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Classical Scheduling

» Most single machine scheduling problems look like this:

There are n jobs (or clients):

DUE
DATE
Y
DUE
DATE
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Each job j has:

a processing time p,

a weight w; (which may equal 1),

a due date d; (sometimes),

a release time r; (sometimes),

etc...

DUE
DATE




Classical Scheduling

» Most single machine scheduling problems look like this:

A schedule (when there are no release times) is simply a permutation
of the jobs, specifying the order of processing:

» The completion time of job j is such a schedule is C; = Z Di

iLisnot after j
in the schedule
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Classical Scheduling

» The clients may have different objectives: @

they may want to -

minimize completion
time,
¢ = Z Di
r(D)=m(j)
minimize lateness,

not be tardy,
J7)0:C < d;
etc...
fkﬁfﬁ‘é&f;‘;‘f iversity schedulingseminar.com



Classical Scheduling

» The scheduler, being the service provider, b

typically decides the objective of the schedule.

» The scheduler might decide to try to be as
fair as possible to all clients.

» One way to do so, 1s to minimize their total

completion time - Z C;
J

which 1s equivalent to minimizing the average completion
time of a client.
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Classical Scheduling

» To minimize XC;, use the Shortest Processing Time first (SPT) rule:

P1

Z-Cj: 3p1 + 2p; +p3
j
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Classical Scheduling

» Suppose the clients just don’t want to be late.

» To minimize XU, use the Earliest Deadline First (EDD) rule:

DUE
DATE

» Scan the jobs in EDD order, and when first encountering a tardy job,
remove the largest job already processed (Hodson-Moore Alg.).

» Is this really fair?
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Repetitive Scheduling

» But what happens when the clients keep on returning ?

DUE s
S

» Now, in the simplest case, each client has m jobs, one per each of the m
days of the month.

» Let p;; denote the processing time of client j’s job on day 1.
» Define C, ; to be the completion time of client j’s job on day.

» Similarly define w, ;, d; ;, and r;; when necessary.
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Repetitive Scheduling

» If we minimize the total completion time 2C
complete last on every day!

i ﬁ ﬁ » This 1s particularly unfair if the job

processing time aren’t entirely

i i i determined by the clients.

» For example:

2 | » Healthcare.
‘ »  Civic duties (jury duty,

military service, ect..).
@) i |
i i .ﬁ& » Etc...
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Repetitive Scheduling

» If we minimize the total completion time 2U
tardy every day!

i .ﬁ‘ i » This means that from his point of view,
| he never gets any service!
| » This is particularly

b unfair when the job due

i i dates aren’t entirely

ij» a single client can be

determined by the
i i i clients. e
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Fair Repetitive Scheduling

» Instead, 1t makes much more sense to minimize

max(; = max Z Ci j
J€[n] JE[n] ’

in case the clients are interested in minimizing their
completion time.

» Or, to minimize

maxU; = max Z Ui j

j€E[n]
lE m

in case the clients are interested in not being tardy.
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Fair Repetitive Scheduling

» More generally, we may have any (say, minimization) objective
function F, ;= f(C, ;,) that typically depends on the completion time of
the clients on any given day.

» We define the (single machine) Fairness in Repetitive Scheduling

problem, I|rep/max;%;F, ;, as the problem of minimizing

» In the decision version, we are given a fairness threshold K, and the goal is
to determine whether there exists a schedule with maxF; < K.
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Fair Repetitive Scheduling

» Thus, we obtain a performance matrix, which specifies the
performance (according to the given objective function) of each job.

Fl)l Fl,z DR oo Fl)n
F2’1 F2,2 oo e o0 Fz,n
rOws =
correspond F., F., F .
to days : : .
Fl FZ Fn
column j

sums up to F;

» The goal is to minimize the maximum value in the final row.
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Fair Repetitive Scheduling

» Our model 1s robust, and can handle several tweaks and changes, such as

More complex machine models.

E.g., the Pqjrep/max;2,C, ; problem
1s the problem of minimizing the
maximum total completion time
of every client when there are g

parallel machines every day.

ﬂ
- Different fairness thresholds K;
2 for each client.
“ E.g., in cases where there are
premium customers, etc.
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Fair Repetitive Scheduling

» Our model allows several interesting variants to study -

<s
A

) &) *
) ) ) "/
| |

Is there a schedule which 1s k-fair
for all but s clients?

A variant of approximate fairness
where a solution is fair to almost
everyone.

The price of fairness?

@ @ The ratio between the global

optimum and the worst k-fair
AR .
solution.
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The 1|rep|max 2C,; Problem

» Consider first parameter n = number of clients.

Theorem: The l|rep|max XC, ; problem is (weakly) NP-hard for two or
more clients (n>2).

