(? Ben-Gurion University
JEC of the Negev

Danny Hermelin

Fairness in Repetitive
Scheduling

Joint work with Klaus Heeger, Yuval Itzhaki, George B. Mertzios, Hendrik
Molter, Rolf Niedermeier, Michael L. Pinedo, Danny Segev, and Dvir Shabtay

schedulingseminar.com

Classical Scheduling

» Most single machine scheduling problems look like this:

There are n jobs (or clients):

DUE
DATE
Y
DUE
DATE

Ben-Gurion Universit i i
](?oftheNegev Y schedulingseminar.com

Each job j has:

a processing time p,

a weight w; (which may equal 1),

a due date d; (sometimes),

a release time r; (sometimes),

etc...

DUE
DATE

Classical Scheduling

» Most single machine scheduling problems look like this:

A schedule (when there are no release times) is simply a permutation
of the jobs, specifying the order of processing:

» The completion time of job j is such a schedule is C; = Z Di

iLisnot after j
in the schedule

Ben-Gurion Universit i i
QoftheNegeV Y schedulingseminar.com

Classical Scheduling

» The clients may have different objectives: @

they may want to -

minimize completion
time,
¢ = Z Di
r(D)=m(j)
minimize lateness,

not be tardy,
J7)0:C < d;
etc...
fkﬁfﬁ‘é&f;‘;‘f iversity schedulingseminar.com

Classical Scheduling

» The scheduler, being the service provider, b

typically decides the objective of the schedule.

» The scheduler might decide to try to be as
fair as possible to all clients.

» One way to do so, 1s to minimize their total

completion time - Z C;
J

which 1s equivalent to minimizing the average completion
time of a client.

Ben-Gurion Universit i i
QoftheNegev Y schedulingseminar.com

Classical Scheduling

» To minimize XC;, use the Shortest Processing Time first (SPT) rule:

P1

Z-Cj: 3p1 + 2p; +p3
j

Ben-Gurion Universit i i
;QoftheNegeV Y schedulingseminar.com

Classical Scheduling

» Suppose the clients just don’t want to be late.

» To minimize XU, use the Earliest Deadline First (EDD) rule:

DUE
DATE

» Scan the jobs in EDD order, and when first encountering a tardy job,
remove the largest job already processed (Hodson-Moore Alg.).

» Is this really fair?

Ben-Gurion Universit i i
QoftheNegev Y schedulingseminar.com

Repetitive Scheduling

» But what happens when the clients keep on returning ?

DUE s
S

» Now, in the simplest case, each client has m jobs, one per each of the m
days of the month.

» Let p;; denote the processing time of client j’s job on day 1.
» Define C, ; to be the completion time of client j’s job on day.

» Similarly define w, ;, d; ;, and r;; when necessary.

Ben-Gurion Universit i i
](?OftheNegev Y schedulingseminar.com

Repetitive Scheduling

» If we minimize the total completion time 2C
complete last on every day!

i ﬁ ﬁ » This 1s particularly unfair if the job

processing time aren’t entirely

i i i determined by the clients.

» For example:

2 | » Healthcare.
‘ » Civic duties (jury duty,

military service, ect..).
@) i |
i i .ﬁ& » Etc...

Ben-Gurion Universit i i
QoftheNegev Y schedulingseminar.com

ij» a single client can

Repetitive Scheduling

» If we minimize the total completion time 2U
tardy every day!

i .ﬁ‘ i » This means that from his point of view,
| he never gets any service!
| » This is particularly

b unfair when the job due

i i dates aren’t entirely

ij» a single client can be

determined by the
i i i clients. e
Ben-Gurion Universit . .
Q of theNegev Y schedulingseminar.com

Fair Repetitive Scheduling

» Instead, 1t makes much more sense to minimize

max(; = max Z Ci j
J€[n] JE[n] ’

in case the clients are interested in minimizing their
completion time.

