
One Million… and Beyond !
Solving Huge-Scale Vehicle
Routing Problems in a
Handful of Minutes

A five years journey from FILO to FILO2 ... via FSPD

Daniele Vigo
DEI «Guglielmo Marconi», University of Bologna

CIRI ICT, University of Bologna

based on joint works with: L. Accorsi
and F. Cavaliere, D. Lagana, R. Musmanno

funded by PRIN2022, H2020 Tuples, AFORS

Outlook

• Motivation and Introduction to VRP and CVRP
• FILO: A Fast and Scalable Heuristic for the Solution of Large-Scale

Capacitated Vehicle Routing Problems (with L. Accorsi, TS, 2021)
• Extending FILO:

• FSPD: Very Large-Scale VRPs with Pickup and Delivery
(with F. Cavaliere, L. Accorsi, D. Lagana and R. Musmanno, submitted 2023)

• FILO2: Huge-scale CVRPs instances (with L. Accorsi, C&OR 2024)

One Million... and Beyond! 1

Motivation

• I devoted the largest part of my research activity to VRP and its
(heuristic) solution
• Some ideas (e.g. Granular TS, Decomposition …) gained some

attention from the community … some others (e.g. adaptive
guidance, visual beauty) much less …
• In the last years thanks to the PhD of Luca Accorsi I had the

opportunity to combine many old and new ideas to build an
innovative framework for the solution of large scale CVRP: FILO

• With the help of several people FILO evolved
in several directions

One Million... and Beyond! 2

Capacitated Vehicle Routing Problem (CVRP)
instance

One Million... and Beyond! 3

Customer 𝑖

Depot 0

(𝑥! , 𝑦!)

(𝑥", 𝑦")

∞ num. of vehicles
with capacity 𝑄

requires 𝑞! goods

Euclidean distance
(cost)

Undir and complete graph

Capacitated Vehicle Routing Problem (CVRP)
solution

One Million... and Beyond! 4

Route

Main references

One Million... and Beyond! 5

• Recent Methods (>2000)
“mainchap2000”
2002/9/16
page 3i

i
i

i

i
i

i
i

Chapter 5

Classical Heuristics for

the Capacitated VRP

Gilbert Laporte
Frédéric Semet

5.1 Introduction

Several families of heuristics have been proposed for the Vehicle Routing Problem
(VRP). These can be broadly classified into two main classes: classical heuristics de-
veloped mostly between 1960 and 1990, and metaheuristics whose growth has occurred
in the last decade. Most standard construction and improvement procedures in use to-
day belong to the first class. These methods perform a relatively limited exploration of
the search space and typically produce good quality solutions within modest comput-
ing times. Moreover, most of them can be easily extended to account for the diversity
of constraints encountered in real-life contexts. Therefore, they are still widely used in
commercial packages. In metaheuristics, the emphasis is on performing a deep explo-
ration of the most promising regions of the solution space. These methods typically
combine sophisticated neighborhood search rules, memory structures, and recombina-
tions of solutions. The quality of solutions produced by these methods is much higher
than that obtained by classical heuristics, but the price to pay is increased computing
time. Moreover, the procedures are usually context dependent and require finely tuned
parameters which may make their extension to other situations difficult. In a sense,
metaheuristics are no more than sophisticated improvement procedures and they can
simply be viewed as natural enhancements of classical heuristics. However, because
they make use of several new concepts not present in classical methods, they will be
covered separately in Chapter ??.

Classical VRP heuristics can be broadly classified into three categories. Con-
structive heuristics gradually build a feasible solution while keeping an eye on solution
cost, but do not contain an improvement phase per se. In two-phase heuristics, the
problem is decomposed into its two natural components: clustering of vertices into
feasible routes and actual route construction, with possible feedback loops between
the two stages. Two-phase heuristics will be divided into two classes: cluster-first,
route-second methods and route-first, cluster-second methods. In the first case, ver-
tices are first organized into feasible clusters, and a vehicle route is constructed for

3

“mainchap2000”
2002/9/16
page 3i

i
i

i

i
i

i
i

Chapter 6

Metaheuristics for the

Capacitated VRP

Michel Gendreau
Gilbert Laporte
Jean-Yves Potvin

6.1 Introduction

In recent years several metaheuristics have been proposed for the VRP. These are
general solution procedures that explore the solution space to identify good solutions
and often embed some of the standard route construction and improvement heuristics
described in Chapter ??. In a major departure from classical approaches, metaheuris-
tics allow deteriorating and even infeasible intermediary solutions in the course of the
search process. The best known metaheuristics developed for the VRP typically iden-
tify better local optima than earlier heuristics, but they also tend to be more time
consuming.

As far as we are aware, six main types of metaheuristics have been applied to the
VRP: 1) Simulated Annealing (SA), 2) Deterministic Annealing (DA), 3) Tabu Search
(TS), 4) Genetic Algorithms (GA), 5) Ant Systems (AS), and 6) Neural Networks
(NN). The first three algorithms, SA, DA and TS, start from an initial solution x1,
and move at each iteration t from xt to a solution xt+1 in the neighborhood N(xt) of
xt, until a stopping condition is satisfied. If f(x) denotes the cost of x, then f(xt+1)
is not necessarily less than f(xt). As a result, care must be taken to avoid cycling.
GA examines at each step a population of solutions. Each population is derived from
the preceding one by combining its best elements and discarding the worst. AS is
a constructive approach in which several new solutions are created at each iteration
using some of the information gathered at previous iterations. As was pointed out by
Taillard et al. [63], TS, GA and AS are methods that record, as the search proceeds,
information on solutions encountered and use it to obtain improved solutions. NN is a
learning mechanism that gradually adjusts a set of weights until an acceptable solution
is reached. The rules governing the search differ in each case and these must also be
tailored to the shape of the problem at hand. Also, a fair amount of creativity and
experimentation is required. Our purpose is to survey some of the most representative
applications of local search algorithms to the VRP. For generic articles and textbooks

3

✐
✐

Chapter 4

Heuristics for the Vehicle
Routing Problem

Gilbert Laporte
Stefan Ropke
Thibaut Vidal

4.1 Introduction
In recent years, several sophisticated mathematical programming decomposition algo-
rithms have been put forward for the solution of the VRP. Yet, despite this effort, only
relatively small instances involving around 100 customers can be solved optimally, and the
variance of computing times is high. However, instances encountered in real-life settings
are sometimes large and must be solved quickly within predictable times, which means
that efficient heuristics are required in practice. Also, because the exact problem defini-
tion varies from one setting to another, it becomes necessary to develop heuristics that are
sufficiently flexible to handle a variety of objectives and side constraints. These concerns
are clearly reflected in the algorithms developed over the past few years. This chapter
provides an overview of heuristics for the VRP, with an emphasis on recent results.

