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Resource-constrained project scheduling problem

(RCPSP) : Introduction

@ Scheduling problem with standard “finish-start” precedence
constraints and resources of limited availabilities.

@ Find the start time of tasks while satisfying precedence and resource
constraints.

@ Minimize the makespan (total project duration)

— Computationnally challenging NP-hard combinatorial optimization
problem

— Generalizes many standard scheduling problem 1-machine,
parallel-machines, X-shop, Assembly line balancing

— At the core of many industrial applications
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| Resource-constrained project scheduling problem (RCPSP)
The RCPSP : parameters

@ R set of resources, limited constant availability By, > 0,

@ A set of activities, duration p; > 0, resource requirement by, > 0 on
each resource k,

@ E set of precedence constraints (i,j), i,j € A, i <j

@ 7 time interval (scheduling horizon)
IR|=1,B=4,T =[0,30)

@\ I P bi
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~ Resource-consiained project scheduling problem (RCPSP)
The RCPSP : variables, objective and constraints

@ 5; > 0 start time of activity i
@ Cax makespan or total project duration

RCPSP (conceptual formulation)

min Cpax = max S; + p;
i€A

S;>Si+p  (i,j)eE Precedence constraints
s.t. > by < By teT,ke R Resource constraints

i€A(t)

5>0 €A

where A(t) ={j € Alt € [S5;,S;+ p;)}, Vt €T
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The RCPSP : solution example

|[R| =1,B=4,T =10,30)

i pi b
1 3 2
2 5 3
3 1 3
4 3 1
5 2 1
6 4 2
7 5 3
8 6 1
9 4 1
10 4 1
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The Resource-Constrained Project Scheduling

Problem (RCPSP)

@ A central problem in many industrial applications

e Project management, manufacturing, process industry, parallel
processor architectures

@ The “standard” RCPSP : An NP-hard problem posing a
computational challenge since the the eighties

o Benchmark instances [Patterson 1984], [Alvarez-Valdes and
Tamarit 1989], [Kolisch, Sprecher and Drex| 1995,1997]
(PSPLIB), [Baptiste and Le Pape 2000], [Carlier and Néron
2003] (PACK). [Coelho and Vanhoucke 2020]

o 24 (out of 480) still open instances with 60 activities and 4
resources from PSPLIB
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Data instances and best known results

[Vanoucke & Coelho 2018] http://solutionsupdate.ugent.be/
Table - Best known results for the RCPSP (March 2022)

Table - Best known results for RCPSP (March 2022)

[ovases s verson s

o
RG30
RG300
DC1
oc2

PSPLIB

NetRes

Patterson

sD

highRD lowRU]
[highRD lowRU]

ThighRD lowRU]

[highRD lowRU]
130 [highRD lowRU]
160 [highRD lowRU]

190 [highRD lowRU]
1120 [highRD lowRU]
NR(SP) [1k highRD lowRU]
NR(AD) [1k highRD lowRU]
NR(LA) [Lk highRD lowRU]
NR(TF) [1k highRD lowRU]
NR(RC) [Lk highRD lowRU]
NR(RU) [1k highRD lowRU]
NR(VAR) [1k highRD lowRU]
VNR

540000 [540]
480000 [480]
720000 [720]
720000 [720]
540000 [540]
270000 [270]
540000 [540]
1750

110

390

290
25591 [12]
44855 [7]
246 [0]
23563 [0]
10333 [0]
3761[0]
4722 [0]
24

0

229

142.21%
39.27%

956.71%

26.57%

274.20%

13.38%

10.37%

9.43%

20.01%

78.76% [72.93%]
98.80% [102.43%]
58.41% [58.87%]
68.28% [64.68%]
66.27% [71.56%]
73.63% [77.00%]
87.27% [91.88%]
70.33%

18.04%

94.10%
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3.4
2.0
352
0.0

76

0.0

5.5

75

7.9
5.3[1.8]
5.6 [1.1]
4.6 [0.0]
6.5 0]
6.0 [0.0]
9.30.0]
4.310.0]
23

0.0

5.1

cviwz
ks

Cv20

DH; KS; DV; €
DH; closed
DH; Ks; DV: €V
DH; closed
DH; KS; DV; SFSW; V; CV; C; psplib
DH; KS; DV; SFSW; V; CV; psplib

DH; KS; DV; SFSW; V; HKNC; CV; psplib
DH; KS; DV [DH; KS; DV; Cv20]

DH; KS; DV [DH;

DH; KS; DV [DH;
DH; KS; DV [DH; KS; DV; CV20; closed]
DH; KS; DV [DH; KS; closed]
DH; KS; DV [DH; KS; closed]
DH; KS; DV [DH; KS; closed]

