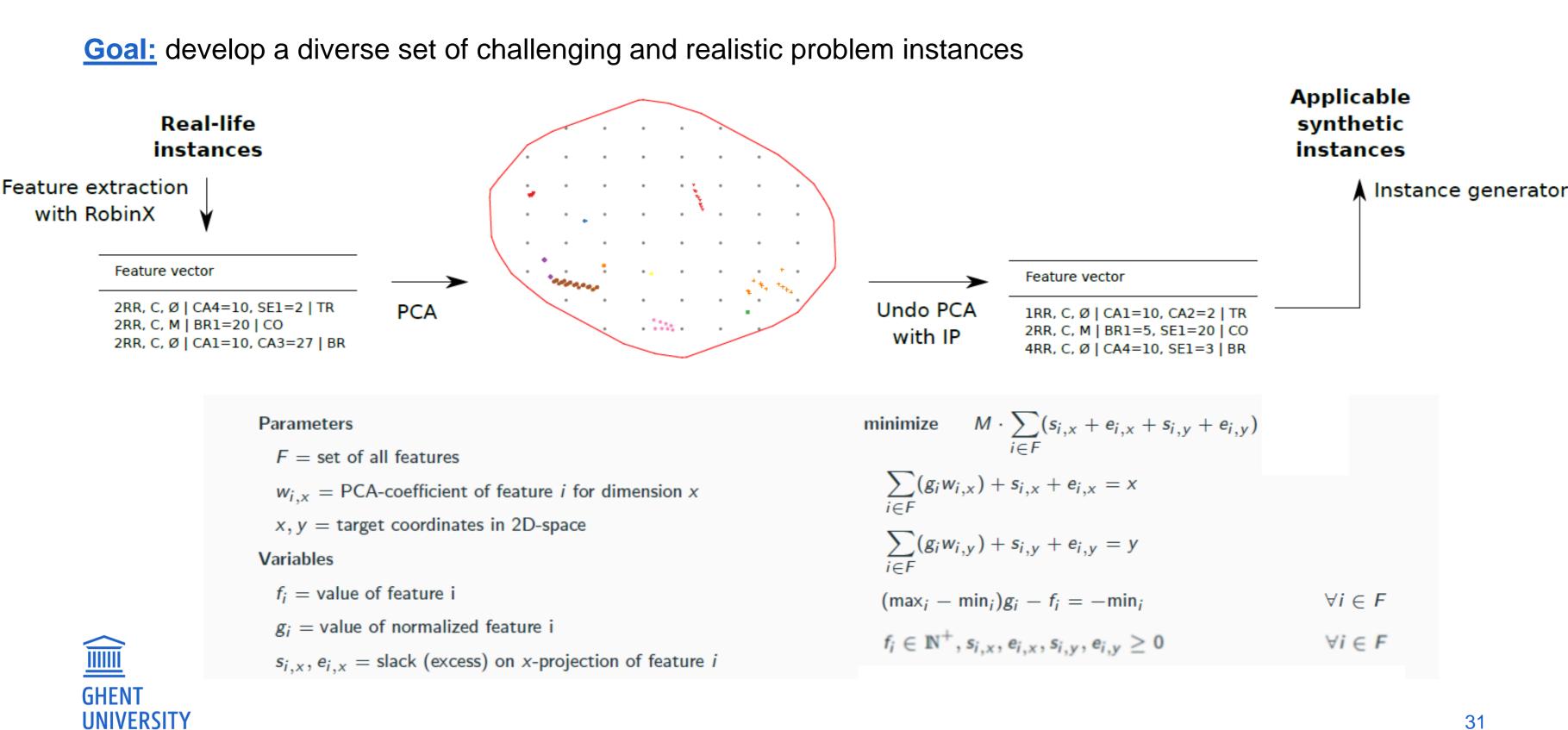

Goal: develop a diverse set of challenging and realistic problem instances

How to visualize set of problem instances?

See e.g. Smith-Miles et al. (C&OR, 2014)