The history of VRP heuristics is as old as the problem itself. In their seminal paper,
Dantzig and Ramser [19] sketched a simple heuristic based on successive matchings of ver-
tices through the solution of linear programs and the elimination of fractional solutions
by trial and error. The method was illustrated on an eight-vertex graph. It was not pur-
sued, but may have inspired the developers of matching-based heuristics (see Altinkemer
and Gavish [3], Desrochers and Verhoog [20], and Wark and Holt [91]). Since then, a
wide variety of constructive and improvement heuristics have been proposed, culminating
in recent years with the development of powerful metaheuristics capable of computing
within a few seconds solutions whose value lies within less than one percent of the best
known values.

The field of VRP heuristics is now so rich that it makes no sense to provide an ex-
haustive compilation of them in a book chapter such as this. Instead, we have decided
to focus on methods and principles that have withstood the test of time or present some
interesting distinctive features. For a more complete description of the classical heuristics
and of the early metaheuristics, we refer the reader to the two chapters by Laporte and

87

• Classical Methods (1960-2000)

Current State-of-the-Art Methods

One Million... and Beyond! 6

• Vidal et al. (2012): Hybrid Genetic Algorithm

• Subramanian, Ochi, Uchoa (2013): ILS+ SP

• Arnold and Sorensen (2019): Guided LS + ML penalization
• Christiaens and Vande Berghe (2020): Ruin and recreate

based o string removal and insertion

• DIMACS VRP Challenge 2022-23

Part 1: FILO …
the godfather

• A Fast and Scalable Heuristic
for the Solution of Large-Scale
Capacitated Vehicle Routing
Problems

Luca Accorsi and Daniele Vigo

Transportation Science, 55(4):832-856 (2021)

One Million... and Beyond! 7

Motivation

• Best (heuristic) CVRP algorithms exhibit a quadratic growth
• Others achieve a linear growth by fixing a maximum computing time

One Million... and Beyond! 8

0

50

100

150

200

250

300

350

400

450

500

101 201 301 401 501 601 701 801 901 1001

Co
m

pu
tin

g
tim

e
(m

in
)

Number of vertices

ILS-SP - Subramanian, Uchoa, and Ochi (2013) HGSADC - Vidal et al. (2012) SISR - Christiaens and Vanden Berghe (2020) KGLS - Arnold and Sörensen (2019)

Goal

• Designing a fast, naturally scalable and effective heuristic approach

One Million... and Beyond! 9

0

50

100

150

200

250

300

350

400

450

500

101 201 301 401 501 601 701 801 901 1001

Co
m

pu
tin

g
tim

e
(m

in
)

Number of vertices

ILS-SP - Subramanian, Uchoa, and Ochi (2013) HGSADC - Vidal et al. (2012) SISR - Christiaens and Vanden Berghe (2020)

KGLS - Arnold and Sörensen (2019) FILO - Accorsi and Vigo (2020) FILO (long) - Accorsi and Vigo (2020)

Our recipe

• Local Search Acceleration Techniques
• Pruning Techniques
• Careful Design
• Careful Implementation
• Careful Parameters Tuning

• … a lot of work and attention to details (where the devil hides !!!)

One Million... and Beyond! 10

The basic ILS framework

• our approach is broadly based on the Iterated Local Search
framework (Lourenço, Martin, Stützle, 2003)

x* = starting solution
repeat

• perturb x*;
• x'=LS(x*)
• possibly replace x* with x'

until stop condition

One Million... and Beyond! 11

(source El-Ghazali Talbi)

Fast ILS Localized Optimization (FILO)

One Million... and Beyond! 12

Construction
(Optional)

Route Minimization
Core Optimization

(where most of the time is spent)

Initial solution definition

Local search-based iterative and randomized improvement procedures
built on the ILS paradigm

Construction

• A variation of the Savings algorithm by Clarke and Wright (1964)

One Million... and Beyond! 13

𝑠!# = 𝑐!" + 𝑐#" − 𝑐!#

𝑖

𝑗

0 𝑖

𝑗

0

Adaptation proposed by Arnold, Gendreau, and Sörensen (2019)
• For each 𝑖, compute 𝑠!# only for 𝑗 ∊ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑖, 100) and	𝑖 < 𝑗

𝑂 𝑛$ → 𝑂(𝑛)

Improvement procedures

One Million... and Beyond! 14

(Optional)
Route Minimization

Core Optimization
(where most of the time is spent)

Perform a shaking (in a ruin-and-recreate fashion)

Re-optimize the shaken area

If not stopping condition, go to

1

2

3

Abstract ILS procedure

1

Improvement procedures

One Million... and Beyond! 15

By using a sophisticated
Local Search Engine

(Optional)
Route Minimization

Core Optimization
(where most of the time is spent)

Perform a shaking (in a ruin-and-recreate fashion)

Re-optimize the shaken area

If not stopping condition, go to

1

2

3

Abstract ILS procedure

1

Local search engine

• Several operators explored in a VND fashion
• Hierarchical Randomized Variable Neighborhood Descent

• Acceleration techniques for neighborhood exploration
• Static Move Descriptors

• Pruning techniques
• Granular Neighborhoods and Selective Vertex Caching

One Million... and Beyond! 16

Hierarchical Randomized Variable
Neighborhood Descent (HRVND)

One Million... and Beyond! 17

An effective organization of several local search operators

OP OPOP OPOPOP

Tier 1

OP OPOP OP

Tier 2

OP OPOP OPOP

Tier N

Com
putational com

plexity

Solution

Tier 1 LO

Tier 1, 2 LO

...

HRVND LO

HRVND

One Million... and Beyond! 18

OP OPOP OPOPOP

Tier application (RVND)

Shuffle

OP

OP

OP

OP

OP

OP

Loop till full cycle without improvements

Start here

1

2

Our HRVND

One Million... and Beyond! 19

10EX 11EX

Tier 1 - 𝑂(𝑛$) operators

Tier 2 – Ejection chains

Solution

Tier 1 LO

HRVND LO

33EX...

20REX 21REX 33REX...

22REX* 32REX* 33REX*

EJCH

2OPT

SPLIT TAILS

CROSS-exchange
and variants

Inter-route 2opt
variants

22
 in

di
vi

du
al

 o
pe

ra
to

rs

HRVND motivation

• From RVND
• do not fix a possibly not ideal neighborhood exploration order within tiers

• From VND
• more complex operators are executed after simpler ones in subsequent tiers

• to further polish solutions and escape from local optima

One Million... and Beyond! 20

Combining the good parts of VND and RVND

Complex operators expected application time (as well as their improvement) is reduced
because they are applied on already high-quality solutions

HRVND motivation:
ejection chain

One Million... and Beyond! 21

0

200

400

600

Application time𝑡(𝜇𝑠)

On Shaken
Solution

On Tier1
Local Optimum

Improvement (when successfully applied)

