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Classical Scheduling

 Most single machine scheduling problems look like this:

 There are n jobs (or clients):

 Each job j has:

 a processing time pj,

 a weight wj (which may equal 1),

 a due date dj (sometimes),

 a release time rj (sometimes),

 etc…
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Classical Scheduling

 Most single machine scheduling problems look like this:

 A schedule (when there are no release times) is simply a permutation 

of the jobs, specifying the order of processing:

 The completion time of job j is such a schedule is 𝐶𝑗 = ෍
𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑓𝑡𝑒𝑟 𝑗
𝑖𝑛 𝑡ℎ𝑒 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒

𝑝𝑖
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Classical Scheduling

 The clients may have different objectives:

 they may want to -

 minimize completion 

time,

 minimize lateness,

 not be tardy,

 etc… 

𝐶𝑗 = ෍

𝜋(𝑖)≤𝜋(𝑗)

𝑝𝑖

𝐿𝑗 = 𝐶𝑗 − 𝑑𝑗

𝑈𝑗 = ൝
1 ∶ 𝐶𝑗 > 𝑑𝑗
0 ∶ 𝐶𝑗 ≤ 𝑑𝑗
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 The scheduler might decide to try to be as 

fair as possible to all clients.

Classical Scheduling

 which is equivalent to minimizing the average completion 

time of a client.

 The scheduler, being the service provider, 

typically decides the objective of the schedule. 

෍
𝑗
𝐶𝑗

 One way to do so, is to minimize their total 

completion time -

schedulingseminar.com



Classical Scheduling

 To minimize Cj, use the Shortest Processing Time first (SPT) rule:

෍
𝑗
𝐶𝑗 = 3𝑝1 + 2𝑝2 + 𝑝3

𝑝1 𝑝2 𝑝3
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Classical Scheduling

 To minimize Uj, use the Earliest Deadline First (EDD) rule:

 Suppose the clients just don’t want to be late. 

 Scan the jobs in EDD order, and when first encountering a tardy job, 

remove the largest job already processed (Hodson-Moore Alg.).

 Is this really fair?

𝑑1 𝑑2 𝑑3
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Repetitive Scheduling

 But what happens when the clients keep on returning ?

.  .  .

.  .  .

.  .  .

 Now, in the simplest case, each client has m jobs, one per each of the m

days of the month.

 Let pi,j denote the processing time of client j’s job on day i. 

 Define Ci,j to be the completion time of client j’s job on day. 

 Similarly define wi,j, di,j, and ri,j when necessary. 
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Repetitive Scheduling

 If we minimize the total completion time Ci,j, a single client can 

complete last on every day!

 This is particularly unfair if the job 

processing time aren’t entirely 

determined by the clients.

 For example:

 Healthcare.

 Civic duties (jury duty, 

military service, ect..).

 Etc…
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Repetitive Scheduling

 If we minimize the total completion time Ui,j, a single client can be 

tardy every day!

 This means that from his point of view, 

he never gets any service!

 This is particularly 

unfair when the job due 

dates aren’t entirely 

determined by the 

clients. 
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Fair Repetitive Scheduling

 Instead, it makes much more sense to minimize 

max
𝑗∈[𝑛]

෍

𝑖∈[𝑚]

𝐶𝑖,𝑗max
𝑗∈[𝑛]

𝐶𝑗 =

in case the clients are interested in minimizing their 

completion time.

 Or, to minimize 

max
𝑗∈[𝑛]

෍

𝑖∈[𝑚]

𝑈𝑖,𝑗max
𝑗∈[𝑛]

𝑈𝑗 =

in case the clients are interested in not being tardy.
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Fair Repetitive Scheduling

 More generally, we may have any (say, minimization) objective 

function Fi,j = f(Ci,j,) that typically depends on the completion time of 

the clients on any given day.

max
𝑗∈[𝑛]

෍

𝑖∈[𝑚]

𝐹𝑖,𝑗max
𝑗∈[𝑛]

𝐹𝑗 =

 In the decision version, we are given a fairness threshold K, and the goal is 

to determine whether there exists a schedule with maxFj  K.

 We define the (single machine) Fairness in Repetitive Scheduling 

problem, 1|rep|maxjiFi,j, as the problem of minimizing 
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Fair Repetitive Scheduling

 Thus, we obtain a performance matrix, which specifies the 

performance (according to the given objective function) of each job. 

F1,1 F1,2 … … F1,n

F2,1 F2,2 … … F2,n

... ... ... ... ...

… ... ... ... ...

… ... ... ... ...

Fm,1 Fm,2 … … Fm,n

F1 F2 … … Fn

rows 

correspond 

to days

column j

sums up to Fj

 The goal is to minimize the maximum value in the final row.
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Fair Repetitive Scheduling

 Our model is robust, and can handle several tweaks and changes, such as 

 More complex machine models.