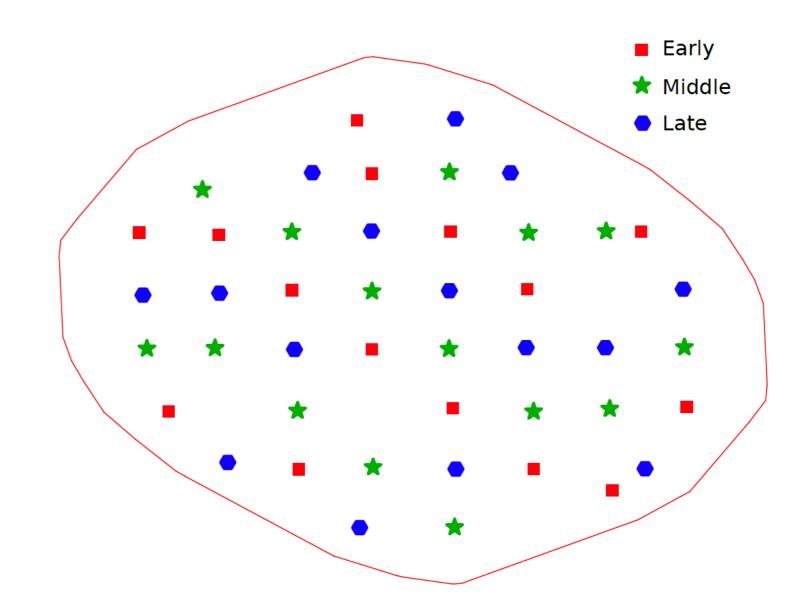
2D space


Goal: develop a diverse set of challenging and realistic problem instances

These instances may be challenging and realistic, but not diverse.

So let's try to fill the gaps: target instances (within the red "convex hull" of realistic instances)

Goal: develop a diverse set of challenging and realistic problem instances


Final check: are these instances challenging?

Empirical hardness check

- Integer programming solver
- Constraint programming solver
- Fix-and-optimize matheuristic

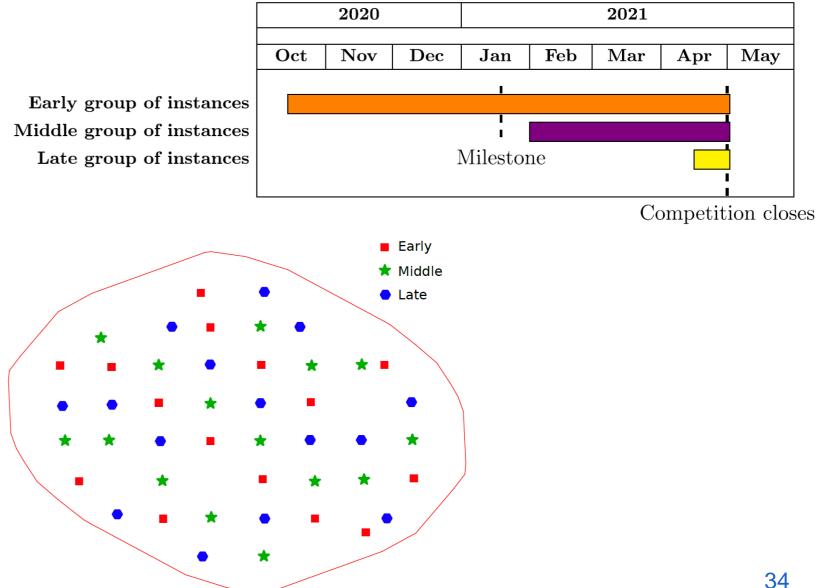
Note: feasible solution exists by design. Feasible solution found within 1 hour for 12 (IP), 16 (CP) and 15 (F&O) instances. None solved with proven optimality. Solutions with different objective values found.

32

FROM CONSULTING TO SCIENCE

- 1. A classification scheme for round robin tournament timetabling problems
- 2. A standard problem instance data format
- 3. A benchmark instance set
- 4. General sport scheduling solvers
- 5. Algorithm selection & insights

4. GENERAL SPORT SCHEDULING SOLVERS


How to develop general sport scheduling solvers?

International Timetabling Competition (ITC2021)

History of ITC competitions

1 st ITC 2002	University course timetabling
2 nd ITC 2007	Examination & course timetabling
3 rd ITC 2011	High-school timetabling
4 th ITC 2019	University timetabling
5 th ITC 2021	Sports timetabling

Late group of instances

4. GENERAL SPORT SCHEDULING SOLVERS

Main competition rules:

- No computation time or technology restrictions (one deadline for all problem instances)
- Organizers do not run algorithm code
- The same version of the algorithm must be used for all instances
- For each instance, points are awarded according to the position of the competitor
- Ordering of participants is based on weighted sum of points for all early, middle and late instances