0.04

0.26

0.0

0.5

1.0

1.5

On Shaken
Solution

On Tier1
Local Optimum

% gap

Success ratio
On Shaken Solution 78.71 %
On Tier1 LO 30.70 %

116

48

SMD

Move identifier
int i, int j

Move effect
float delta

BIBLIOGRAPHY FOR SMDs
• Emmanouil E. Zachariadis, Chris T. Kiranoudis, A strategy for reducing the computational complexity of local search-based methods for the

vehicle routing problem, Computers & Operations Research, Volume 37, Issue 12, 2010, Pages 2089-2105
• Onne Beek, Birger Raa, Wout Dullaert, Daniele Vigo, An Efficient Implementation of a Static Move Descriptor-based Local Search Heuristic,

Computers & Operations Research, Volume 94, 2018, Pages 1-10

for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
eval/apply(i, j)

}
}

A data-oriented approach to local search

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

STATIC MOVE DESCRIPTORS (SMDS)

One Million... and Beyond! 23

Replace the “for-loop” neighborhood exploration with a more structured inspection of moves

Initialization Search

Execution

UpdateSMD

Move identifier
int i, int j

Move effect
float delta

SMD Procedures

One Million... and Beyond! 24

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

∀ 𝑖

∀ 𝑗 𝑂(𝑠𝑖𝑛𝑔𝑙𝑒 𝑙𝑜𝑜𝑝 − 𝑏𝑎𝑠𝑒𝑑 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛)

SMD Initialization

One Million... and Beyond! 25

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

Feasible and best (e.g. most improving) SMD

SMD Search

One Million... and Beyond! 26

Zachariadis and Kiranoudis (2010) suggest to store SMDs into a heap

• Retrieve in 𝑂(1), remove and restore heap property in 𝑂(log 𝑛)
• If not feasible, store and reinsert later 𝑂(log 𝑛)

Beek et al. (2018) suggest to linearly scan the heap to avoid removal and
reinsertion for each SMD not feasible

• No more guarantees of retrieving the best SMD …
• … However, the heap entries are roughly sorted

OUR CHOICE

SMD Search

One Million... and Beyond! 27

SMD

Move identifier
int i, int j

Move effect
float delta

The move associated with the selected SMD is applied
to the current solution

Local search operators perform local changes thus
most of the SMDs will still hold a correct delta
value after the move is executed

SMD Execution

One Million... and Beyond! 28

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

A move(i,j)of operator XYZ requires
the update of the delta value of fixed set
of SMDs

SMD Update

One Million... and Beyond! 29

BIBLIOGRAPHY FOR GNs
• Paolo Toth and Daniele Vigo, The Granular Tabu Search and Its Application to the Vehicle-Routing Problem, INFORMS Journal on Computing

2003 15:4, 333-346
• Michael Schneider, Fabian Schwahn, Daniele Vigo, Designing granular solution methods for routing problems with time windows, European

Journal of Operational Research, Volume 263, Issue 2, 2017, Pages 493-509

Restricting local search move evaluations to promising ones only

𝑖

For each vertex i consider only the moves (SMDs) generated by arcs
(i, j) and (j, i) such that j ∊ Neighbors(i,	25)

𝑇 = ∪! { 𝑖, 𝑗 , 𝑗, 𝑖 : 𝑗 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑖, 25)}

Set of move generators

Sparsification rule

Granular Neighborhoods (GNs)

One Million... and Beyond! 30

𝛾 sparsification factor
(percentage 𝛾 ∈ [0, 1] or cost threshold 𝛾 ∈ ℝ)

Update rule
set 𝛾 = min{2𝛾, 1} if several non improving iterations

set 𝛾 = 𝛾%&'(if new BKS is found

𝐿(𝑇)
Ordered list of move generators

Available but not in useIn use

Dynamic GNs

One Million... and Beyond! 31

May not capture scenarios
with different densities of
customers (when 𝛾 is low)

Dynamic GNs

One Million... and Beyond! 32

𝛾! sparsification factor
(percentage 𝛾! ∈ [0, 1] for each vertex 𝑖)

Update rule
set 𝛾! = min 2𝛾! , 1 if several non improving iterations involving 𝑖

set 𝛾! = 𝛾%&'(if new BKS is found by optimizing a solution area containing 𝑖

𝐿 𝑇!
𝐿 𝑇#
𝐿 𝑇)

Let each vertex manage its own move generators𝛾!

𝛾)
𝛾#

Vertex-wise Dynamic GNs

One Million... and Beyond! 33

PRO
• A minimum number of move generators is guaranteed per vertex
• Tailored intensification: move generators are increased only for areas that more

likely require a stronger intensification
• Intensification is globally increased at a slower rate

• faster local search for more optimization iterations

CONS
• Management of a 𝛾I for each vertex 𝑖
• Intensification is globally increased at a slower rate:

• more iterations are required for a globally stronger local search

Vertex-wise Dynamic GNs

One Million... and Beyond! 34

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

∀ 𝑖

∀ 𝑗

Only consider SMDs associated with active move generators

Granular SMD Neighborhoods

One Million... and Beyond! 35

A granular neighborhoods counterpart for vertices

Keep track of a set of interesting vertices 𝑉J associated with solution S

Insertion of 𝑖 before 𝑗: 𝜋# , 𝑗, 𝑖 Removal of 𝑖: 𝜋! , 𝑖, 𝜎!

𝜋# 𝑗

𝑖

𝜋! 𝜎!𝑖

INTERESTING
Vertices belonging to solution areas that recently underwent some change

RECENTLY
|𝑉J | < 𝐶 constant + LRU update policy

Selective Vertex Caching (SVC)

One Million... and Beyond! 36

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

SMD

Move identifier
int i, int j

Move effect
float delta

∀ 𝑖

∀ 𝑗

Initialize only SMDs associated with active move generators such that at least one of the endpoints
belongs to the cache 𝑉!

Subsequent SMD Updates may incrementally include additional SMDs

SVC to Restricted SMD Initialization

One Million... and Beyond! 37

SVC to Focus Local Search Applications

One Million... and Beyond! 38

(Optional)
Route Minimization

Core Optimization
(where most of the time is spent)

Perform a shaking (in a ruin-and-recreate fashion)

Re-optimize the shaken area

If not stopping condition, go to

1

2

3

Abstract ILS procedure

1

Empty the cache0

Update rule
set 𝛾! = min 2𝛾! , 1 if several non improving iterations involving 𝑖

set 𝛾! = 𝛾%&'(if new BKS is found by optimizing a solution area containing 𝑖

SVC to Update Vertex-wise Move Generators

One Million... and Beyond! 39

Cached vertices
after HRVND execution

Core Optimization

One Million... and Beyond! 43

Initialize shaking parameters "𝜔1

2

𝑆∗ = 𝑆′

Perform a random walk ruin-and-recreate
application on 𝑆 to obtain '𝑆

3
Otherwise

If 𝑐𝑜𝑠𝑡 𝑆′ < 𝑐𝑜𝑠𝑡(𝑆∗)

If 𝑎𝑐𝑐𝑒𝑝𝑡(𝑆", 𝑡)

Update "𝜔

Optimize '𝑆 using the LS engine to obtain S’