 E.g., the Pq|rep|maxjiCi,j problem 

is the problem of minimizing the 

maximum total completion time 

of every client when there are q 

parallel machines every day. 

 Different fairness thresholds Kj

for each client.

 E.g., in cases where there are 

premium customers, etc.
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Fair Repetitive Scheduling

 Our model allows several interesting variants to study -

 Is there a schedule which is k-fair 

for all but s clients?

 A variant of approximate fairness

where a solution is fair to almost 

everyone.

 The price of fairness?

 The ratio between the global 

optimum and the worst k-fair 

solution.

. . .

≤ 𝒔
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The 1|rep|max Ci,j Problem

 Consider first parameter n = number of clients. 

Theorem: The 1|rep|max Ci,j problem is (weakly) NP-hard for two or 

more clients (n≥2).

 Note that this shows that the problem is APX-hard, meaning it doesn’t 

admit a PTAS (most likely).

Theorem: The 1|rep|max Ci,j problem is pseudo polynomial-time 

solvable for a constant number of clients (n=O(1)).

 For parameter k = fairness threshold, we can show -

Theorem: The 1|rep|max Ci,j problem is (strongly) NP-hard even for 

constant fairness thresholds (k≥37).
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The 1|rep|max Ci,j Problem

 Next consider parameter m = number of days. We prove 

Theorem: The 1|rep|max Ci,j problem is (weakly) NP-hard for four or 

more days (m≥4).

 This leads to the first open problem of the talk: 

Theorem: The 1|rep|max Ci,j problem is polynomial-time solvable for 

two days (m=2).

What is the complexity 

of 1|rep|max Ci,j for 

three days?? 
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The Two Days Algorithm

 The algorithm is inspired by Johnson’s algorithm for F2||Cmax.

 We begin with a structural lemma:

Lemma (Property 1): There is an optimal schedule for any 1|rep|max Ci,j

instance on two days, where the schedule on the second day is in reverse 

order of the schedule on the first day. 

 Thus, it is enough to only determine the order of processing on the 

first day.
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The Two Days Algorithm

 The proof is by an exchange argument:

day 1

day 2

. . . . . .. . .

. . . . . .. . .

. . . . . .. . .

. . . . . .. . .

Alice and Bob’s new 

total completion time 

is less than Bob’s old 

total completion time

Lemma (Property 1): There is an optimal schedule for any 1|rep|max Ci,j

instance on two days, where the schedule on the second day is in reverse 

order of the schedule on the first day. 
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The Two Days Algorithm

 Using the lemma, we construct an optimal schedule as follows:

 Partition the clients into two types:

smaller processing 

time on day 1 at least 

as large as on day 2

𝑝1,𝑗 ≤ 𝑝2,𝑗

type 1 smaller processing 

time on day 2

𝑝1,𝑗 > 𝑝2,𝑗

type 2

 On day 1: Schedule first the jobs of type 1 clients in SPT order, and then 

the jobs of type 2 clients in LPT order.

 On day 2 do the reverse of day 1.
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The Two Days Algorithm

 Step 1: Show that this set includes solutions where type 1 clients are scheduled 

before type 2 clients on day 1 (Property 2). 

Lemma: The schedule constructed is optimal.

 Proof: Consider only optimal solutions where property 1 holds. 

day 1

day 2

. . .. . .

. . .. . .

If not there always exists a type 1 job scheduled directly after a type 2 job.

. . .. . .

. . .. . .

A swap changes nothing for 

other clients, and cannot 

increase the total completion 

time of Alica and Bob
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The Two Days Algorithm

 Step 2: Show that this set only includes solutions where on day 1, type 1 

clients are scheduled in SPT order, and type 2 clients scheduled in LPT order 

(Property 3).

Lemma: The schedule constructed is optimal.

 Proof: Consider only optimal solutions where property 1 and 2 hold. 

day 1

day 2

If not, there always is a consecutive pair of clients which violates this condition. 

. . .. . .

. . .. . .

. . .. . .

. . .. . .

A swap changes nothing 

for other clients, and the 

new total completion time 

of Alice and Charlie is at 

most Alice’s old 

completion time
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Parameterized Complexity

 We can also show the following -

Theorem: The 1|rep|max Ci,j problem is strongly W[1]-hard when 

parameterized by the number of days.

 This implies that the problem is unlike to admit a f(m)nO(1) algorithm, 

even if the processing times are given in unary. 

 A nf(m) algorithm is still possible (yet unknown) in this case.

 One the other hand, we can show that -

Theorem: The 1|rep|max Ci,j problem can be solved in f(K+m)nO(1) time.

 The proof uses n-fold ILPs. 
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Approximation Algorithms

 We say that a solution is 𝛼-approximate if it has a fairness threshold of k 

such that 𝑘 ≤ 𝛼 ⋅ 𝑂𝑃𝑇, where OPT is the optimal fairness threshold.

