Fixed Parameter Tractability of Scheduling Dependent Typed Tasks with time windows

Claire Hanen ^{1,2} Alix Munier Kordon ¹

¹Sorbonne université, CNRS, LIP6, F-75005, Paris, France ²UPL, Université Paris Nanterre, 92000, Nanterre, France

November 15, 2023

Scheduling Seminar

Contents

Problem definition

- 2 Challenges of the parameterized approach
- 3 A FPT algorithm for unit processing time jobs
- **4** FPT for $p_i \in \mathbf{N}$ with two parameters
- **5** Complexity for $p_i \in \mathbf{N}$ with one parameter
- 6 References, extensions and conclusion

Input:

A set T = {1,..., n} of n non-preemptive jobs; each job i ∈ T has integer processing time p_i, an integer release time r_i and an integer deadline d_i;

Input:

- A set T = {1,..., n} of n non-preemptive jobs; each job i ∈ T has integer processing time p_i, an integer release time r_i and an integer deadline d_i;
- Precedence graph G = (T, E);

3 / 26

Input:

- A set T = {1,..., n} of n non-preemptive jobs; each job i ∈ T has integer processing time p_i, an integer release time r_i and an integer deadline d_i;
- Precedence graph G = (T, E);
- Typed tasks: K types machines, m_k, k ∈ {1,..., K} identical machines of type k;
- Each job $i \in T$ is processed by a given machine type π_i .

26

Objective: Find, if possible, a feasible schedule

This decision problem is denoted by $P|\mathcal{M}_j(type), prec, r_j, d_j| \star$ using the Graham notation.

Challenges of Parameterized complexity for scheduling

- Many scheduling problems are NP-complete. But, is it possible to go little bit further in the theoretical study of the complexity of the problem ?
- From a practical point of view, if some instances have parameters bounded by constant values, can we solve the problem in polynomial time ?
- What are the relevant structural parameters for scheduling problems?
- What about the parameterized complexity of basic scheduling problems ?

Parameterized complexity classes

A parameterized problem of size n with parameter k :

Definition

FPT is the class of problems solvable by a fixed-parameter tractable algorithm with time complexity $O(f(k) \times poly(n))$, where f is a computable function and poly(n) a polynome of n.

Parameterized complexity classes

A parameterized problem of size n with parameter k :

Definition

XP is the class of parameterized problems solvable by an algorithm with time complexity $O(n^{f(k)})$, where *f* is a computable function.

Definition

para - NP is the class of parameterized problems solvable by a non-determininstic FPT algorithm

In practice [Flum and Grohe 2006]: A problem with parameter k is para-NP complete if it is NP-complete for one fixed value of k

6 / 26

Parameterized complexity classes

It is conjectured that all the complexity classes are distinct.

Literature review

Parameters:

• m

- p_{max}
- σ = max_i(d_i r_i p_i) or maximal allowed slack w.r.t. earliest schedule
- width of the precedence graph w(G)
- nb of different values d_i, p_i (Seminar jan 22 by Dvir Shabtay)

$$p_{max} = 6, m = 3, w(G) = 4, \sigma = 4$$

Parameter(s)	Some results						
C _{max}	$P prec, p_i = 1 C_{max}$ is para-NP-complete [Lenstra and Rinnooy Kan 1978]						
w(G)	$P2 prec, p_j \in \{1, 2\} C_{max}$ is $W[2]$ -hard [Van Bevern et al. 2016]						
w(G)	$P prec, p_j = 1 C_{max} \leq D$ is XNLP-complete[Bodlaender et al, 2022]						
$w(G) + \sigma$	<i>PS</i> <i>prec</i> <i>C_{max}</i> if FPT [Van Bevern et al. 2016]						

Literature review on the pathwidth

Parameters:

- μ =maximum number of overlaping time windows = pathwidth of the interval graph + 1
- Called pathwidth

Parameter(s)	Some results
μ	$P prec, p_i = 1, r_i, d_i \star FPT$ [Munier Kordon 2021]
μ	$P2 prec, r_i, d_i \star$ para NP Complete [Hanen and Munier Kordon 2023]
μ'	$P chains(\ell_{i,j}), p_j = 1, r_C, d_C \star \text{ is W}[2]-hard [Bodlaender et al 2020]$
μ	$P chains(\ell_{i,j}), p_j = 1, r_j, d_j \star \text{ is para-NP-Complete [Mallem et al, 2022]}$
$\mu + \ell_{max}$	$P chains(\ell_{i,j}), p_i = 1, r_i, d_j \star$ is FPT [Mallem et al, 2022]
$\mu + \min(\sigma, p_{max})$	$P \mathcal{M}_j(type), prec, r_j, d_j \star \text{ is FPT [Hanen and Munier Kordon 2023]}$