4

Initialize sparsification vector 𝛾̅

Loop

Reset 𝛾̅

Update 𝛾̅

𝑆∗ = 𝑆

𝑆 = 𝑆′5

𝑡 = 𝑐 ⋅ 𝑡6

Random Walk Ruin-and-recreate

One Million... and Beyond! 44

Select a seed customer 𝑠

Move within same route

Jump to a neighbor route

Forward

Backward

Any

Not yet visited one If not available Stop

1

Select the next customer 𝑗2

Loop𝜔# times

𝑖 = 𝑠

Remove 𝑖3 𝑖 = 𝑗

4

Insert 𝑖

For each removed customer 𝑖

Find best insertion position
of 𝑖 in existing routes

None of the routes can accomodate 𝑖

If a position is found

Create a route with 𝑖

A declarative selection of shaking parameters !𝝎

One Million... and Beyond! 45

A structure-aware and quality-oriented shaking meta-strategy

Shaking Re-optimization𝑆 𝑆′

Random walk of length 𝜔'
from a seed customer 𝑠

)𝑆

Compare S’ with S and introduce a feedback to adjust the shaking intensity

A declarative selection of shaking parameters !𝝎

One Million... and Beyond! 46

𝑆

𝑆′

𝑆′

𝑆′

SO
LU

TI
O

N
CO

ST

𝑆′

SHAKING TOO STRONG

SHAKING OK

SHAKING TOO MILD

SHAKING OK

Ω*+

Ω,+

SVC to Update Shaking Parameters

One Million... and Beyond! 47

𝑠

Update rule

𝜔! = 𝜔! − 1 if SHAKING TOO STRONG

𝜔! = 𝜔! + 1 if SHAKING TOO MILD

Randomly increase
or decrease 𝜔!

if SHAKING OK

Cached vertices
after shaking execution

𝑖 ∈ O𝑉-.

Computational results

One Million... and Beyond! 49

• Two versions of FILO
• FILO 100𝐾 core optimization iterations
• FILO (long) 1𝑀 core optimization iterations

• On standard instances
• X dataset by Uchoa et al. (2017)

• On very large-scale instances
• B dataset by Arnold, Gendreau, and Sörensen (2019)
• K dataset by Kytöjoky et al. (2007)
• Z dataset by Zachariadis and Kiranoudis (2010)

X: Uchoa et al. (2017)

One Million... and Beyond! 50

0

50

100

150

200

250

300

350

400

450

500

101 201 301 401 501 601 701 801 901 1001

Co
m

pu
tin

g
tim

e
(m

in
)

Number of vertices

ILS-SP - Subramanian,
Uchoa, and Ochi (2013)

HGSADC - Vidal
et al. (2012)

SISR - Christiaens and
Vanden Berghe (2020)

KGLS - Arnold
and Sörensen

(2019)

FILO

FILO (long)

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0 10 20 30 40 50 60 70

%
 g

ap

t (min)

Very large instances

One Million... and Beyond! 51

KGLS

KGLS (long)

FILO

FILO (long)

-0.5

0

0.5

1

1.5

2

2.5

0 50 100 150 200 250

%
 g

ap

t (min)

GVNS

KGLS
KGLS (long)

FILO
FILO (long)

-4

-3

-2

-1

0

1

2

3

0 20 40 60 80 100 120 140
%

 g
ap

t (min)

PSMDA

FILO
FILO

(long)
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 10 20 30 40 50 60 70

%
 g

ap

t (min)

B (3K – 30K)
Arnold, Gendreau, and Sörensen (2019)

K (≈8K – 12K)
Kytöjoky et al. (2007)

Z (3K)
Zachariadis and Kiranoudis (2010)

Algorithms
• KGLS, KGLS (long) - Arnold, Gendreau, and Sörensen (2019)
• GVNS - Kytöjoky et al. (2007)
• PSMDA - Zachariadis and Kiranoudis (2010)

FSP4D
FILO + SP for DIMACS

Luca Accorsi1, Francesco Cavaliere1

and Daniele Vigo1,2

1 DEI «Guglielmo Marconi», University of Bologna
2 CIRI ICT, University of Bologna

MAJOR CHANGES WITH RESPECT TO FILO

• Revamp of the LS engine to improve Data Locality
• Added two 2-opt based chained operators in the 2nd tier of the LS

engine
• Multistart with additional sophisticated Set Partitioning-based

polishing of solutions
• Main objective minimizing the Primal Integral measure

53One Million... and Beyond!

SET PARTITIONING PHASE (1/2)

54

Set Partitioning Problem
Given a set of columns, select a subset that cover all
the rows once and minimize the cost sum

As to VRP
• Columns are feasible routes
• Column cost is the route length
• Rows are customers

(Restricted) Set partitioning formulation of the VRP
Given a (restricted) set of routes, select a subset that
visits all the customer once and minimize the cost sum

One Million... and Beyond!

SET PARTITIONING PHASE (2/2)

55

Can be used as
• Short periodic phase that "merges"

routes found in independent runs of FILO
• Post-optimization phase at the very end

Pros
• Requires very little time
• Effective with some difficult instances

where FILO struggles in combining routes
together

Con
• Often improvements are small
• Work best after multiple independent

runs of FILO

One Million... and Beyond!

Achieved results

• Ranking was based on Primal Integral of solution, favoring methods
which find quickly good solutions.
• Instances had n≤1000 (relatively small for FILO)
• FSP4D ranked overall 6th (3rd on the large instances 300≤n≤1000)
• In the preliminary phase FSP4D ranked (by far) first on Belgium

instances
• Solver Alkaid-X, which ranked 1st hybridized FILO with the HGS

algorithm by Vidal et al.

One Million... and Beyond! 56

FSPD

An Efficient Heuristic for Very Large-Scale Vehicle
Routing Problems with Simultanueous Pickup and
Deliverly

1 Google
2 DEI «Guglielmo Marconi», University of Bologna

3 CIRI ICT, University of Bologna
4 DIMEG, University of Calabria

F.Cavaliere2, L.Accorsi1, D.Lagana4, R.Musmanno4 and D. Vigo2,3

Submitted, 2024 🤞

One Million... and Beyond! 57

VRP with Simultaneous P&D (VRPSPD)
Instance

One Million... and Beyond! 58

Customer 𝑖

Depot 0

(𝑥! , 𝑦!)

(𝑥", 𝑦")

∞ num. of vehicles
with capacity 𝑄

requires 𝑑! goods
returns 𝑝! goods
demand 𝑝!- 𝑑!
may be negative!

Euclidean distance
(cost)

Undir and complete graph

VRP with Simultaneous P&D (VRPSPD)
solution

One Million... and Beyond! 59

Route

10,5

5,7
4,6

(𝑑! , 𝑝!)

Along a route
the load on the
vehicle does not
monotonically
decrease as in
CVRP !