» Or, to minimize

maxU; = max Z Ui j

j€E[n]
lE m

in case the clients are interested in not being tardy.

Ben-Gurion Universit i i
](?oftheNegev Y schedulingseminar.com

Fair Repetitive Scheduling

» More generally, we may have any (say, minimization) objective
function F, ;= f(C, ;,) that typically depends on the completion time of
the clients on any given day.

» We define the (single machine) Fairness in Repetitive Scheduling

problem, I|rep/max;%;F, ;, as the problem of minimizing

» In the decision version, we are given a fairness threshold K, and the goal is
to determine whether there exists a schedule with maxF; < K.

Ben-Gurion Universit i i
QoftheNegev Y schedulingseminar.com

Fair Repetitive Scheduling

» Thus, we obtain a performance matrix, which specifies the
performance (according to the given objective function) of each job.

Fl)l Fl,z DR oo Fl)n
F2’1 F2,2 oo e o0 Fz,n
rOws =
correspond F., F., F .
to days : : .
Fl FZ Fn
column j

sums up to F;

» The goal is to minimize the maximum value in the final row.

Ben-Gurion Universit i i
QoftheNegev Y schedulingseminar.com

Fair Repetitive Scheduling

» Our model 1s robust, and can handle several tweaks and changes, such as

More complex machine models.

E.g., the Pqjrep/max;2,C, ; problem
1s the problem of minimizing the
maximum total completion time
of every client when there are g

parallel machines every day.

ﬂ
- Different fairness thresholds K;
2 for each client.
“ E.g., in cases where there are
premium customers, etc.
Ben-Gurion Universit - i
Q of theNegey schedulingseminar.com

Fair Repetitive Scheduling

» Our model allows several interesting variants to study -

<s
A

) &) *
))) "/
| |

Is there a schedule which 1s k-fair
for all but s clients?

A variant of approximate fairness
where a solution is fair to almost
everyone.

The price of fairness?

@ @ The ratio between the global

optimum and the worst k-fair
AR .
solution.

Ben-Gurion Universit i i
QoftheNegev Y schedulingseminar.com

The 1|rep|max 2C,; Problem

» Consider first parameter n = number of clients.

Theorem: The l|rep|max XC, ; problem is (weakly) NP-hard for two or
more clients (n>2).

Theorem: The l|rep|max XC;; problem is pseudo polynomial-time
solvable for a constant number of clients (n=0(1)).

» For parameter k = fairness threshold, we can show -

Theorem: The l|rep|max XC;; problem is (strongly) NP-hard even for
constant fairness thresholds (k>37).

» Note that this shows that the problem is APX-hard, meaning it doesn’t
admit a PTAS (most likely).

Ben-Gurion Universit i i
](?(oftheNegeV Y schedulingseminar.com

The 1|rep|max 2C,; Problem

» Next consider parameter m = number of days. We prove

Theorem: The l|rep|max XC;; problem is (weakly) NP-hard for four or
more days (m>4).

Theorem: The l|rep|max XC;; problem is polynomial-time solvable for
two days (m=2).

» This leads to the first open problem of the talk:

What is the complexity
of 1{repjmax 2C,; . for
three days??

i o

Ben-Gurion Universit i i
](?(oftheNegeV Y schedulingseminar.com

The Two Days Algorithm

» The algorithm is inspired by Johnson’s algorithm for F2||C

max*

» We begin with a structural lemma:

Lemma (Property 1): There is an optimal schedule for any 1|rep|max XC;;
instance on two days, where the schedule on the second day is in reverse
order of the schedule on the first day.

asy

» Thus, it 1s enough to only determine the order of processing on the
first day.

Ben-Gurion Universit i i
;QoftheNegeV Y schedulingseminar.com

The Two Days Algorithm

Lemma (Property 1): There is an optimal schedule for any 1|rep|max XC;;
instance on two days, where the schedule on the second day is in reverse
order of the schedule on the first day.