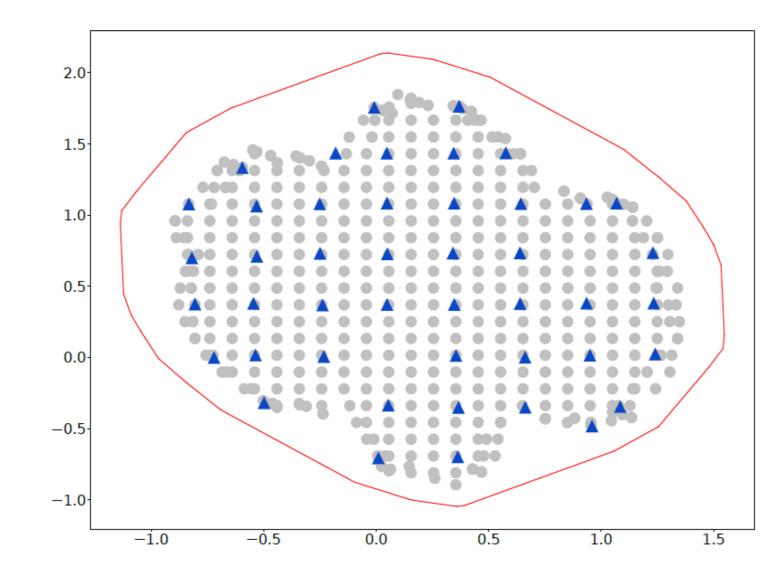
	Instance				
Position	Early	Middle	Late		
1st	10	15	25		
2nd	7	11	18		
3rd	5	8	15		
4th	3	6	12		
5th	2	4	10		
6th	1	3	8		
7th		2	6		
8th		1	4		
9th			2		
10th			1		

4. GENERAL SPORT SCHEDULING SOLVERS

Team	Early	Middle	Late	Total	Feas. sol	Best
1. UoS	121	178	297	596	45	21
2. Udine	75	114	235	424	44	4
3. Saturn	64	115	207	386	37	16
4. GOAL	38	72	133	243	37	4
5. MODAL	21	65	150	236	40	4
6. TU/e	41	47	136	224	38	2
7. DES	8	42	72	122	37	3
8. Gionar	25	16	68	109	40	3
9. DITUol Arta	4	29	68	101	37	2
10. NHH	5	13	70	88	40	1
11. Aures	0	1	12	13	31	1
12. UoR	0	0	10	10	29	1
13. Team zero	0	0	5	5	26	0