The unit processing time case $p_i = 1$

$i \in \mathcal{T}$	1	2	3	4	5	6	7
r _i	0	1	2	1	2	2	3
di	2	3	4	3	4	4	5

- $u_{\alpha}, \alpha \in \mathbb{N}^{\star}$ sorted endpoints of $\{[r_i, d_i), i \in \mathcal{T}\};$
- **2** $\kappa \leq 2n$ is the number of terms of the sequence u_{α}

3 Here $\kappa = 6$

The unit processing time case $p_i = 1$

$i \in \mathcal{T}$	1	2	3	4	5	6	7
ri	0	1	2	1	2	2	3
di	2	3	4	3	4	4	5

$$X_{\alpha} = \{i \in \mathcal{T}, r_i \leq u_{\alpha} \text{ and } u_{\alpha+1} \leq d_i\} \text{ for } \alpha \in \{1, \dots, \kappa - 1\};$$

2
$$X_3 = \{2, 3, 4, 5, 6\};$$

3 parameter
$$\mu = |X_3| = 5;$$

•
$$|X_{\alpha}| \leq \mu$$
 for all α .

Schedule structure

- Path on a state graph.
- A state v of level $\alpha \implies V(v)$ set of jobs completed not later than $u_{\alpha+1}$;
- V(v) comprises :

all jobs *i* with deadline $d_i \leq u_{\alpha+1} = Z_{\alpha}$ A set P(v) of other jobs

Schedule structure

Schedule structure

Size of the state graph

Corollary (Munier-Kordon 2021)

For every $\alpha \in \{1, \ldots, \kappa\}$, $|\mathcal{V}_{\alpha}| \leq 2^{\mu}$. So, the total number of nodes of the state graph $|\mathcal{V}| \leq n \times 2^{\mu}$. Moreover, the total number of arcs $|\mathcal{A}| \leq n \times 2^{2\mu}$.

An arc (u, v) of the state graph links a state u of level α to a state v of level $\alpha + 1$.

- consistency of job subsets $P(u) \subseteq P(v) \cup Z_{\alpha+1}$
- consistency of prec constraints
- existence of a feasible schedule of P(v) ∪ Z_{α+1}\P(u) ∪ Z_α in the interval [u_α, u_{α+1})

Theorem ([Munier Kordon 2021])

Checking the existence of an arc (u, v) in the state graph can be done in time complexity $\mathcal{O}(\mu^3 \times 2^{2\mu})$.

Full state graph associated to our example

A state graph $\mathcal{G} = (\mathcal{V}, \mathcal{A})$

- Nodes are associated to partial schedules and are represented by less than μ tasks;
- Paths from source to sink represent all the feasible schedules.

Algorithm for building the state graph ${\mathcal G}$

For $\alpha \in \{1, \ldots, \kappa\}$, \mathcal{V}_{α} is the set of states associated to the feasible schedule in $[u_1, u_\alpha)$; **Require:** An instance \mathcal{I} of P|, prec, $p_i = 1, r_i, d_i| \star$ **Ensure:** True iff \mathcal{T} is feasible 1: $\mathcal{V}_1 \leftarrow \{\emptyset\}, \mathcal{G} \leftarrow (\mathcal{V}, \mathcal{A}) \text{ with } \mathcal{A} \leftarrow \emptyset \text{ and } \mathcal{V} \leftarrow \mathcal{V}_1;$ 2: for $\alpha \in (2, \ldots, \kappa)$ do Build the nodes of \mathcal{V}_{α} , $\mathcal{V} \leftarrow \mathcal{V} \cup \mathcal{V}_{\alpha}$; 3: for all $(v, v') \in \mathcal{V}_{\alpha-1} \times \mathcal{V}_{\alpha}$ do 4: if Existence arc(v, v') then 5: $\mathcal{A} \leftarrow \mathcal{A} \cup \{(v, v')\}$ 6: end if 7: end for 8: 9: end for

10: **return** \exists a path in \mathcal{G} from $s \in \mathcal{V}_1$ to a node v associated to \mathcal{T} .

A FPT Algorithm for $P|prec, p_i = 1, r_i, d_i| \star$

Theorem ([Munier Kordon 2021])

 $P|prec, p_i = 1, r_i, d_i| \star$ is fixed-parameter tractable by the pathwidth μ . The time complexity of the FPT-Algorithm is in $O(n^4 2^{4\mu})$.

Extension for general processing times - Intuition

Information to be recorded in a state at level α (i.e. for jobs started before $u_{\alpha+1}$)is:

- The set P(v) of scheduled jobs not in Z_{α}
- The exact schedule M(v) of jobs crossing u_{α+1}:
- ((2,7), ●, (6,9)) indicates that job 2 completes at 7 on machine 1 and job 6 completes at 9 on machine 3.

IIIac	June J.				
α	1	2	3	4	5
P(v)	Ø	$\{3, 5\}$	$\{2, 6, 7\}$	{6,7}	Ø
M(v)	(ullet,ullet,ullet)	$(\bullet, \bullet, (5, 4))$	$((2,7), \bullet, (6,9))$	(●, ●, (6, 9))	(ullet,ullet,ullet)

Checking an arc (u, v) of the state graph

- Consistency of sets V(u) and V(v);
- Consistency of the schedules M(u) and M(v);
- Existence of a feasible schedule of the other jobs ⊂ X_α.