» The proof is by an exchange argument:

Alice and Bob’s new
total completion time
. 1s less than Bob’s old

S : ~ total completion time S
dayl e o o e o o e o o e D\ So—v" o o o
day 2 e o o i o o o i e o o o o o i e o o i e o o

Ben-Gurion Universit i i
](?(oftheNegeV Y schedulingseminar.com

The Two Days Algorithm

» Using the lemma, we construct an optimal schedule as follows:

» Partition the clients into two types:

BUEREES
type 1 smaller processing N

time on day 1 at least
as large as on day 2

_ PSPy _ P1j > P2,)

smaller processing type 2

time on day 2

» On day |: Schedule first the jobs of type 1 clients in SPT order, and then
the jobs of type 2 clients in LPT order.

» On day 2 do the reverse of day 1.

Ben-Gurion Universit i i
QoftheNegev Y schedulingseminar.com

The Two Days Algorithm

Lemma: The schedule constructed is optimal.

» Proof: Consider only optimal solutions where property 1 holds.

Step 1: Show that this set includes solutions where type 1 clients are scheduled
before type 2 clients on day 1 (Property 2).

If not there always exists a type 1 job scheduled directly after a e 2.7

A swap changes nothing for
other clients, and cannot
increase the total completion

ﬁ o o o »- time of Alica and Bob o
i e o o

day 1 o

o o i
day2 e o o i

schedulingseminar.com

»

() Ben-Gurion University
M of the Negev

The Two Days Algorithm

Lemma: The schedule constructed is optimal.

» Proof: Consider only optimal solutions where property 1 and 2 hold.

Step 2: Show that this set only includes solutions where on day 1, type 1
clients are scheduled in SPT order, and type 2 clients scheduled in LPT order

(Property 3).
If not, there always 1s a consecutive pair of clients which 7 .
A swap changes nothing
for other clients, and the
/ new total completion time
R of Alice and Charlie is at
day 1 ® o o ® o o mOSt AliCC’S Old @& e o
‘ A completion time
A\ ~—
day 2 oooi.ﬁ‘ e o o e o o ’ﬁ’i o o o
Ben-Gurion Universit i i
QoftheNegev y schedulingseminar.com

Parameterized Complexity

» We can also show the following -

Theorem: The l|rep|max XC;; problem is strongly W[1]-hard when
parameterized by the number of days.

» This implies that the problem is unlike to admit a f(m)n®") algorithm,
even if the processing times are given in unary.

A nf™ algorithm is still possible (yet unknown) in this case.
» One the other hand, we can show that -
Theorem: The l[repmax C;; problem can be solved in f{(K+m)n°" time.

» The proof uses n-fold ILPs.

Ben-Gurion Universit i i
](?(oftheNegeV Y schedulingseminar.com

Approximation Algorithms

» We say that a solution 1s a-approximate if it has a fairness threshold of k
such that k < a - OPT, where OPT is the optimal fairness threshold.

» We show that -

Theorem: The l|rep|max XC;; problem admits a 2-approximation algorithm
that runs in polynomial-time.

» While the algorithm runs in polynomial-time, it relies on several
applications of an LP solver.

Is there a more efficient
(combinatorial)
constant approximation
algorithm??

Ben-Gurion Universit i i
QoftheNegev Y schedulingseminar.com

2-Approximation Algorithm

» The algorithm is inspired by 3-approximation algorithm for 1|r;|Zw,C; of
Hall, Schulz, D. B. Shmoys, and Wein [MathofOR’97].

» Consider the following LP:

min K
s.t. Z v <K Vjen]
i€[m]
1
> _pijrij = 5 PS) Vie [m], S C n]
jes

» The variables are:
x; ;= completion time of client j’s job on day 1.

K = the fairness threshold.

Ben-Gurion Universit i i
QoftheNegev Y schedulingseminar.com

2-Approximation Algorithm

» The first set of constraints ensures that no client has total completion time
which exceeds the fairness threshold k:

Zmi,jSK V]E[n]

» The second set is less clear -

1
> pijeig 2 5 PAS) Vi€ [m], S Cnl

JjeS

Here P7(S) denotes the total processing time of the jobs of S on day i, squared.