Current State-of-the-Art Methods

One Million... and Beyond! 60

• Vidal et al. (2012): Hybrid Genetic Algorithm

• Subramanian, Ochi, Uchoa (2013): ILS+ SP

• Hof and Schneider (2019): ALNS+Path Relinking
• Christiaens and Vande Berghe (2020): Ruin and recreate

based o string removal and insertion
• …

• Popular Benchmark Set by Sahly&Nagy (1999) with n=50:199

The challenge

• Extending FILO to handle additional constraints (in general, but to be
tested on VRPSPD) èFSPD framework !

• Main issue:
• re-engineering LS engine to handle general feasibility check
• Solution: extending FILO to incorporate Resource Extension Functions for

feasibility check

One Million... and Beyond! 61

Resource Extension Functions (REFs)

• Proposed by Desaulniers et al (1998), Irnich (2008)
• Each route may be partitioned in segments
• Each segment is associated to a set of R resources so that feasibility check can

be done in O(R)
• Given two segments a REF returns the feasibility of a concatenation of them

• Example CVRP: R is demand-sum of the segment
• given 𝑠Y, 𝑅Y and 𝑠Z, 𝑅Z, for 𝑠Y⊕ 𝑠Z we have 𝑅[>⊕[? = 𝑅Y + 𝑅Z

•

One Million... and Beyond! 62

Resource Extension Functions (REFs)

• For VRPSPD we need 3 resources
• 𝑀: maximum load;
• 𝑃: pickup-sum;
• 𝐷: delivery-sum

• 𝑠", 𝑀", 𝑃", 𝐷"and 𝑠#, 𝑀#, 𝑃#, 𝐷#, for 𝑠$= 𝑠"⊕𝑠# we have
• 𝑀] = max{𝑀Y + 𝐷Z, 𝑀Z + 𝑃Y}
• 𝑃] = 𝑃Y + 𝑃Z
• 𝐷] = 𝐷Y + 𝐷Z

• LS operators must be reimplemented to handle REFs
• Several implementation tricks must be employed to control memory

and time (not all possible segments may be stored)

One Million... and Beyond! 63

The challenge (cont.d)

• Minor issues:
1) Adapt R&R to handle additional constraints when removing and adding
customers to a route

• Solution: careful implementation of general insertion and removal and resulting resource
computation

2) Generating a feasible initial solution
• can be obtained by adapting the C&W and using the general removal and insertion

functions
3) Keep memory requirement controlled due to resource storage

• Testing the scalability of the approach on constrained VRPs
• generate new benchmark instances with 103-104 customers

One Million... and Beyond! 64

Computational results

One Million... and Beyond! 65

• Three versions of FSPD
• FSPD 100𝐾 core optimization iterations
• FSPD (mid) 500𝐾 core optimization iterations
• FSPD (long) 1𝑀 core optimization iterations

• On standard instances
• CMTX, CMTY dataset by Salhy and Nagy (1999) (50-199 cust.)

• some algorithms were only tested on the first 7 instances of each dataset
• D dataset by Dethloff (2001) (50 customers)
• M dataset by Montané and Galvao (2006) (100-400 customers)

• On very large-scale instance (by adapting CVRP instances)
• X dataset by Uchoa et al (2017) (100-1000 customers)
• XXL dataset by Arnold, Gendreau, and Sörensen (2019) (3K-30K customers)

Competitors

• ALNS-PR: the hybrid algorithm combining adapUve large neighborhood search (ALS) and path relinking of
Hof and Schneider (2019).

• ILS-RVND-SP: the ILS heurisUc of Subramanian, Uchoa, and Ochi (2013).

• SISR: the ruin-and-recreate algorithm of ChrisUaens and Vanden Berghe (2020b).

• UHGS: the populaUon-based method of Vidal et al. (2014).

• h_PSO: the hybrid discrete parUcle swarm opUmizaUon of Goksal, Karaoglan, and AlUparmak (2013).

• ACSEVNS: the hybrid heurisUc based on ant colony and variable neighborhood search of Kalayci and Kaya
(2016).

• PVNS: the perturbaUon-based variable neighborhood search algorithm of Polat et al. (2015).
• Note that, for this algorithm, the compu7ng 7mes reported are those of the best out of 10 runs (in terms of solu7on quality).

• ILS-RVND-TA: the hybrid ILS of Öztaş and Tuş (2022).

• VLBR: the adapUve memory approach of Zachariadis, TaranUlis, and Kiranoudis (2010).
• Note that, for this algorithm, the compuQng Qmes reported are those to reach the best soluQon and not the total ones.

One Million... and Beyond! 66

Results on CMTX and CMTY

Cavaliere et al.: An Efficient Heuristic for Very Large-Scale VRPSPDs

26 Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!)

Table 3 Results on the complete Salhi and Nagy (1999) CMTX and CMTY datasets. Average gaps marked by an

asterisk are actually the best gap obtained along several runs.

Algorithm X Y
Avg Time* Time Avg Time* Time

ALNS-PR 0.240 – 91.488 0.215 – 99.419
ILS-RVND-SP 0.234 – 101.411 0.220 – 98.899
SISR 0.145 – 487.390 0.128 – 481.853
ACSEVNS 0.031 – 85.996 0.031 – 84.440
PVNS 0.116 – 68.298 0.114 – 61.214
FSPD 0.056 7.574 35.661 0.065 8.330 35.673
FSPD-mid 0.018 29.300 182.381 0.026 27.598 183.794
FSPD-long 0.013 47.846 372.412 0.022 38.941 376.797

various versions of FSPD clearly dominate the competing methods. The only exception is repre-

sented by ACSEVNS which obtains on the full dataset slightly better solutions than FSPD in its

short setting but is inferior to FSPD-mid and long.

50 100 150 200 250 300

0

1

2

3

4

5
·10�2

FSPD

FSPD-mid
FSPD-long

t̂ (s)

Av
er

ag
e

%
ga

p

UHGS
ACSEVNS

PVNS

0 50 100 150 200 250 300

0

1

2

3

4

5
·10�2

FSPD

FSPD-mid FSPD-long

t̂ (s)

Av
er

ag
e

%
ga

p
UHGS

ACSEVNS
PVNS

Figure 3 Illustration of the results on the first seven instances of Salhi and Nagy (1999) X (left) and Y (right)

datasets.