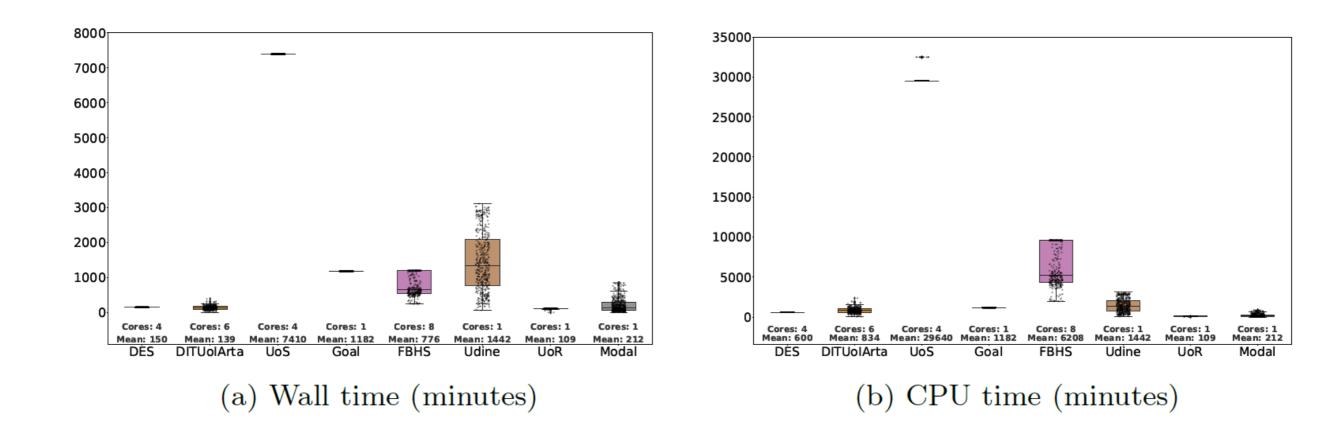
FROM CONSULTING TO SCIENCE

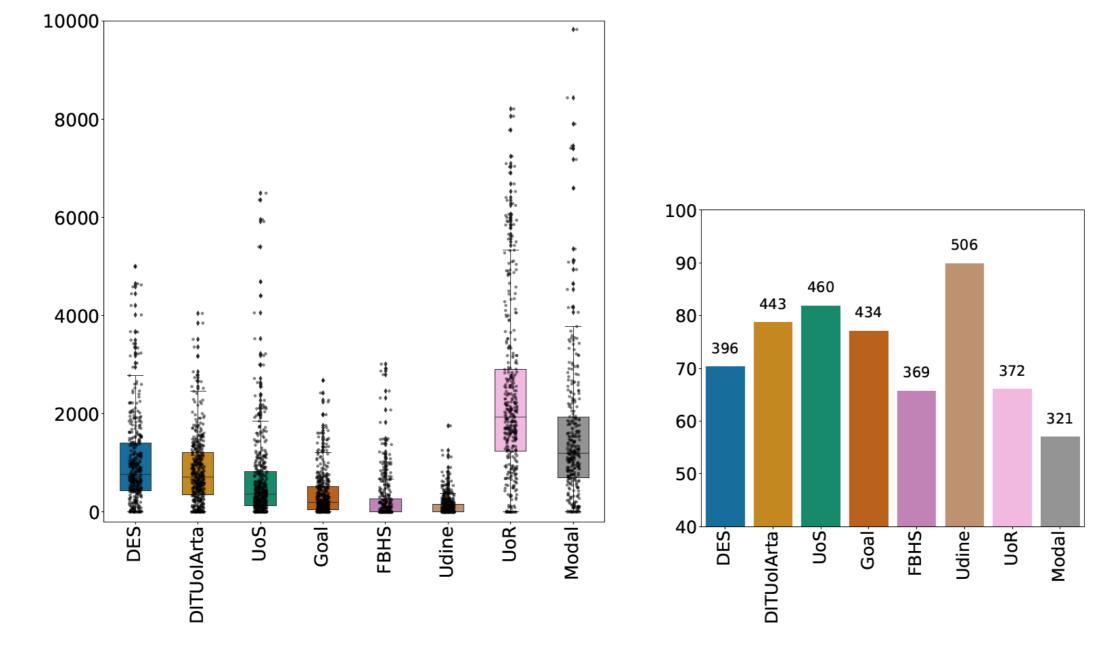
- 1. A classification scheme for round robin tournament timetabling problems
- 2. A standard problem instance data format
- 3. A benchmark instance set
- 4. General sport scheduling solvers
- 5. Algorithm selection & insights



	Algorithm	Search method	Software details	Hardware details
 Computational experiment 7 algorithms from ITC 2021 1 newly generated algorithm (FBHS) > algorithm portfolio with a variety of approaches 	MODAL	IP Branch & Cut	Python, Zimpl, C, Gurobi 10, Xpress	Per instance one thread was used and several in- stances where run at the same time on a machine with multiple Intel(R) Xeon(R) Gold Proces- sors with an average clock speed of 2.4 GHz and enabled with 768 GB and 36 threads.
	Goal	Fix-and- optimize matheuristic	Java 16, Gurobi 10.0	Intel Core i7-8700 3.2GHz with 12 GB RAM (single thread running for 24 hours per instance)
	DES	Adaptive LNS matheuristic	Python 3.10, Gurobi 10.0	Intel Xeon 3.9GHz with 4 cores and 8 threads (Google Compute En- gine "c2-standard-8") for 2.5 hours per instance
	UoS Udine	VND matheuristic Simulated annealing	Python 3.10.4, Gurobi 9.0.2 C++17	Dual 2.0 GHz Intel Sky- lake with 4 or 20 cores Intel Xeon Processor (Cascadelake) @ 2.4 GHz, 16 cores, (max one core per execution)
	DITUoIArta	CP/SAT + Simulated annealing	Python 3.10, OR- Tools 9.4	6 x Intel Core i5-10505 @ 3.2 GHz with 8GB RAM (all cores acti- vated for the solver only) for 1 hour each time for each instance (an in- stance may run multiple times though)
GHENT UNIVERSITY	Reprobate	Pseudoboolean optimization	Perl, clasp 3.3.9, Sat4J 2.3.6, RoundingSat Git Nov 2022	Intel Core i7-8700 3.2GHz with 64 GB RAM (single core run- ning for 2.5 hours per instance)
	FBHS	$\begin{array}{ll} {\rm IP} & {\rm Decom-} \\ {\rm position} & + \\ {\rm matheuristic} \end{array}$	C++, CPLEX 12.10	Intel Xeon E5-2660v3 (Haswell-EP @ 2.6 GHz) processor enabled with 8 cores