Complexity analysis arguments

Information to be recorded in a state v at level α (i.e. for jobs started before $u_{\alpha+1}$)is:

- The set P(v) of scheduled jobs not in Z_α
- The exact schedule M(v) of jobs crossing u_{α+1}

- The set $P(v) \subseteq X_{\alpha}$, so there are 2^{μ} such subsets.
- The set of jobs crossing u_{α+1} is in X_α ∩ X_{α+1}. There are at most 2^μ such subsets.
- For each crossing subset there are at most $\min(\sigma, p_{\max})^{\mu} \times (\mu + 1)^{\mu}$ different schedules (considering that the nb of machines is less than μ)

FPT for $p_i \in \mathbf{N}$ parameterized by $(\mu, \min(p_{\max}, \sigma)))$

Theorem (Hanen and Munier Kordon 2023)

 $P|\mathcal{M}_{j}(type), prec, r_{i}, d_{i}| \star is FPT for parameters (\mu, \min(p_{\max}, \sigma)).$

Are both parameters necessary to get a FPT algorithm?

- $P|prec, p_j = 1|C_{max} \leq 3$ is NP-complete [Lenstra and Rinnooy Kan 1978] ;
- Here $\sigma = 2$, $p_{max} = 1$.

Following the definition of the para-NP-completeness and [Flum and Grohe 2006]:

Corollary

The problem scheduling $P|prec, r_i, d_i| \star parameterized by min(p_{max}, \sigma)$ is para-NP-complete.

Complexity of $P|prec, r_j, d_j| \star$ parameterized by the pathwidth

A reduction from Partition-SC allows us to get the following theorem:

Theorem

The decision problem $P2|r_i, d_i| \star$ with $\mu = 4$ is NP-complete.

Corollary

The scheduling problem $P2|r_i, d_i|$ * parameterized by the pathwidth is para-NP-complete.

Corollary

The scheduling problem $P|r_i, d_i| \star$ parameterized by the pathwidth and the number of machines is para-NP-complete.

Complexity of $P|prec, r_j, d_j| \star$ parameterized by the pathwidth

Partition-SC

- **Input:** n = 2p positive integer values a_1, a_2, \ldots, a_n such that, for any value $j \in \{1, \ldots, p\}$, $a_{2j-1} < a_{2j}$.
- Question: is there a subset $A \subset \{1, ..., n\}$ such that, for any value $j \in \{1, ..., p\}$, exactly one value from $\{2j 1, 2j\}$ is in A and $\sum_{u \in A} a_u = \sum_{u \in \{1, ..., n\} A} a_u$?

Lemma

The decision problem Partition-SC is NP-complete.

Claimed in [Garey and Johnson 1979]. Proved using a reduction from Partition.

From Partition-SC to a scheduling problem

- n = 2p positive integer values a_1, a_2, \dots, a_n such that, for any value $j \in \{1, \dots, p\}$, $a_{2j-1} < a_{2j}$.
- Each value $a_u \implies \text{job } u$
- job 2j 1 and job 2j (same interval) cannot be processed on the same machine.
- Intervals of jobs 2j − 1, 2j do not intersect with intervals of jobs 2j + 3, 2(j + 2) ⇒ μ = 4

22 /

Two main references for this talk

Main references for this talk:

Munier Kordon 2021 A fixed-parameter algorithm for scheduling unit dependent tasks on parallel machines with time windows. Discret. Appl. Math. 290: 1-6 (2021)

Hanen and Munier Kordon 2023 Fixed-parameter tractability of scheduling dependent typed tasks subject to release times and deadlines. J Sched (2023).

Conclusion

- The tuple (μ, p_{max}) seems to be a good parameter to capture the parallelism of scheduling problems;
- Are there other (more) interesting parameters for these basic scheduling problems ?
- Are there relations between parameters?
- New exact efficient methods?
- Parameterized complexity of scheduling problems is a wide open field.

Our recent work on parameterized algorithms for scheduling problems

- Alix Munier Kordon and Ning Tang, A fixed-parameter algorithm for a unit-execution-time unit-communication-time tasks scheduling problem with a limited number of identical processors. RAIRO Oper. Res. 56(5): 3777-3788 (2022)
- Maher Mallem, Claire Hanen, Alix Munier Kordon, Parameterized Complexity of a Parallel Machine Scheduling Problem. IPEC 2022: 21:1-21:21
- Istenc Tarhan, Jacques Carlier, Claire Hanen, Antoine Jouglet, Alix Munier Kordon, Parameterized Analysis of a Dynamic Programming Algorithm for a Parallel Machine Scheduling Problem. Euro-Par 2023: 139-153

Questions?

26