Theorem: The l|rep|max XC;; problem is pseudo polynomial-time
solvable for a constant number of clients (n=0(1)).

» For parameter k = fairness threshold, we can show -

Theorem: The l|rep|max XC;; problem is (strongly) NP-hard even for
constant fairness thresholds (k>37).

» Note that this shows that the problem is APX-hard, meaning it doesn’t
admit a PTAS (most likely).
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The 1|rep|max 2C,; Problem

» Next consider parameter m = number of days. We prove

Theorem: The l|rep|max XC;; problem is (weakly) NP-hard for four or
more days (m>4).

Theorem: The l|rep|max XC;; problem is polynomial-time solvable for
two days (m=2).

» This leads to the first open problem of the talk:

What is the complexity
of 1{repjmax 2C,; . for
three days??

i o
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The Two Days Algorithm

» The algorithm is inspired by Johnson’s algorithm for F2||C

max*

» We begin with a structural lemma:

Lemma (Property 1): There is an optimal schedule for any 1|rep|max XC;;
instance on two days, where the schedule on the second day is in reverse
order of the schedule on the first day.

asy

» Thus, it 1s enough to only determine the order of processing on the
first day.
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The Two Days Algorithm

Lemma (Property 1): There is an optimal schedule for any 1|rep|max XC;;
instance on two days, where the schedule on the second day is in reverse
order of the schedule on the first day.

» The proof is by an exchange argument:

Alice and Bob’s new
total completion time
. 1s less than Bob’s old

S : ~ total completion time S
dayl e o o e o o e o o e D\ So—v" o o o
day 2 e o o i o o o i e o o o o o i e o o i e o o

Ben-Gurion Universit i i
](?(oftheNegeV Y schedulingseminar.com



The Two Days Algorithm

» Using the lemma, we construct an optimal schedule as follows:

» Partition the clients into two types:

BUEREES
type 1 smaller processing N

time on day 1 at least
as large as on day 2

\_ PSPy \_ P1j > P2, )

smaller processing type 2

time on day 2

» On day |: Schedule first the jobs of type 1 clients in SPT order, and then
the jobs of type 2 clients in LPT order.

» On day 2 do the reverse of day 1.
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The Two Days Algorithm

Lemma: The schedule constructed is optimal.

» Proof: Consider only optimal solutions where property 1 holds.

Step 1: Show that this set includes solutions where type 1 clients are scheduled
before type 2 clients on day 1 (Property 2).

If not there always exists a type 1 job scheduled directly after a e 2.7

A swap changes nothing for
other clients, and cannot
increase the total completion

ﬁ o o o »- time of Alica and Bob o
i e o o

day 1 o

o o i
day2 e o o i
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The Two Days Algorithm

Lemma: The schedule constructed is optimal.

» Proof: Consider only optimal solutions where property 1 and 2 hold.

Step 2: Show that this set only includes solutions where on day 1, type 1
clients are scheduled in SPT order, and type 2 clients scheduled in LPT order

(Property 3).
If not, there always 1s a consecutive pair of clients which 7 .
A swap changes nothing
for other clients, and the
/ new total completion time
R of Alice and Charlie is at
day 1 ® o o ® o o mOSt AliCC’S Old @& e o
‘ A completion time
A\ ~—
day 2 oooi.ﬁ‘ e o o e o o ’ﬁ’i o o o
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Parameterized Complexity

» We can also show the following -

Theorem: The l|rep|max XC;; problem is strongly W[1]-hard when
parameterized by the number of days.

» This implies that the problem is unlike to admit a f(m)n®") algorithm,
even if the processing times are given in unary.

A nf™ algorithm is still possible (yet unknown) in this case.
» One the other hand, we can show that -
Theorem: The l[repmax C;; problem can be solved in f{(K+m)n°" time.

» The proof uses n-fold ILPs.
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Approximation Algorithms

» We say that a solution 1s a-approximate if it has a fairness threshold of k
such that k < a - OPT, where OPT is the optimal fairness threshold.

» We show that -

Theorem: The l|rep|max XC;; problem admits a 2-approximation algorithm
that runs in polynomial-time.

»  While the algorithm runs in polynomial-time, it relies on several
applications of an LP solver.

Is there a more efficient
(combinatorial)
constant approximation
algorithm??
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2-Approximation Algorithm

» The algorithm is inspired by 3-approximation algorithm for 1|r;|Zw,C; of
Hall, Schulz, D. B. Shmoys, and Wein [MathofOR’97].

» Consider the following LP:

min K
s.t. Z v <K Vjen]
i€[m]
1
> _pijrij = 5 PS) Vie [m], S C n]
jes

» The variables are:
x; ;= completion time of client j’s job on day 1.