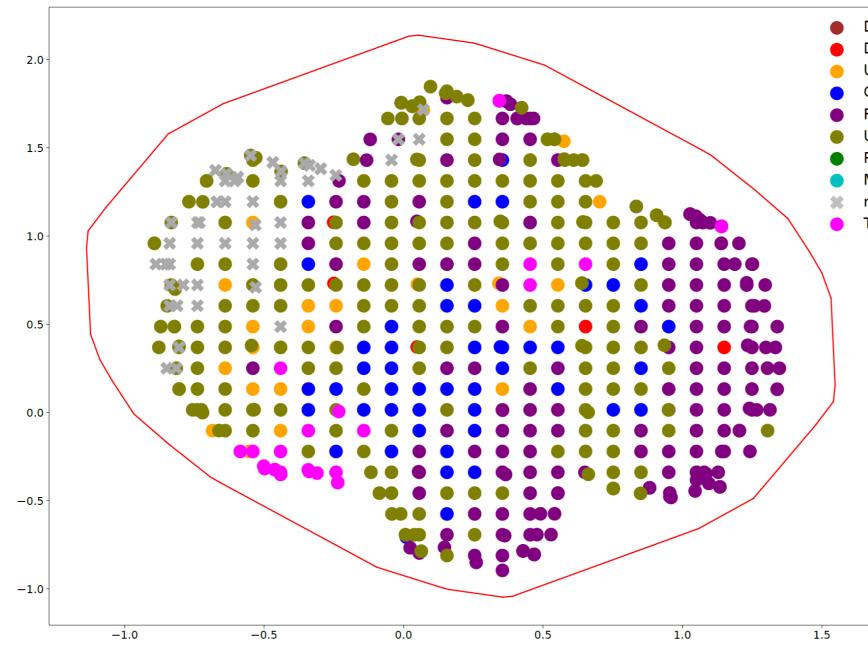
Using the same approach, we generated 518 additional problem instances




INSIGHTS ed 518 additiona

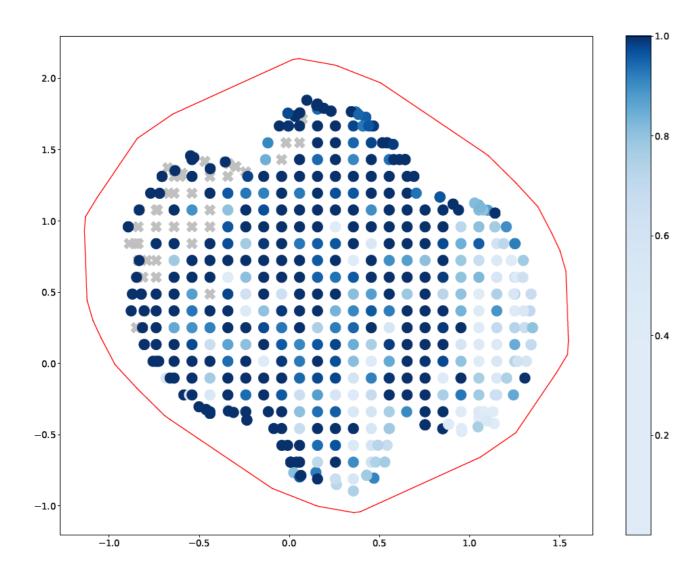
Experimental settings:

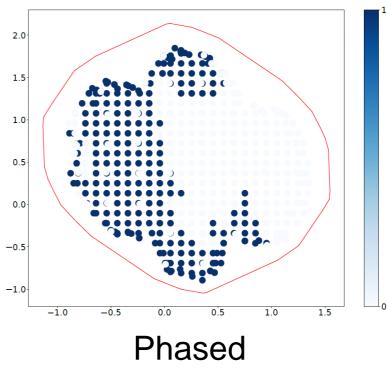
- Every algorithm is given 2 weeks time for the 518 instances
- Each algorithm is run on infrastructure available at the developing institution