DH; closed
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~ Resource-consiained project scheduling problem (RCPSP)
The RCPSP : complexity, variants and methods

@ Strongly NP-hard
@ Generalizes single/parallel machine, X-shop problems
@ Many relevant variants
o Other objectives : min )" ;c 4 w;(S; + pi)
o Generalized precedence constraints S; > S; + [;;
e Setup times, multiple modes, non renewable resources,
preemption ...
o Uncertainty p; € [p", p™], p; ~ A'(u1, 0?)
@ Exact and heuristic Methods
o Heuristics and metaheuristics
Dedicated branch and bound methods
Specific lower bounds
Constraint programming (CP) or hybrid SAT/CP
Mixed Integer Linear Programming (MILP)
Large Neighborhood search (LNS)
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Scheduling the Philae lander experiments on the
comet 67P /Churyumov—Gerasimenko

Batery

TE— |

e
J— ] r
wsscranster e | 1L LU =
FP——. {1111 s

N
production () [ oweurans

i)

credit : CNES
@ RCPSP with data transfer constraints
@ 3-level Hierarchy of cumulative resource constraints

@ 19 experiments, 752 activities, 926 precedence constraints,

[Simonin et al., 2012 2015] (solved by CP)
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S ESREINRR pications
Scheduling the Airbus A330 Assembly line

@ Multi-mode RCPSP with resource
leveling objective (fixed makespan of
14 to 25 days)

@ About 700 activities, resources
operator groups (5 to 15 operators
per groupes), limited space

@ [Borreguerro et al., 2021]

(solved by CP-LNS)

credit : José Gouldo, CC BY-SA 2.0
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S ESREINRR pications
Scheduling hazardous material examinations

credit : ASN

@ Multi-skill partially preemptive RCPSP with makespan objective
@ About 100 activities a week, 180 operators
@ [Polo et al., 2020, 2021] (solved by CP, MILP and MILP-LNS)
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Scheduling integrated runway snow removals and
aircraft operation scheduling

credit : John Murphy, CC BY-SA 2.0
@ Parallel-machine problem with setup times
@ Objective : sum of convex earliness/tardiness costs
@ 3 runways, 2 snow removal groups, up to 75 aircrafts
@ 2 hours planning, 40 operations per hour
@ [Pohl et al., 2022] (solved by CP, MILP and hybrids)
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The RCPSP : pre-processing and trivial bounds

@ Upper bounds |T| : parallel/serial list scheduling heuristics (24)
@ CPM lower bound : longest 0-n + 1 path (16)
@ Resource lower bound maxkcr > jca bik * pi/Bx (16.5 — 17)
@ Reduce time windows [ES;, LS;] by constraint propagation :
@\ UB = 24 (parallel SGS / Min LFT rule)
.\ T b TW  TWT
1 3 2 [0,10] [0,10]
@)é’ é 2 5 3 [0,8] [06]
3 1 3 [0,12] [0,12]
(o) 4 3 1 [3,13] [3,13]
5 2 1 [513 [6,13]
6 4 2 [616] [8,16]
@ Temporal constraint 7 5 3 [7,15] [9,15]
propagation TW ) 6 1 [7,18] [8,18]
@ Temporal + Resource 9 4 1 [7,20] [8,20]
constraint propagation TWT 10 4 1 [12,20] [18,20]
11 0 0 [16,24] [22,24]
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S MILPforscheduling: principles
MILP for scheduling : the scheduling polyhedron

Example (release dates r;, deadlines Ei,-)
Al=2|Rl=1b=b=B=1
p1:3, p2:2, r1:0, r2:1, d1:9, d2:7).
Objective function f(S) = S1 + S2 + p1 + p2.

Sz 3 s
[conv(S) (P)min S1 + S2+5

51 >0
- S2>1

5 <6

S, <5
$>5+3vS>5+2

S1

A W)
(P) can be solved by LP on conv(S) 01 2 3 4 5 6
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. MILPforscheduling : principles
MILP for RCPSP : principle

@ Let S, ¢S and S denote the start time vector,the linear objective and
the feasible set of the RCPSP.

@ Let x denote a vector of additional p binary variables.