K = the fairness threshold.
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2-Approximation Algorithm

» The first set of constraints ensures that no client has total completion time
which exceeds the fairness threshold k:

Zmi,jSK V]E[n]

» The second set is less clear -

1
> pijeig 2 5 PAS) Vi€ [m], S Cnl

JjeS

Here P7(S) denotes the total processing time of the jobs of S on day i, squared.
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2-Approximation Algorithm

» The constraint 1s clearly satisfied for every singleton S={j} since

1 1
pij-Cij 2 Dij-Dij > b 'p%,j — 9 P2(S).

» And for [S>1 we have

1 2 1
sz',jcv:,j > Z PijPik = 5-(2197;,3-) +§sz2=j

1

2

jes J,keS,j<k

» As either the job of client j 1s scheduled before the job of client k, or
vise-versa.

» Thus, every schedule satisfies the second set of constraints.
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2-Approximation Algorithm

min K

s.t. Z rij; < K Vi€ [n]
ie[m]
Z'pi,ji-'é.j > % . P(S) Vie [m], SC[n]
jes

» Note that our LP has an exponential number of constraints, one for each
subset of clients.

» Lucky, the LP has a separation oracle (due to Queyranne [MathProg’93]) -

A separation oracle 1s a polynomial-time algorithm that receives a solution x to
the LP and determines whether x is feasible or not. If x 1s not feasible, the
oracle returns a constraint which is violated by x.

» One can use the Primal-Dual method, in conjunction with the oracle, to
obtain an optimal solution for the LP.
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2-Approximation Algorithm

» Let x7 1, ..., xp mdenote an optimal solution for the LP.

» Using this solution, we construct a schedule for each day 1 by processing
the jobs in non-decreasing values of x; ;.

schedule ;
for day 1

* k

29 Xij Xi
)

» The completion time of client j’s job on day iis Cij = > . j)<r.(j) Pik:
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2-Approximation Algorithm

Lemma: The schedule constructed is 2-approximate.

» Proof: Fix i € [m] and j € [n], and consider the job of client j on day i.

» Let Sy denote the set of clients whose jobs were not scheduled after the
job of client j (i.e., j and those before him on day 1).

L client j
beginning 3 2
ofdayi , o o o
\ }
|

Sy

» Then, by our construction, we have Cij =3 y<r, ;) Pik = Pi(Se).
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2-Approximation Algorithm

Lemma: The schedule constructed is 2-approximate.

» Proof: Fix i € [m] and j € [n], and consider the job of client j on day i.
» Then, by our construction, we have Ci;; = Zm(;@)gm(j) pi i = Pi(Se).

» On the other hand, as xj 1, ..., Xp m is feasible, and x; ; = x; for all

clients k € Sy, we have

— - PX(S) < qu:,kﬂ?ik < -CE;j'sz‘,k = a7, Pi(S).
keSy keSy

» It follows that 227, > P;(S¢) = C

» Thus, for any client j € [n], we get Z Cij < 2 Z xi;, < 2K,
i=1 i=1
where K™ is the optimal fairness threshold.
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Further Results

» We can also show the following -

Theorem: The l|rep|max XC,; problem admits a PTAS for a constant
number of days.

» The PTAS replies on an involved batching scheme where we batch
groups of jobs together.

» We also consider the all days are the same case, and show -

(1+,/2)

Theorem: The 1[rep,p; ;=p;max XC, ; problem admits a —, —-approximation

algorithm that runs in near linear-time.

Theorem: The l|rep,p;;=p;max XC;; problem admits a QPTAS.
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The 1 |rep|max 2U;; Problem

» The problem is already quite hard, even when each client has the
same due date on each day:

Theorem: The l|rep,d;;=d;max XU, ; problem is NP-hard, even for K=1.

In the all days are the same variant, we can show for the single due
date case a 1.5-approximation algorithm

» On the other hand, it 1s easy for unit processing times:

Theorem: The l|rep,p;;=1|max XU, ; problem is polynomial-time solvable.

This theorem holds even when the jobs have release times, and there
are multiple parallel machines for processing.

Ben-Gurion Universit i i
](?(oftheNegeV Y schedulingseminar.com



The 1|rep|max ¥Z,; Problem

» This problem is quite hard as well:

Theorem: The l|rep|max XZ,; problem is polynomial-time solvable for
k € {m — 1, m}, and NP-hard otherwise.

» However, when the number of clients 1s small -
Theorem: The l[repjmax XZ;; problem can be solved in f(n)m°" time.
» And when then the number of days 1s small -

Theorem: The 1|rep,di,j=dj|max XZ, ; problem can be solved in O(mn)™*1)
time.

» The all days are the same case translates directly to interval graph
coloring.
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