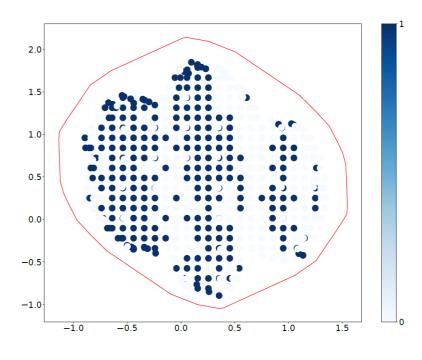


absolute performance gap

#instances for which a feasible solution was found

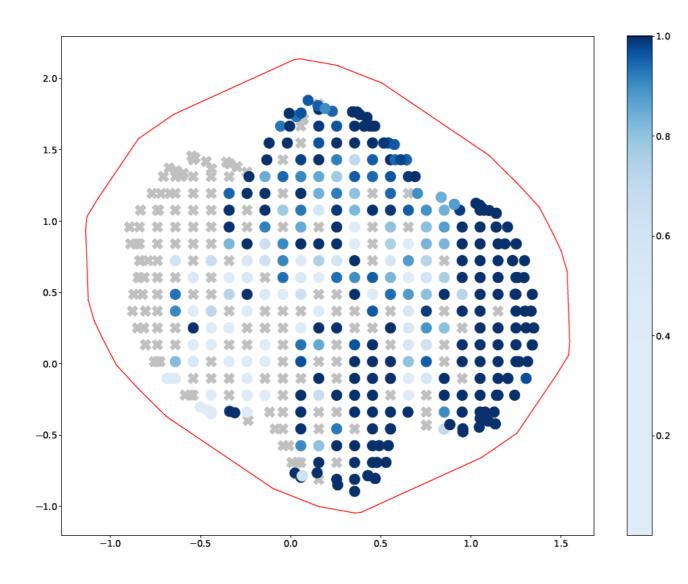

Overview of best performing algorithms

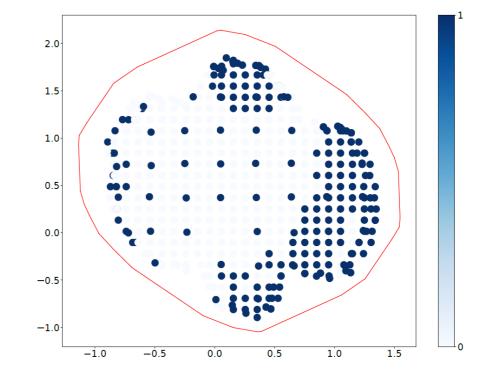




- DES DITUolArta UoS Goal FBHS Udine Reprobate Modal
- nan
- Tie

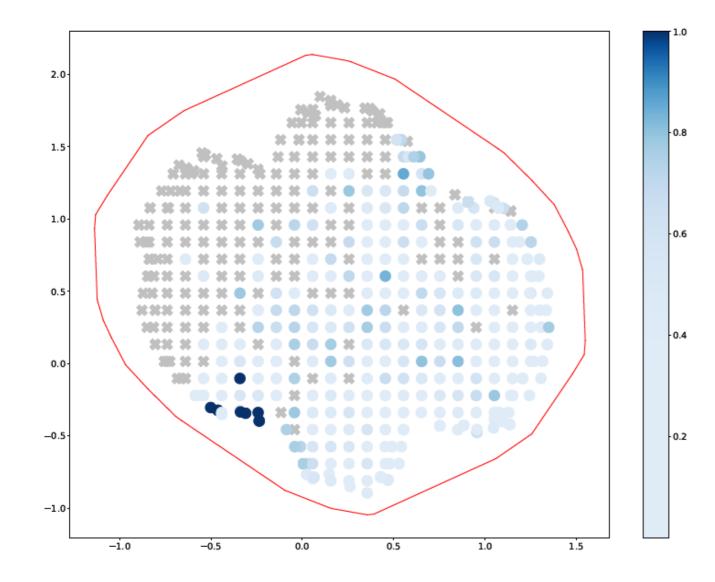
5. ALGORITHM SELECTION AND INSIGHTS Algorithm footprint: Udine