 We show that -

Theorem: The 1|rep|max Ci,j problem admits a 2-approximation algorithm 

that runs in polynomial-time.

Is there a more efficient 

(combinatorial) 

constant approximation 

algorithm?? 

 While the algorithm runs in polynomial-time, it relies on several 

applications of an LP solver.
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2-Approximation Algorithm

 The algorithm is inspired by 3-approximation algorithm for 1|rj|wjCj of 

Hall, Schulz, D. B. Shmoys, and Wein [MathofOR’97].

 Consider the following LP:

 The variables are:

 xi,j = completion time of client j’s job on day i.

 K = the fairness threshold.
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2-Approximation Algorithm

 The first set of constraints ensures that no client has total completion time 

which exceeds the fairness threshold k:

 Here 𝑃𝑖
2(𝑆) denotes the total processing time of the jobs of S on day i, squared.

 The second set is less clear -
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2-Approximation Algorithm

 The constraint is clearly satisfied for every singleton S={j} since

 And for |S|>1 we have

 As either the job of client j is scheduled before the job of client k, or 

vise-versa.

 Thus, every schedule satisfies the second set of constraints.
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2-Approximation Algorithm

 Note that our LP has an exponential number of constraints, one for each 

subset of clients. 

 Lucky, the LP has a separation oracle (due to Queyranne [MathProg’93]) -

 A separation oracle is a polynomial-time algorithm that receives a solution x to 

the LP and determines whether x is feasible or not. If x is not feasible, the 

oracle returns a constraint which is violated by x.

 One can use the Primal-Dual method, in conjunction with the oracle, to 

obtain an optimal solution for the LP.
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2-Approximation Algorithm

 Let 𝑥1,1
∗ , …, 𝑥𝑛,𝑚

∗ denote an optimal solution for the LP.

 Using this solution, we construct a schedule for each day i by processing 

the jobs in non-decreasing values of 𝑥𝑖,𝑗
∗ .

𝑥𝑖,𝑗
∗ 𝑥𝑖,𝑗

∗ 𝑥𝑖,𝑗
∗

schedule 𝜋𝑖
for day i

 The completion time of client j’s job on day i is
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2-Approximation Algorithm

Lemma: The schedule constructed is 2-approximate. 

 Proof: Fix 𝑖 ∈ 𝑚 and 𝑗 ∈ 𝑛 , and consider the job of client j on day i. 

 Let     denote the set of clients whose jobs were not scheduled after the 

job of client j (i.e., j and those before him on day i).

 Then, by our construction, we have

. . .
beginning 

of day i

client j
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2-Approximation Algorithm

Lemma: The schedule constructed is 2-approximate. 

 Proof: Fix 𝑖 ∈ 𝑚 and 𝑗 ∈ 𝑛 , and consider the job of client j on day i. 

 Then, by our construction, we have

 On the other hand, as 𝑥1,1
∗ , …, 𝑥𝑛,𝑚

∗ is feasible, and 𝑥𝑖,𝑗
∗ ≥ 𝑥𝑖,𝑘

∗ for all 

clients 𝑘 ∈ , we have

 It follows that                                      

 Thus, for any client 𝑗 ∈ 𝑛 , we get

where 𝐾∗ is the optimal fairness threshold. 
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Further Results

 We can also show the following -

Theorem: The 1|rep|max Ci,j problem admits a PTAS for a constant 

number of days.

 The PTAS replies on an involved batching scheme where we batch 

groups of jobs together. 

 We also consider the all days are the same case, and show -

Theorem: The 1|rep,pi,j=pj|max Ci,j problem admits a QPTAS.

Theorem: The 1|rep,pi,j=pj|max Ci,j problem admits a 
(1+ 2)

2
-approximation 

algorithm that runs in near linear-time.
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The 1|rep|max Ui,j Problem

 The problem is already quite hard, even when each client has the 

same due date on each day:

Theorem: The 1|rep,di,j=dj|max Ui,j problem is NP-hard, even for K=1.

 In the all days are the same variant, we can show for the single due 

date case a 1.5-approximation algorithm

Theorem: The 1|rep,pi,j=1|max Ui,j problem is polynomial-time solvable.

 On the other hand, it is easy for unit processing times:

 This theorem holds even when the jobs have release times, and there 

are multiple parallel machines for processing.
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The 1|rep|max Zi,j Problem

 This problem is quite hard as well:

Theorem: The 1|rep|max Zi,j problem is polynomial-time solvable for 

𝑘 ∈ 𝑚 − 1,𝑚 , and NP-hard otherwise.

 The all days are the same case translates directly to interval graph 

coloring.

Theorem: The 1|rep|max Zi,j problem can be solved in f(n)mO(1) time.

 However, when the number of clients is small -

 And when then the number of days is small -

Theorem: The 1|rep,di,j=dj|max Zi,j problem can be solved in O(mn)(m+1) 

time.
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