5.3.1.2. Testing on Dethloff (2001) and on Montané and Galvão (2006) Instances. We complete

the testing on VRPSPD by considering the datasets proposed by Dethloff (2001) and Montané

and Galvão (2006) which were considered by some algorithms from the literature. Dethloff (2001)

proposed a dataset with 40 Euclidean instances with 50 customers and two types of customer

distribution. The first type (with prefix SCA) have the customers randomly distributed in the square

(0,0)�(100,100), while the other type (CON) scatters half of the customers as in the SCA type, and

the other half is concentrated in the square (100
3
,
100
3
)� (200

3
,
200
3
). The delivery amounts are chosen

randomly while the pickup amount is obtained from the delivery amount multiplied by a random

number in the range [0.5� 1.5]. Montané and Galvão (2006) proposed 18 instances, ranging from

100 to 400 customers, created by adapting literature instances of the VRP with time windows. The

One Million... and Beyond! 67

Cavaliere et al.: An Efficient Heuristic for Very Large-Scale VRPSPDs

Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 27

0 100 200 300 400 500

0

0.1

0.2

0.3

FSPD

FSPD-mid FSPD-long

t̂ (s)

Av
er

ag
e

%
ga

p

ALNS-PR
ILS-RVND-SP

SISR
ACSEVNS

PVNS

0 100 200 300 400 500
0

0.1

0.2

0.3

FSPD

FSPD-mid FSPD-long

t̂ (s)

Av
er

ag
e

%
ga

p

ALNS-PR
ILS-RVND-SP

SISR
ACSEVNS

PVNS

Figure 4 Illustration of the results on the complete Salhi and Nagy (1999) X (left) and Y (right) datasets.

aggregate results of the comparison between FSPD and its competitors are reported in Table 4. The

table clearly shows that FSPD in all its versions is very competitive both in terms of performance

and speed with respect to the existing algorithms. Furthermore, our statistical analysis shows that

on Montane instances all versions of FSPD dominate the competing methods except ILS-RVND-SP

which however takes more than five times of computing time. On Dethloff instances, all versions

of FSPD dominate both ACSEVNS and ILS-RVND-TA which are the only methods that report

average results over several runs. We also note that on Dethloff instances FSPD obtains average

gaps which are equivalent to the best ones obtained by ALNS-PR, h_PSO, and VLBR.

Table 4 Results on the Dethloff (2001) and Montané and Galvão (2006) datasets. Average gaps marked by an

asterisk are actually the best gap obtained along several runs.

Algorithm Montane Dethloff
Avg Time* Time Avg Time* Time

ALNS-PR 0.374 – 856.708 0.000* – 9.167
ILS-RVND-SP 0.077 – 1933.605 – – –
h_PSO – – – 0.000* – 1.598
ACSEVNS – – – 0.011 – 2.926
ILS-RVND-TA 0.890 – 452.206 0.084 – 7.425
VLBR 0.469* 21.573 – 0.000* 0.732 –
FSPD 0.173 14.691 33.593 0.000 0.489 30.971
FSPD-mid 0.115 67.696 170.895 0.000 0.602 155.923
FSPD-long 0.080 137.224 340.496 0.000 0.674 311.992

5.3.2. VRPMPD Benchmark Instances. The most used benchmark from the literature for

VRPMPD are the three sets proposed by Salhi and Nagy (1999). Also in this case the instances

are derived from the CVRP instances of Christofides, Mingozzi, and Toth (1979), by defining every

second, fourth, or tenth customer of the instance as a pickup-only customer with a demand equal to

the original CVRP demand. The other customers are instead defined as delivery-only customers and

first 7 instances all instances

similar results on D and M datasets and
also on VRPMPD

Results on X and XXL instances

• Checking the linear scaling of FSPD

One Million... and Beyond! 68

Cavaliere et al.: An Efficient Heuristic for Very Large-Scale VRPSPDs

30 Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!)

0 0.5 1 1.5 2 2.5 3

·104

0

500

1,000

1,500

2,000

#customers

T
im

e
(s

)

FSPD
y= 6.63 · 10�3

x+31.6
FSPD-mid
y= 3.14 · 10�2

x+160
FSPD-long
y= 6.29 · 10�2

x+317

Figure 5 Computing time required by different FSPD versions as a function of problem size for X and XXL VRPSPD

problem instances.

Table 7 Results on the new large-scale VRPSPD XX, XY instances.

Algorithm XX XY
Avg Time* Time Avg Time* Time

FSPD 0.769 28.905 36.019 0.776 28.359 35.922
FSPD-mid 0.365 135.261 180.511 0.382 134.260 179.671
FSPD-long 0.279 267.001 361.192 0.253 261.489 358.289

Table 8 Results on the new very large-scale VRPSPD XXLX, XXLY instances.

Algorithm XXLX XXLY
Avg Time* Time Avg Time* Time

FSPD 2.814 104.867 105.059 2.741 104.007 104.221
FSPD-mid 0.936 516.885 518.687 0.897 511.611 513.295
FSPD-long 0.305 1040.386 1045.203 0.226 1025.770 1028.897

By observing the tables it can be seen that the quality on large-scale instances is within 1% to 3%

from the best solutions found across all our experiments already with the standard version of FSPD,

although running it for a longer time provides a substantial benefit in terms of gap reduction. The

average time for X instances is below 0.5, 2.5, and 5 minutes for FSPD, FSPD-mid, and FSPD-

long, respectively. For XXL instances the quality improvement is more drastic when more time is

allowed and the solution improvement is constant until the last iterations, as can be observed by

the comparison of the Time⇤ and Time columns. This is further illustrated in Figure 6 where the

evolution along time of the best solution found by the three different FSPD versions is depicted on

an XXL instance. Note that, the different convergence speed of the algorithms shown in the figure

is due to the simulated annealing criteria whose annealing schedule is based on the total number

of iterations while the initial and final temperatures are kept fixed. By observing the figure it is

arguable that with even longer runs FSPD may further improve the solution quality, although such

Results on X and XXL instances

• Good improvement when increasing the n. of iterations but still
limited computing time

One Million... and Beyond! 69

Cavaliere et al.: An Efficient Heuristic for Very Large-Scale VRPSPDs

30 Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!)

0 0.5 1 1.5 2 2.5 3

·104

0

500

1,000

1,500

2,000

#customers

T
im

e
(s

)

FSPD
y= 6.63 · 10�3

x+31.6
FSPD-mid
y= 3.14 · 10�2

x+160
FSPD-long
y= 6.29 · 10�2

x+317

Figure 5 Computing time required by different FSPD versions as a function of problem size for X and XXL VRPSPD

problem instances.

Table 7 Results on the new large-scale VRPSPD XX, XY instances.

Algorithm XX XY
Avg Time* Time Avg Time* Time

FSPD 0.769 28.905 36.019 0.776 28.359 35.922
FSPD-mid 0.365 135.261 180.511 0.382 134.260 179.671
FSPD-long 0.279 267.001 361.192 0.253 261.489 358.289

Table 8 Results on the new very large-scale VRPSPD XXLX, XXLY instances.