@ The MILP mingx{cSIMS+Nx <q,S > 0,x € {0,1}P}
is a correct formulation for the RCPSP if we have

S§={S>0/3x € {0,1}’, MS + Nx < q}

@ S can be searched by branch and bound (and cut)

e Branching : tree search on x
e Bounding : solve at each node the LP relaxation by considering
unfixed x4 € [0,1] (and possibly incorporating valid inequalities)

The bound is tight if the relaxed set
S§={S>0/3x € [0,1]°,MS + Nx < q} is close to conv(S) .
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. MILPforscheduling : principles
MILP for RCPSP : example and issues

@ Design a MIP formulation for the scheduling problem

S 3 s

S1
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. MILPforscheduling : principles
MILP for RCPSP : example and issues

@ Design a MIP formulation for the scheduling problem

(P)minS1 + S5 +5 S 3
51>0
S5 >1
51 <6
S, <5
5 —5+8x>3
$1—-5+7(1—x)>2
x € {0,1}

51

The projection of the MILP
feasible set on S maps S

MILP for resource-constrained scheduing LAAS-CNRS 17 / 68



. MILPforscheduling : principles
MILP for RCPSP : example and issues

@ Design a MIP formulation for the scheduling problem

@ Solve by branch-and-bound
(P)minS; + S+ 5

S1

51>0 %2
S5 >1
51 <6
S, <5
5 —-—5+8x>3
$1—-5+7(1—x)>2
x €{0,1}
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. MILPforscheduling : principles
MILP for RCPSP : example and issues

@ Design a MIP formulation for the scheduling problem
@ Solve by branch-and-bound

(P)min Sy + S, +5 2
51>0
S$>1
5 <6
S, <5
5 —5+8x>3
S$1—-5+7(1—x)>2

x €40,1} Root node LB=6
issue x = 0.5 always feasible

[
U

S1
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. MILPforscheduling : principles
MILP for RCPSP : example and issues

@ Design a MIP formulation for the scheduling problem
@ Solve by branch-and-bound
(P)minS; + S+ 5

S
51>0

Ot
(VoY)

S >1

51 <6

S, <5

5 —-—5+8x>3

51—52+7(1—X)22

51

x € {0,1}
Left node x = 1, obj=9
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. MILPforscheduling : principles
MILP for RCPSP : example and issues

@ Design a MIP formulation for the scheduling problem
@ Solve by branch-and-bound
(P)minS; + S+ 5

S
51>0

Ot
(VoY)

S >1

51 <6

S, <5

5 —-—5+8x>3

51—52+7(1—X)22

51

x €{0,1}
Right node x = 0, obj=8
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~ MILPfor scheduling : principles |
MILP for RCPSP : tradeoffs

@ Compact formulations (polynomial size)
e Pros : fast node evaluation, mode nodes explored
e Cons : poor LP relaxation — Branch & Cut
@ Pseudo-polynomial or extended formulations
e Pros : obtain better LP relaxations, early node pruning in the
search tree
o Cons : increase of the MILP size (number of binary variables,
constraints) towards pseudo-polynomial and even exponential
sizes — Branch (& Cut) & Price techniques
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o MILPfor scheduling s principles
MILP for RCPSP : why?

Scheduling problems are in general better solved by hybrid CP/SAT
techniques, but :

@ Tremendous progress of MILP solvers in the last years

@ MILP can be preferred in identified cases (dual and primal
bounds, special constraints/objectives)

@ MILP can be integrated in hybrid methods (e.g. LNS)
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~ MILPfor scheduling : principles |
MILP for RCPSP : families of formulations

[Queyranne and Schulz 1994] classify the scheduling MILP for

scheduling according to the type of decision variables, each yielding
different families of valid inequalities.

01234567 8 9101112131415161718192021222324252627282930
@ Time-indexed variables

@ Linear-ordering variables — Strict-order or sequencing variables

© Positional dates and assignment variables — Event-based
formulations
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_ Pseudo-polynomial time-indexed formulations
Time-indexed pulse variables

@ For integer data, S can be restricted to its integer vectors S,
@ "Pulse” binary variable x; =1 < S; =t , fort € T=T NN

@ Pseudo-polynomial number of variables |A|| T|

0123456 7 8 9101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

© 0N WN =
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The aggregated time-indexed formulation

° S5 :ZteT t Xt
e Alt)={icA3re{t—pi+1,....t},x, =1}

(DT) Min. Z tXni1.t

teT
st Y tge— Y txe >p (i,j)€E
teT teH

t
Z Z bikXiTSBk t e T; keR

ieV r=t—pj+1

ZX,'t:]. IGA
teT

x,-tG{O,l} IGA

[Pritsker et al. 1969]
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_ Pseudo-polynomial time-indexed formulations
Back to the small example : a better relaxation...