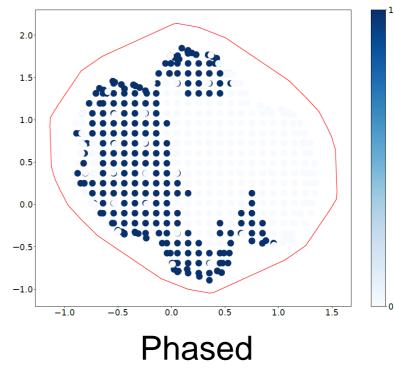


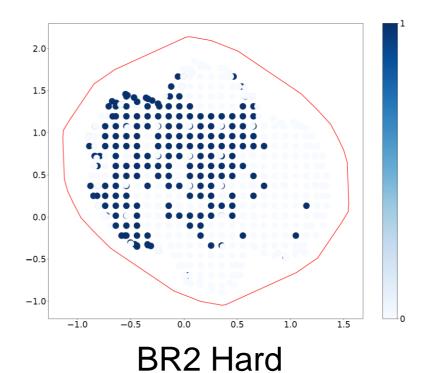


SE1 soft

Algorithm footprint: FBHS





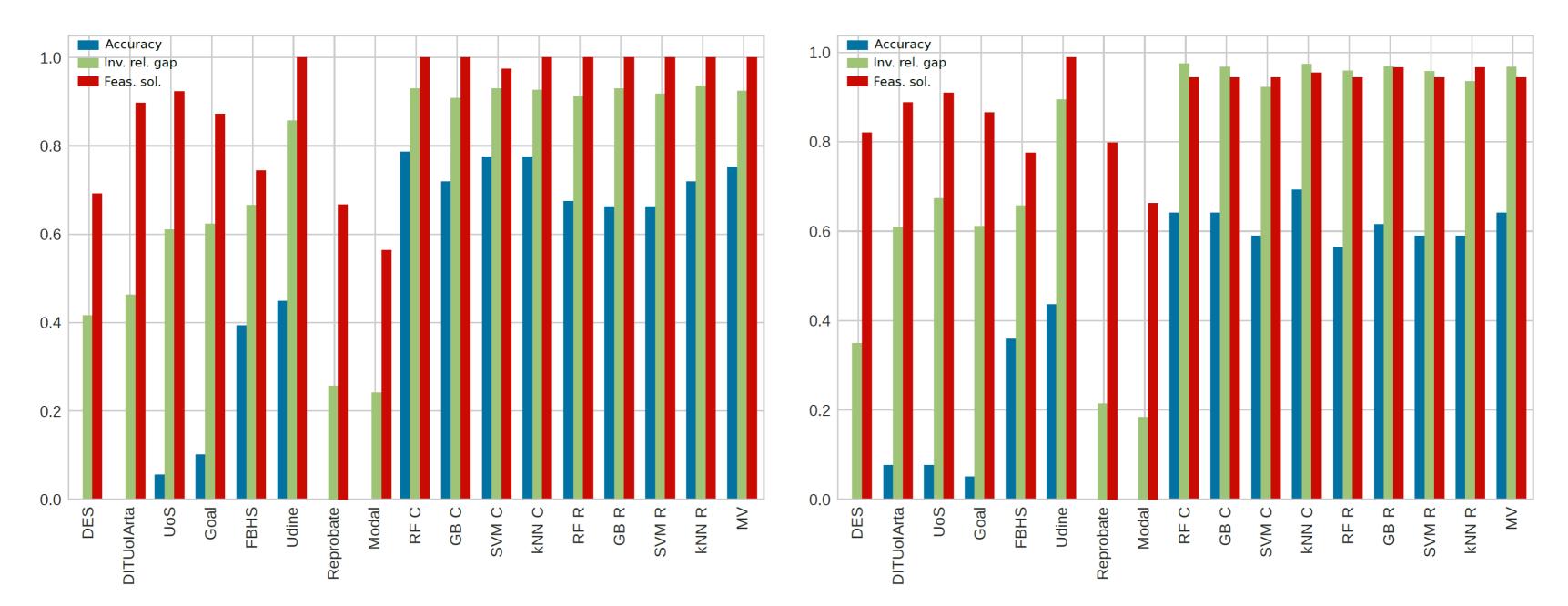


BR2 Soft

5. ALGORITHM SELECTION AND INSIGHTS Algorithm footprint: Modal

45

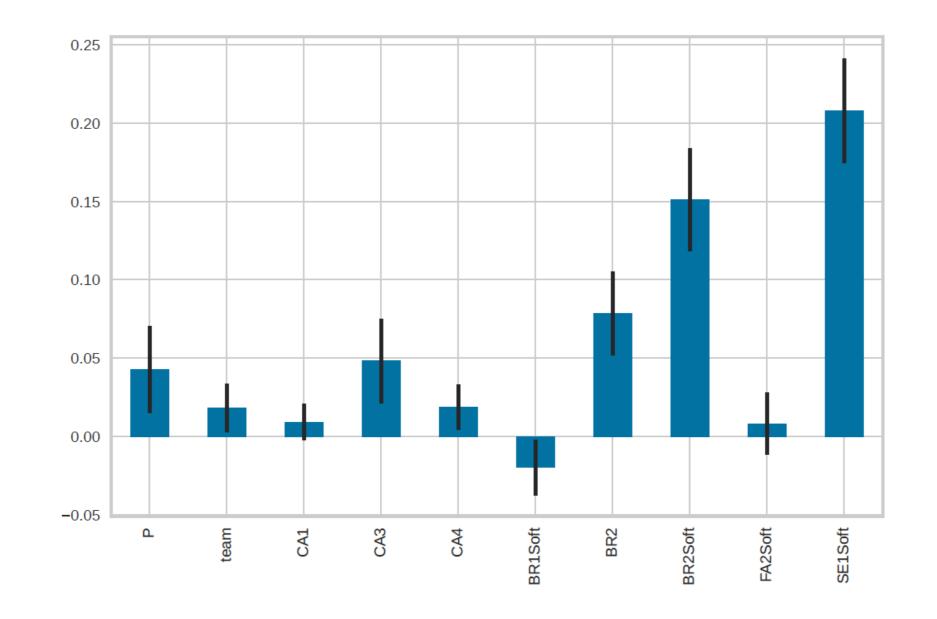
Can we predict which algorithm will work well on which instance?