Ben-Gurion Universit i i
QoftheNegev Y schedulingseminar.com

2-Approximation Algorithm

» The constraint 1s clearly satisfied for every singleton S={j} since

1 1
pij-Cij 2 Dij-Dij > b 'p%,j — 9 P2(S).

» And for [S>1 we have

1 2 1
sz',jcv:,j > Z PijPik = 5-(2197;,3-) +§sz2=j

1

2

jes J,keS,j<k

» As either the job of client j 1s scheduled before the job of client k, or
vise-versa.

» Thus, every schedule satisfies the second set of constraints.

Ben-Gurion Universit i i
QoftheNegev Y schedulingseminar.com

2-Approximation Algorithm

min K

s.t. Z rij; < K Vi€ [n]
ie[m]
Z'pi,ji-'é.j > % . P(S) Vie [m], SC[n]
jes

» Note that our LP has an exponential number of constraints, one for each
subset of clients.

» Lucky, the LP has a separation oracle (due to Queyranne [MathProg’93]) -

A separation oracle 1s a polynomial-time algorithm that receives a solution x to
the LP and determines whether x is feasible or not. If x 1s not feasible, the
oracle returns a constraint which is violated by x.

» One can use the Primal-Dual method, in conjunction with the oracle, to
obtain an optimal solution for the LP.

Ben-Gurion Universit i i
QoftheNegev Y schedulingseminar.com

2-Approximation Algorithm

» Let x7 1, ..., xp mdenote an optimal solution for the LP.

» Using this solution, we construct a schedule for each day 1 by processing
the jobs in non-decreasing values of x; ;.

schedule ;
for day 1

* k

29 Xij Xi
)

» The completion time of client j’s job on day iis Cij = > . j)<r.(j) Pik:

Ben-Gurion Universit i i
](?(oftheNegeV Y schedulingseminar.com

2-Approximation Algorithm

Lemma: The schedule constructed is 2-approximate.

» Proof: Fix i € [m] and j € [n], and consider the job of client j on day i.

» Let Sy denote the set of clients whose jobs were not scheduled after the
job of client j (i.e., j and those before him on day 1).

L client j
beginning 3 2
ofdayi , o o o
\ }
|

Sy

» Then, by our construction, we have Cij =3 y<r, ;) Pik = Pi(Se).

Ben-Gurion Universit i i
QoftheNegev Y schedulingseminar.com

2-Approximation Algorithm

Lemma: The schedule constructed is 2-approximate.

» Proof: Fix i € [m] and j € [n], and consider the job of client j on day i.
» Then, by our construction, we have Ci;; = Zm(;@)gm(j) pi i = Pi(Se).

» On the other hand, as xj 1, ..., Xp m is feasible, and x; ; = x; for all

clients k € Sy, we have

— - PX(S) < qu:,kﬂ?ik < -CE;j'sz‘,k = a7, Pi(S).
keSy keSy

» It follows that 227, > P;(S¢) = C

» Thus, for any client j € [n], we get Z Cij < 2 Z xi;, < 2K,
i=1 i=1
where K™ is the optimal fairness threshold.

Ben-Gurion Universit i i
QoftheNegev Y schedulingseminar.com

Further Results

» We can also show the following -

Theorem: The l|rep|max XC,; problem admits a PTAS for a constant
number of days.

» The PTAS replies on an involved batching scheme where we batch
groups of jobs together.

» We also consider the all days are the same case, and show -

(1+,/2)

Theorem: The 1[rep,p; ;=p;max XC, ; problem admits a —, —-approximation

algorithm that runs in near linear-time.

Theorem: The l|rep,p;;=p;max XC;; problem admits a QPTAS.