Algorithm XXLX XXLY
Avg Time* Time Avg Time* Time

FSPD 2.814 104.867 105.059 2.741 104.007 104.221
FSPD-mid 0.936 516.885 518.687 0.897 511.611 513.295
FSPD-long 0.305 1040.386 1045.203 0.226 1025.770 1028.897

By observing the tables it can be seen that the quality on large-scale instances is within 1% to 3%

from the best solutions found across all our experiments already with the standard version of FSPD,

although running it for a longer time provides a substantial benefit in terms of gap reduction. The

average time for X instances is below 0.5, 2.5, and 5 minutes for FSPD, FSPD-mid, and FSPD-

long, respectively. For XXL instances the quality improvement is more drastic when more time is

allowed and the solution improvement is constant until the last iterations, as can be observed by

the comparison of the Time⇤ and Time columns. This is further illustrated in Figure 6 where the

evolution along time of the best solution found by the three different FSPD versions is depicted on

an XXL instance. Note that, the different convergence speed of the algorithms shown in the figure

is due to the simulated annealing criteria whose annealing schedule is based on the total number

of iterations while the initial and final temperatures are kept fixed. By observing the figure it is

arguable that with even longer runs FSPD may further improve the solution quality, although such

FILO2

Routing one million customers in a
handful of minutes

1 Google
2 DEI «Guglielmo Marconi», University of Bologna

3 CIRI ICT, University of Bologna

Luca Accorsi1 and Daniele Vigo2,3

Computers & Operations Research, 2024

One Million... and Beyond! 70

Mo\va\on

• Funny research exercise
• Challenging target

• Push the limits of CVRP
• Inspire new research on efficient and effective algorithms

• Make all Italian regions known around the world!

One Million... and Beyond! 71

The Datasets

• 20 XXL instances having between 20k-1M customers built similarly to
the Belgium instances
• Customer demand in [1, 3]
• Vehicle capacity 50, 150, 200
• Half instances require relatively short routes, half longer ones

• 2D vertex coordinates coming from real addresses in Italian regions
• OpenAddresses
• Different layouts and customer densities following actual cities distribution
• Depot in the regional capital (internal, eccentric, frontier…)

One Million... and Beyond! 72

https://openaddresses.io/

The Datasets

One Million... and Beyond! 73

Valle d'Aosta (20k) Molise (50k) Trentino-Alto Adige (100k) Basilicata (150k) Umbria (200k)

Abruzzo (250k) Friuli-Venezia Giulia (300k) Liguria (320k) Calabria (380k) Marche (420k)

The Datasets

One Million... and Beyond! 74

Sardegna (470k) Campania (500k) Piemonte (600k) Toscana (700k) Puglia (750k)

Sicilia (800k) Veneto (850k) Emilia-Romagna (900k) Lombardia (950k) Lazio (1M)

Goal

• Show that granular neighborhoods, static move descriptors, and
selective vertex caching are already powerful enough techniques
making FILO scale to huge-scale sizes

One Million... and Beyond! 75

Goal

• Show that granular neighborhoods, stabc move descriptors, and
selecbve vertex caching are already powerful enough techniques that
makes FILO scale to these sizes
• But first... let's develop FILO2 to improve certain FILO aspects

One Million... and Beyond! 76

1

10

100

1000

10000

20000
50000

100000

150000

200000

250000

300000

320000

380000

420000

470000

500000

600000

700000

750000

800000

850000

900000

950000

1000000

GB
 o

f R
AM

Number of customers

FILO estimated memory occupation

1st Challenge: Memory Requirements

• Memory-demanding data structures (~quadratic in 𝑛)
• Cost matrix

• Direct access to arc costs
• Necessary to evaluate solution changes

• Neighbors lists
• Restricted Savings algorithm
• Ruin step
• Move generators definition

• Both are critical for the main algorithm procedures

One Million... and Beyond! 77

Cost Matrix

• The explicit cost matrix is removed and replaced with
• On-demand computation of arc costs from coordinates
• Storage of arc costs in the current solution into the solution data structure
• Storage of arc costs in move generators data structures

One Million... and Beyond! 78

Relocation of i before j

Only 2 out of 6 costs are computed on-demand in practice

On-demand vs Cached costs

• Cache proposed by Bentley (1990) for the TSP
• Effective for algorithms showing a great locality in cost computation
• FILO definitely has this property (see hit ratio)
• However, Cache management overhead does not pay-off

One Million... and Beyond! 79

Configura\on Time percentage increase wrt baseline Cache hit ratio

On-demand+ Baseline

On-demand 10%

Cached+ 13% 84%

Cached 27% 91%
+ Some costs are retrieved in constant time from solution and move generators

1st Challenge: Memory Requirements

• FILO2 uses the on-demand+ strategy
• We approach an instance with 1M customers on an ordinary laptop!

One Million... and Beyond! 80

0.1

1

10

100

1000

10000

20000
50000

100000

150000

200000

250000

300000

320000

380000

420000

470000

500000

600000

700000

750000

800000

850000

900000

950000

1000000

FILO vs FILO2 Memory requirements

FILO GB FILO2 GB

Neighbors Lists

• We no longer compute exhaustive lists of neighbors
• We only compute 𝑛𝑛𝑛 of them

• This can be done efficiently in a preprocessing phase by using a kd-
tree built on top of vertex coordinates
• Build tree: 𝑂(𝑛 log 𝑛)
• Find 𝑛𝑛𝑛 neighbors: 𝑂(𝑛𝑛𝑛 log 𝑛)
• Compute neighbors lists: 𝑂(𝑛 𝑛𝑛𝑛 log 𝑛)

• Neighbors of different vertices are independent
• Easy parallelization!
• But in this work we sticked to the classical single-thread setting typical of this

type of OR works

One Million... and Beyond! 81

Neighbors Lists

Instance Neighbors list comput (s) FILO2 (%) FILO2 (long) (%)

Valle d'Aosta (20k) 4 2.09 0.15

Molise (50k) 10 6.86 0.53

Trentino-Alto Adige
(100k)

23 11.86 1.00

...

Emilia-Romagna (900k) 235 46.82 7.19

Lombardia (950k) 242 43.04 3.03

Lazio (1M) 258 48.58 6.57

Average 122 32.89 3.50

One Million... and Beyond! 82

• kd-tree based neighbors lists computation still takes a relevant
portion of the overall computing time!
o Full sorting is impossible

Neighbors Lists

One Million... and Beyond! 83

• 𝑛𝑛𝑛 affects the final solution value

250

0

0.5

1

1.5

2

2.5

150 200 250 300 350 400 450 500 550 600

Av
ar

ag
e

%
 g

ap

Avarage computing time (s)

500

750

1000
1250

1500
1750

22502000
2500

2nd Challenge: Recreate Strategy

• Given a un-routed customer, searching for the best insertion position is too
expensive and seldom useful
• In XXL instances, it's unlikely that this position is on the opposite side of where the

customer is positioned
• In FILO2, we only consider neighbor customers (available from neighbors

lists) when searching for a candidate insertion position

• A limited best insertion experimentally shown to be effective on final
solution quality
• See also the blink strategy in SISR, Christiaens and Vanden Berghe (2020)

One Million... and Beyond! 84

Time (s) Gap

Best insertion 1224 1.02

Limited best insertion 370 0.70

3rd Challenge: Simulated annealing temperature

• FILO uses a SA temperature based on the average instance arc cost
• Computing this value can be extremely expensive

• In FILO2 we simply rely on a random sample of N instance arc costs

One Million... and Beyond! 85

Instance Exact temperature Exact time (s) Approx temperature Approx time (ms)

Valle d'Aosta (20k) 1784.73 1.32 1780.85 0.00

Molise (50k) 3558.74 8.27 3553.99 0.00

Trentino-Alto Adige (100k) 4809.19 33.11 4810.42 1.20

…

Emilia-Romagna (900k) 8527.99 2686.10 8526.11 59.20

Lombardia (950k) 6767.92 2993.95 6768.97 65.50

Lazio (1M) 5711.48 3315.50 5709.98 65.70

Average 6451.97 1095.73 6452.09 29.51

4th Challenge: Solution copies

• Solution data structure copy
• Performed at every algorithm iteration

1. S current solution
2. S’ = S
3. Apply ruin & recreate + local search to S’ to obtain an actual neighbor of S

• Step 2 is very expensive for large scale instances!

