
Fairness in Repetitive

Scheduling

Joint work with Klaus Heeger, Yuval Itzhaki, George B. Mertzios, Hendrik

Molter, Rolf Niedermeier, Michael L. Pinedo, Danny Segev, and Dvir Shabtay

Danny Hermelin

schedulingseminar.com

Classical Scheduling

 Most single machine scheduling problems look like this:

 There are n jobs (or clients):

 Each job j has:

 a processing time pj,

 a weight wj (which may equal 1),

 a due date dj (sometimes),

 a release time rj (sometimes),

 etc…

schedulingseminar.com

Classical Scheduling

 Most single machine scheduling problems look like this:

 A schedule (when there are no release times) is simply a permutation

of the jobs, specifying the order of processing:

 The completion time of job j is such a schedule is 𝐶𝑗 = ෍
𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑓𝑡𝑒𝑟 𝑗
𝑖𝑛 𝑡ℎ𝑒 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒

𝑝𝑖

schedulingseminar.com

Classical Scheduling

 The clients may have different objectives:

 they may want to -

 minimize completion

time,

 minimize lateness,

 not be tardy,

 etc…

𝐶𝑗 = ෍

𝜋(𝑖)≤𝜋(𝑗)

𝑝𝑖

𝐿𝑗 = 𝐶𝑗 − 𝑑𝑗

𝑈𝑗 = ൝
1 ∶ 𝐶𝑗 > 𝑑𝑗
0 ∶ 𝐶𝑗 ≤ 𝑑𝑗

schedulingseminar.com

 The scheduler might decide to try to be as

fair as possible to all clients.

Classical Scheduling

 which is equivalent to minimizing the average completion

time of a client.

 The scheduler, being the service provider,

typically decides the objective of the schedule.

෍
𝑗
𝐶𝑗

 One way to do so, is to minimize their total

completion time -

schedulingseminar.com

Classical Scheduling

 To minimize Cj, use the Shortest Processing Time first (SPT) rule:

෍
𝑗
𝐶𝑗 = 3𝑝1 + 2𝑝2 + 𝑝3

𝑝1 𝑝2 𝑝3

schedulingseminar.com

Classical Scheduling

 To minimize Uj, use the Earliest Deadline First (EDD) rule:

 Suppose the clients just don’t want to be late.

 Scan the jobs in EDD order, and when first encountering a tardy job,

remove the largest job already processed (Hodson-Moore Alg.).

 Is this really fair?

𝑑1 𝑑2 𝑑3

schedulingseminar.com

Repetitive Scheduling

 But what happens when the clients keep on returning ?

. . .

. . .

. . .

 Now, in the simplest case, each client has m jobs, one per each of the m

days of the month.

 Let pi,j denote the processing time of client j’s job on day i.

 Define Ci,j to be the completion time of client j’s job on day.

 Similarly define wi,j, di,j, and ri,j when necessary.

schedulingseminar.com

Repetitive Scheduling

 If we minimize the total completion time Ci,j, a single client can

complete last on every day!

 This is particularly unfair if the job

processing time aren’t entirely

determined by the clients.

 For example:

 Healthcare.

 Civic duties (jury duty,

military service, ect..).

 Etc…

schedulingseminar.com

Repetitive Scheduling

 If we minimize the total completion time Ui,j, a single client can be

tardy every day!

 This means that from his point of view,

he never gets any service!

 This is particularly

unfair when the job due

dates aren’t entirely

determined by the

clients.

schedulingseminar.com

Fair Repetitive Scheduling

 Instead, it makes much more sense to minimize

max
𝑗∈[𝑛]

෍

𝑖∈[𝑚]

𝐶𝑖,𝑗max
𝑗∈[𝑛]

𝐶𝑗 =

in case the clients are interested in minimizing their

completion time.

 Or, to minimize

max
𝑗∈[𝑛]

෍

𝑖∈[𝑚]

𝑈𝑖,𝑗max
𝑗∈[𝑛]

𝑈𝑗 =

in case the clients are interested in not being tardy.

schedulingseminar.com

Fair Repetitive Scheduling

 More generally, we may have any (say, minimization) objective

function Fi,j = f(Ci,j,) that typically depends on the completion time of

the clients on any given day.

max
𝑗∈[𝑛]

෍

𝑖∈[𝑚]

𝐹𝑖,𝑗max
𝑗∈[𝑛]

𝐹𝑗 =

 In the decision version, we are given a fairness threshold K, and the goal is

to determine whether there exists a schedule with maxFj  K.