Ben-Gurion Universit i i
](?(oftheNegeV Y schedulingseminar.com

The 1 |rep|max 2U;; Problem

» The problem is already quite hard, even when each client has the
same due date on each day:

Theorem: The l|rep,d;;=d;max XU, ; problem is NP-hard, even for K=1.

In the all days are the same variant, we can show for the single due
date case a 1.5-approximation algorithm

» On the other hand, it 1s easy for unit processing times:

Theorem: The l|rep,p;;=1|max XU, ; problem is polynomial-time solvable.

This theorem holds even when the jobs have release times, and there
are multiple parallel machines for processing.

Ben-Gurion Universit i i
](?(oftheNegeV Y schedulingseminar.com

The 1|rep|max ¥Z,; Problem

» This problem is quite hard as well:

Theorem: The l|rep|max XZ,; problem is polynomial-time solvable for
k € {m — 1, m}, and NP-hard otherwise.

» However, when the number of clients 1s small -
Theorem: The l[repjmax XZ;; problem can be solved in f(n)m°" time.
» And when then the number of days 1s small -

Theorem: The 1|rep,di,j=dj|max XZ, ; problem can be solved in O(mn)™*1)
time.

» The all days are the same case translates directly to interval graph
coloring.

Ben-Gurion Universit i i
](?(oftheNegeV Y schedulingseminar.com

Biblography

1. Klaus Heeger, D.H., George B. Mertzios, Hendrik Molter, Rolf
Niedermeier, Dvir Shabtay.: Equitable scheduling on a single
machine. J. Sched. 26(2): 209-225 (2023).

2. D.H., Hendrik Molter, Rolf Niedermeier, Michael L. Pinedo, Dvir
Shabtay: Fairness in repetitive scheduling. Eur. J. Oper. Res. 323(3):
724-738 (2025).

3. Klaus Heeger, D.H., Yuval Itzhaki, Hendrik Molter, Dvir Shabtay. Fair
repetitive interval scheduling. Algorithmica 87(9): 1340-1368 (2025).

4. D.H., Danny Segev, Dvir Shabtay: Approximate fair repetitive
scheduling. Work in progress.

Ben-Gurion Universit i i
QoftheNegeV Y schedulingseminar.com

THANK YOU
FOR YOUR
ATTENTION

schedulingseminar.com

	Slide 1: Fairness in Repetitive Scheduling
	Slide 2: Classical Scheduling
	Slide 3: Classical Scheduling
	Slide 4: Classical Scheduling
	Slide 5: Classical Scheduling
	Slide 6: Classical Scheduling
	Slide 7: Classical Scheduling
	Slide 8: Repetitive Scheduling
	Slide 9: Repetitive Scheduling
	Slide 10: Repetitive Scheduling
	Slide 11: Fair Repetitive Scheduling
	Slide 12: Fair Repetitive Scheduling
	Slide 13: Fair Repetitive Scheduling
	Slide 14: Fair Repetitive Scheduling
	Slide 15: Fair Repetitive Scheduling
	Slide 16: The 1|rep|max Ci,j Problem
	Slide 17: The 1|rep|max Ci,j Problem
	Slide 18: The Two Days Algorithm
	Slide 19: The Two Days Algorithm
	Slide 20: The Two Days Algorithm
	Slide 21: The Two Days Algorithm
	Slide 22: The Two Days Algorithm
	Slide 23: Parameterized Complexity
	Slide 24: Approximation Algorithms
	Slide 25: 2-Approximation Algorithm
	Slide 26: 2-Approximation Algorithm
	Slide 27: 2-Approximation Algorithm
	Slide 28: 2-Approximation Algorithm
	Slide 29: 2-Approximation Algorithm
	Slide 30: 2-Approximation Algorithm
	Slide 31: 2-Approximation Algorithm
	Slide 32: Further Results
	Slide 33: The 1|rep|max Ui,j Problem
	Slide 34: The 1|rep|max Zi,j Problem
	Slide 35: Biblography
	Slide 36: Thank You for your attention