• Step 3 is very localized thanks to the SVC
• Full copy is not necessary

• Difference between S and S’ is minimal if
• Instance is large enough
• SVC max capacity is limited

One Million... and Beyond! 86

Sync Solutions by using Incremental Changes

• Create two identical solutions S and S’
• This requires a single full copy

• During ruin & recreate + local search applied to S’
• Record individual changes into a do-list D

• E.g., remove vertex i from route r' and insert vertex i before j in route r
• Record individual inverse changes into an undo-list U

• E.g., remove vertex i from route r and insert it in its previous position in route r'

• To make S equal to S’
• Apply changes in D to S

• To make S’ equal to S
• Apply changes in U to S’ in reverse order

One Million... and Beyond! 87

Sync Solutions by using Incremental Changes

• Solution copy is no longer
a linear procedure
• But it is bound to the

actual number of changes
performed during
neighbor generation

• In FILO, neighbor
generation is very efficient
by design

One Million... and Beyond! 88

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

Co
m

pu
tin

g
tim

e
(s

)

Number of customers

Inc copy Standard copy

5th Challenge: Local Search Operators
Preprocessing

• Some local search operators benefit from some preprocessing
• E.g., inter-route 2 opt (called SPLIT and TAILS in FILO)
• Feasibility check in costant time if cumulative demands are available

• Performing a full preprocessing is expensive (and useless!)
• In FILO we were computing the cumulative demands for every customer and

route...
• As the local search is very localized, there is no real need to perform a full

solution preprocessing

One Million... and Beyond! 89

Lazy Local Search Operators Preprocessing

• Preprocess a route
only when required
• E.g., whenever a

feasibility check
involving such a route
is requested

• Cache the
preprocessed data
until the route is
changed

One Million... and Beyond! 90

100

1000

10000

100000

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

Co
m

pu
tin

g
tim

e
(s

)

Number of customers

Lazy preproc Full preproc

6th Challenge: HRVND

• FILO uses 20 local search operators organized as HRVND
• 2 tiers (RVND): all quadratic cardinality operators, then ejection chain
• In every tier we loop through the operators multiple times until we are in a

local optimum for such a tier, before moving to the next tier
• To save a bit of time, in FILO2, we only perform a single loop per tier

• We are already re-applying the whole HRVND whenever an improvement was found
• Multiple passes within the same tier are unlikely to cause significant quality

improvements

One Million... and Beyond! 91

Time (s) Gap

Standard 413 0.69

Single loop 370 0.70

Computational Testing

• Testing goal
• Compare FILO vs FILO2 on literature instances (X and Belgium)
• Provide some results for the new I instances

• Testing on a mini-computer
• AMD Ryzen 5 PRO 4650GE CPU (3.3 GHz), used in single-thread
• 16 GB RAM

• Algorithm versions
• Standard (100k core opt iters)
• Long (1M core opt iters)

• All numbers refer to the average of 10 runs!

One Million... and Beyond! 92

Testing on X Instances
• Main reference literature dataset for the CVRP

• 100 instances having from 100 to 1000 customers
• Several customer demand distributions and vertex layouts

One Million... and Beyond! 93

Vertices Avg t(s) Avg t(s)

101-247 0.18 78 0.17 75

251-491 0.39 73 0.36 73

502-1001 0.53 75 0.50 82

Average 0.37 75 0.34 76

FILO FILO2
Vertices Avg t(s) Avg t(s)

101-247 0.08 827 0.08 807

251-491 0.25 771 0.23 769

502-1001 0.32 763 0.29 831

Average 0.22 786 0.20 801

FILO (long) FILO2 (long)

Vertices Avg Avg

101-247 0.11 0.01

251-491 0.23 0.08

502-1001 0.24 0.25

Average 0.20 0.11

SISR HGS
Reference state-of-the-art algorithms when performed for 240n/100 seconds
• HGS: Hybrid Genetic Search, Vidal (2022)
• SISR: Slack Induction by String Removals, Christiaens and Vanden Berghe (2020)

Results taken from Vidal (2022)

Testing on Belgium Instances

• Large scale dataset for the CVRP
• 10 instances having from 3k to 30k customers

One Million... and Beyond! 94

Avg t(s) Avg t(s)

Average 1.15 207 1.08 121

FILO FILO2
Vertices Avg t(s) Avg t(s)

Average 0.42 2315 0.37 1371

FILO (long) FILO2 (long)

Reference state-of-the-art algorithm
• KGLS: Knowledge Guided Local Search, Arnold et al. (2019)

* Single run as KGLS is deterministic
** Roughly scaled to match our CPU

Gap* t**(s) Gap* t**(s)

Average 2.63 2944 1.77 11774

KGLS (short) KGLS

Testing on Belgium Instances

One Million... and Beyond! 95

The two linear functions met approximately at 4876 customers

y = 0.0132x + 45.563

y = 0.0015x + 102.58

0

100

200

300

400

500

600

0 5000 10000 15000 20000 25000 30000 35000

Co
m

pu
tin

g
tim

e
(s

)

Number of customers

FILO FILO2 Lineare (FILO) Lineare (FILO2)

Testing on I Instances
• No competitors yet!

• FILO can only be executed on the smallest instance with 20k customers (Vd'A)

One Million... and Beyond! 96

Avg* t(s) Avg* t(s)

Average 0.70 370 0.30 3474

FILO2 FILO2 (long)
* Wrt the best solution we found during all our experimentation

y = 0.0004x + 173.72
0

100

200

300

400

500

600

700

0 200000 400000 600000 800000 1000000

Co
m

pu
tin

g
tim

e
(s

)

Number of customers

FILO2

y = 0.0029x + 2051.2
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 200000 400000 600000 800000 1000000

Co
m

pu
tin

g
tim

e
(s

)

Number of customers

FILO2 (long)

• Using several FILO solver in
parallel working with different
settings/solutions

• Decomposing the instance and
letting each solver working on a
different part

One Million... and Beyond! 97

What's next ?

FILO goes PARALLEL !
Ongoing joint work with F. Michelotto, L. Accorsi, D. Laganà, R. Musmanno

Thank You!

• Report, slides and code
• https://github.com/acco93/filo

One Million... and Beyond! 98