 We define the (single machine) Fairness in Repetitive Scheduling

problem, 1|rep|maxjiFi,j, as the problem of minimizing

schedulingseminar.com

Fair Repetitive Scheduling

 Thus, we obtain a performance matrix, which specifies the

performance (according to the given objective function) of each job.

F1,1 F1,2 … … F1,n

F2,1 F2,2 … … F2,n

...

…

…

Fm,1 Fm,2 … … Fm,n

F1 F2 … … Fn

rows

correspond

to days

column j

sums up to Fj

 The goal is to minimize the maximum value in the final row.

schedulingseminar.com

Fair Repetitive Scheduling

 Our model is robust, and can handle several tweaks and changes, such as

 More complex machine models.

 E.g., the Pq|rep|maxjiCi,j problem

is the problem of minimizing the

maximum total completion time

of every client when there are q

parallel machines every day.

 Different fairness thresholds Kj

for each client.

 E.g., in cases where there are

premium customers, etc.

schedulingseminar.com

Fair Repetitive Scheduling

 Our model allows several interesting variants to study -

 Is there a schedule which is k-fair

for all but s clients?

 A variant of approximate fairness

where a solution is fair to almost

everyone.

 The price of fairness?

 The ratio between the global

optimum and the worst k-fair

solution.

. . .

≤ 𝒔

schedulingseminar.com

The 1|rep|max Ci,j Problem

 Consider first parameter n = number of clients.

Theorem: The 1|rep|max Ci,j problem is (weakly) NP-hard for two or

more clients (n≥2).

 Note that this shows that the problem is APX-hard, meaning it doesn’t

admit a PTAS (most likely).

Theorem: The 1|rep|max Ci,j problem is pseudo polynomial-time

solvable for a constant number of clients (n=O(1)).

 For parameter k = fairness threshold, we can show -

Theorem: The 1|rep|max Ci,j problem is (strongly) NP-hard even for

constant fairness thresholds (k≥37).

schedulingseminar.com

The 1|rep|max Ci,j Problem

 Next consider parameter m = number of days. We prove

Theorem: The 1|rep|max Ci,j problem is (weakly) NP-hard for four or

more days (m≥4).

 This leads to the first open problem of the talk:

Theorem: The 1|rep|max Ci,j problem is polynomial-time solvable for

two days (m=2).

What is the complexity

of 1|rep|max Ci,j for

three days??

schedulingseminar.com

The Two Days Algorithm

 The algorithm is inspired by Johnson’s algorithm for F2||Cmax.

 We begin with a structural lemma:

Lemma (Property 1): There is an optimal schedule for any 1|rep|max Ci,j

instance on two days, where the schedule on the second day is in reverse

order of the schedule on the first day.

 Thus, it is enough to only determine the order of processing on the

first day.

schedulingseminar.com

The Two Days Algorithm

 The proof is by an exchange argument:

day 1

day 2

.

.

.

.

Alice and Bob’s new

total completion time

is less than Bob’s old

total completion time

Lemma (Property 1): There is an optimal schedule for any 1|rep|max Ci,j

instance on two days, where the schedule on the second day is in reverse

order of the schedule on the first day.

schedulingseminar.com

The Two Days Algorithm

 Using the lemma, we construct an optimal schedule as follows:

 Partition the clients into two types:

smaller processing

time on day 1 at least

as large as on day 2

𝑝1,𝑗 ≤ 𝑝2,𝑗

type 1 smaller processing

time on day 2

𝑝1,𝑗 > 𝑝2,𝑗

type 2

 On day 1: Schedule first the jobs of type 1 clients in SPT order, and then

the jobs of type 2 clients in LPT order.

 On day 2 do the reverse of day 1.

schedulingseminar.com

The Two Days Algorithm

 Step 1: Show that this set includes solutions where type 1 clients are scheduled

before type 2 clients on day 1 (Property 2).

Lemma: The schedule constructed is optimal.

 Proof: Consider only optimal solutions where property 1 holds.

day 1

day 2

.

.

If not there always exists a type 1 job scheduled directly after a type 2 job.

.

.

A swap changes nothing for

other clients, and cannot

increase the total completion

time of Alica and Bob

schedulingseminar.com

The Two Days Algorithm

 Step 2: Show that this set only includes solutions where on day 1, type 1

clients are scheduled in SPT order, and type 2 clients scheduled in LPT order

(Property 3).