Classification models

- K-nearest neighbours (kNN) •
- Random forest (RF) lacksquare
- Gradient-boosted trees (GB) ullet
- Support vector machines (SVM) \bullet

Regression variants K-nearest neighbours (kNN) Random forest (RF) Gradient-boosted trees (GB) Support vector machines (SVM)

- ullet
- •
- Majority voting (MV)



Validation set

Test set

Feature permutation based on the kNN classifier, showing for each feature the mean decrease in classification accuracy when disabling the feature.

CONCLUSION

From consulting

- find a customer with a particular problem
- develop a clever tailor-made method
- celebrate your success of beating a manual solution
- do not disclose the problem specifics

to science

- share your problem instance (RobinX XML instance repository)
- test your approach on other instances (benchmark instance set)
- learn what the strengths and weaknesses of your algorithm are (footprints)
- understand why, and improve

stance repository) mark instance set) our algorithm are

REFERENCES

- Van Bulck, D & Goossens D. (2023) The international timetabling competition on sports timetabling (ITC2021). EJOR, 308(3), p.1249-1267 ٠
- Van Bulck D, Goossens D, Schönberger J & Guajardo M (2020) RobinX: a three-field classification and unified data format for round-robin sports timetabling (2020). EJOR, 280(2), p.568-580
- Van Bulck, D, Goossens D, et al. (2023) Which algorithm to select in sports timetabling? Working paper. ٠
- Berthold T, Koch T, Shinano Y (2021) MILP. Try. Repeat. In: De Causmaecker P, Özcan E, Vanden Berghe G (eds) Proc. 13th Int. Conf. Pract. ٠ Theory Autom. Timetabling, PATAT, vol 2, pp 403–411
- Dimitsas A, Gogos C, Valouxis C, Tzallas A, Alefragis P (2022) A pragmatic approach for solving the sports scheduling problem. In: Proc. 13th Int. ٠ Conf. Pract. Theory Autom. Timetabling, PATAT, vol 3, pp 195–207
- Fonseca GHG, Toffolo TAM (2022) A fix-and-optimize heuristic for the ITC2021 sports timetabling problem. J Sched 25:273–286 ٠
- Lester MM (2022) Pseudo-boolean optimisation for robinx sports timetabling. J Sched, 25:287–299 ٠
- Lamas-Fernandez C, Martinez-Sykora A, Potts CN (2021) Scheduling double round robin sports tournaments. In: De Causmaecker P, Özcan E, ٠ Vanden Berghe G (eds) Proc. 13th Int. Conf. Pract. Theory Autom. Timetabling, PATAT, vol 2, pp 435 – 448
- Phillips AE, O'Sullivan M, Walker C (2021) An adaptive large neighbourhood search matheuristic for the ITC2021 sports timetabling competition. In: De Causmaecker P, Özcan E, Vanden Berghe G (eds) Proc. 13th Int. Conf. Pract. Theory Autom. Timetabling, PATAT, vol 2, pp 426 – 430
- Rosati RM, Petris M, Di Gaspero L, Schaerf A (2022) Multi-neighborhood simulated annealing for the sports timetabling competition ITC2021. J ٠ Sched 25:301–319
- Van Bulck D, Goossens D (2023) First-break-heuristically-schedule: Constructing highly-constrained sports timetables. Operations Research Letters ٠ 51:326-331
- Smith-Miles K, Baatar D, Wreford B, Lewis R (2014) Towards objective measures of algorithm performance across instance space. C&OR, 45:12-24 ٠
- Graham RL, Lawler EL, Lenstra JK, Rinnooy Kan AHG (1979). Optimization and Approximation in Deterministic Sequencing and Scheduling: a ٠ survey. Annals of Discrete Mathematics, Vol. 5, p. 287-326,

- My co-authors: David Van Bulck (Ghent U), Mario Guajardo (NHH), Jörn Schönberger (TU Dresden), Jan-Patrick Clarner (Zuse Institute Berlin), Angelos Dimitsas (U of Ioannina), George Fonseca (U Ouro Preto), Carlos Lamas-Fernandez (U Southampton), Martin Lester (U Reading), Jaap Pedersen (Zuse Institute Berlin), Antony Phillips (7bridges), Roberto Rosati (U Udine) – My sports team: Xiajie Yi, Miao Li, Karel Devriesere, David Van Bulck

THANKS

– All participants to ITC 2021 – EURO working groups OR in Sports & PATAT

Sports scheduling: from consulting to science

Dries Goossens (Ghent University)

Contact dries.goossens@ugent.be www.sportscheduling.ugent.be

Scheduling seminar, May 10 2023

DEPARTMENT OF BUSINESS INFORMATICS AND OPERATIONS MANAGEMENT