Lemma: The schedule constructed is optimal.

 Proof: Consider only optimal solutions where property 1 and 2 hold.

day 1

day 2

If not, there always is a consecutive pair of clients which violates this condition.

.

.

.

.

A swap changes nothing

for other clients, and the

new total completion time

of Alice and Charlie is at

most Alice’s old

completion time

schedulingseminar.com

Parameterized Complexity

 We can also show the following -

Theorem: The 1|rep|max Ci,j problem is strongly W[1]-hard when

parameterized by the number of days.

 This implies that the problem is unlike to admit a f(m)nO(1) algorithm,

even if the processing times are given in unary.

 A nf(m) algorithm is still possible (yet unknown) in this case.

 One the other hand, we can show that -

Theorem: The 1|rep|max Ci,j problem can be solved in f(K+m)nO(1) time.

 The proof uses n-fold ILPs.

schedulingseminar.com

Approximation Algorithms

 We say that a solution is 𝛼-approximate if it has a fairness threshold of k

such that 𝑘 ≤ 𝛼 ⋅ 𝑂𝑃𝑇, where OPT is the optimal fairness threshold.

 We show that -

Theorem: The 1|rep|max Ci,j problem admits a 2-approximation algorithm

that runs in polynomial-time.

Is there a more efficient

(combinatorial)

constant approximation

algorithm??

 While the algorithm runs in polynomial-time, it relies on several

applications of an LP solver.

schedulingseminar.com

2-Approximation Algorithm

 The algorithm is inspired by 3-approximation algorithm for 1|rj|wjCj of

Hall, Schulz, D. B. Shmoys, and Wein [MathofOR’97].

 Consider the following LP:

 The variables are:

 xi,j = completion time of client j’s job on day i.

 K = the fairness threshold.

schedulingseminar.com

2-Approximation Algorithm

 The first set of constraints ensures that no client has total completion time

which exceeds the fairness threshold k:

 Here 𝑃𝑖
2(𝑆) denotes the total processing time of the jobs of S on day i, squared.

 The second set is less clear -

schedulingseminar.com

2-Approximation Algorithm

 The constraint is clearly satisfied for every singleton S={j} since

 And for |S|>1 we have

 As either the job of client j is scheduled before the job of client k, or

vise-versa.

 Thus, every schedule satisfies the second set of constraints.

schedulingseminar.com

2-Approximation Algorithm

 Note that our LP has an exponential number of constraints, one for each

subset of clients.

 Lucky, the LP has a separation oracle (due to Queyranne [MathProg’93]) -

 A separation oracle is a polynomial-time algorithm that receives a solution x to

the LP and determines whether x is feasible or not. If x is not feasible, the

oracle returns a constraint which is violated by x.

 One can use the Primal-Dual method, in conjunction with the oracle, to

obtain an optimal solution for the LP.

schedulingseminar.com

2-Approximation Algorithm

 Let 𝑥1,1
∗ , …, 𝑥𝑛,𝑚

∗ denote an optimal solution for the LP.

 Using this solution, we construct a schedule for each day i by processing

the jobs in non-decreasing values of 𝑥𝑖,𝑗
∗ .

𝑥𝑖,𝑗
∗ 𝑥𝑖,𝑗

∗ 𝑥𝑖,𝑗
∗

schedule 𝜋𝑖
for day i

 The completion time of client j’s job on day i is

schedulingseminar.com

2-Approximation Algorithm

Lemma: The schedule constructed is 2-approximate.

 Proof: Fix 𝑖 ∈ 𝑚 and 𝑗 ∈ 𝑛 , and consider the job of client j on day i.

 Let denote the set of clients whose jobs were not scheduled after the

job of client j (i.e., j and those before him on day i).

 Then, by our construction, we have

. . .
beginning

of day i

client j

schedulingseminar.com

2-Approximation Algorithm

Lemma: The schedule constructed is 2-approximate.

 Proof: Fix 𝑖 ∈ 𝑚 and 𝑗 ∈ 𝑛 , and consider the job of client j on day i.

 Then, by our construction, we have

 On the other hand, as 𝑥1,1
∗ , …, 𝑥𝑛,𝑚

∗ is feasible, and 𝑥𝑖,𝑗
∗ ≥ 𝑥𝑖,𝑘

∗ for all

clients 𝑘 ∈ , we have

 It follows that

 Thus, for any client 𝑗 ∈ 𝑛 , we get

where 𝐾∗ is the optimal fairness threshold.

schedulingseminar.com

Further Results

 We can also show the following -

Theorem: The 1|rep|max Ci,j problem admits a PTAS for a constant

number of days.

 The PTAS replies on an involved batching scheme where we batch

groups of jobs together.

 We also consider the all days are the same case, and show -

Theorem: The 1|rep,pi,j=pj|max Ci,j problem admits a QPTAS.

Theorem: The 1|rep,pi,j=pj|max Ci,j problem admits a
(1+ 2)

2
-approximation

algorithm that runs in near linear-time.

schedulingseminar.com

The 1|rep|max Ui,j Problem

 The problem is already quite hard, even when each client has the

same due date on each day:

Theorem: The 1|rep,di,j=dj|max Ui,j problem is NP-hard, even for K=1.

 In the all days are the same variant, we can show for the single due

date case a 1.5-approximation algorithm

Theorem: The 1|rep,pi,j=1|max Ui,j problem is polynomial-time solvable.

 On the other hand, it is easy for unit processing times:

 This theorem holds even when the jobs have release times, and there

are multiple parallel machines for processing.

schedulingseminar.com

The 1|rep|max Zi,j Problem

 This problem is quite hard as well:

Theorem: The 1|rep|max Zi,j problem is polynomial-time solvable for

𝑘 ∈ 𝑚 − 1,𝑚 , and NP-hard otherwise.

 The all days are the same case translates directly to interval graph

coloring.

Theorem: The 1|rep|max Zi,j problem can be solved in f(n)mO(1) time.

 However, when the number of clients is small -

 And when then the number of days is small -

Theorem: The 1|rep,di,j=dj|max Zi,j problem can be solved in O(mn)(m+1)

time.

schedulingseminar.com

Biblography

1. Klaus Heeger, D.H., George B. Mertzios, Hendrik Molter, Rolf

Niedermeier, Dvir Shabtay: Equitable scheduling on a single

machine. J. Sched. 26(2): 209-225 (2023).

2. D.H., Hendrik Molter, Rolf Niedermeier, Michael L. Pinedo, Dvir

Shabtay: Fairness in repetitive scheduling. Eur. J. Oper. Res. 323(3):

724-738 (2025).

3. Klaus Heeger, D.H., Yuval Itzhaki, Hendrik Molter, Dvir Shabtay: Fair

repetitive interval scheduling. Algorithmica 87(9): 1340-1368 (2025).

4. D.H., Danny Segev, Dvir Shabtay: Approximate fair repetitive

scheduling. Work in progress.

schedulingseminar.com

Thank You
for your

attention
schedulingseminar.com

	Slide 1: Fairness in Repetitive Scheduling
	Slide 2: Classical Scheduling
	Slide 3: Classical Scheduling
	Slide 4: Classical Scheduling
	Slide 5: Classical Scheduling
	Slide 6: Classical Scheduling
	Slide 7: Classical Scheduling
	Slide 8: Repetitive Scheduling
	Slide 9: Repetitive Scheduling
	Slide 10: Repetitive Scheduling
	Slide 11: Fair Repetitive Scheduling
	Slide 12: Fair Repetitive Scheduling
	Slide 13: Fair Repetitive Scheduling
	Slide 14: Fair Repetitive Scheduling
	Slide 15: Fair Repetitive Scheduling
	Slide 16: The 1|rep|max Ci,j Problem
	Slide 17: The 1|rep|max Ci,j Problem
	Slide 18: The Two Days Algorithm
	Slide 19: The Two Days Algorithm
	Slide 20: The Two Days Algorithm
	Slide 21: The Two Days Algorithm
	Slide 22: The Two Days Algorithm
	Slide 23: Parameterized Complexity
	Slide 24: Approximation Algorithms
	Slide 25: 2-Approximation Algorithm
	Slide 26: 2-Approximation Algorithm
	Slide 27: 2-Approximation Algorithm
	Slide 28: 2-Approximation Algorithm
	Slide 29: 2-Approximation Algorithm
	Slide 30: 2-Approximation Algorithm
	Slide 31: 2-Approximation Algorithm
	Slide 32: Further Results
	Slide 33: The 1|rep|max Ui,j Problem
	Slide 34: The 1|rep|max Zi,j Problem
	Slide 35: Biblography
	Slide 36: Thank You for your attention