(P)minS;1 + S2+5
St =x1,1 +2x1,2 + 3x1,3 + 4x1,4 + 5x1,5 + 6x1,6 —
So=x21+2x22+3x03+4x4+5x05
S 3 s
x1,0 +x1,1 +x12+x13+x14+x15+x16 =1

X201+ x2+Xx23+x4+Xx5=1 T
x1,0+x1,1+x,1 <1
x21+x2+x10+x1,1+x12<1
x22+x3+x11+x12+x13<1

X234+ x4 +x12+x13+x14<1

X244+ x25 +x13+x14+x15<1

S

X5 +x1,4+Xx15 +x16 <1
x1,+ € {0,1} te€{0,...,6}
x¢+ €{0,1} te{1,...,5}
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_ Pseudo-polynomial time-indexed formulations
Back to the small example : a better relaxation...

(P)minS;1 + S2+5
S1=x1,1 4+ 2x12 + 3x1,3 +4x1,4 + 5x15 + 6x16
So=x21+2x22+3x03+4x4+5x05

x1,0 +x1,1 +x12+x13+x14+x15+x16 =1
X2,1+Xx22+x23+ x4+ x5 =1 T

x1,0 +x1,1 +x,1 <1

X211+ x22+x10+x1,1+x12<1 T ™
x22+x3+x11+x12+x13<1 ”
x23+x4+x12+x13+x14<1
X244+ x25 +x13+x14+x15<1

n Sint

S —
1

)

S

X5 +x1,4+Xx15 +x16 <1
x1,+ € {0,1} te€{0,...,6}
x¢+ €{0,1} te{1,...,5}

In this example S = conv(S) and the relaxation is tight...
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_ Pseudo-polynomial time-indexed formulations
Back to the small example : a better relaxation...

(P)minS;1 + S2+5
S1=x1,1 4+ 2x12 + 3x1,3 +4x1,4 + 5x15 + 6x16
So=x21+2x22+3x03+4x4+5x05

x1,0 +x1,1 +x12+x13+x14+x15+x16 =1
X2,1+Xx22+x23+ x4+ x5 =1 T

x1,0 +x1,1 +x,1 <1

X211+ x22+x10+x1,1+x12<1 T ™
x22+x3+x11+x12+x13<1 ”
x23+x4+x12+x13+x14<1
X244+ x25 +x13+x14+x15<1

n Sint

S —
1

)

S

X5 +x1,4+Xx15 +x16 <1
x1,+ € {0,1} te€{0,...,6}
x¢+ €{0,1} te{1,...,5}

In this example S = conv(S) and the relaxation is tight...

... but we need 11 binary variables for a 2-task example
MILP for resource-constrained scheduing LAAS-CNRS 23 /68



Pseudo-polynomial time-indexed formulations

... but not so good in general

e

|[R|=1,B=4,T =10,30)

HERFRPWNFERFRWWDN|S

H©O©O~NOOA~WNR~

o
A PRPOOGBREANDWREO WD

0123 456 7 8 91011121314151617 1819 20 21 22 23 24 25 26 27 28 29 30

Bound = 16.46 (17) (not better than trivial Res. Bount)
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_ Pseudo-polynomial time-indexed formulations
The disaggregated time-indexed formulation

(DDT)

The model can be reinforced by disaggregation of the precedence
constraints, i.e. replacing precedence constraints by

t—p;j

t
ZX,-T—ZXJ-TZO (i,j))eE, teT
7=0 7=0

[Christofides et al. 1997]
@ Modeling the logical relation : §; <t = 5; <t —p;
@ The constraint matrix without resource constraints is totally
unimodular.

@ Total unimodularity preserved by lagrangean relaxation of the
resource constraints Also efficiently computable by a max flow
algorithm [Méhring et al. 2003]
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Pseudo-polynomial time-indexed formulations

DDT : relaxation quality

|[R|=1,B=4,T =10,30)

= N

®

H O OWO~NOOS,WN |~
HERFRPWNFERFRWWDN|S

o
A PRPOOGBREANDWREO WD

0123 456 7 8 91011121314151617 1819 20 21 22 23 24 25 26 27 28 29 30

Bound = 17.14 (18) Strictly better than trivial bounds
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_ Pseudo-polynomial time-indexed formulations
Time-indexed step variables

@ “Step” binary variable §;; =1 S; <t , forte T

@ Introduced by [Pritsker and Watters 1968] rediscovered several
times... [citations removed]

0123 456 7 8 91011121314 151617 18 19 20 21 22 23 24 25 26 27 28 29 30

© 0N O WN =

o
o
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_ Pseudo-polynomial time-indexed formulations
Time-indexed formulations with step variables

@ The time-indexed formulation with step variable (SDDT) can be
obtained by (DDT) by the following transformation :

t
it = Z Xit
7=0

o Conversely, x;i = & — Eir1
@ This is a non-singular transformation (NST)

@ Formulations that can be obtained from each other by a NST
are strictly equivalent. They have the same S and the same
relaxation value.

@ [Bianco and Caramia 2013] present a variant of the step
formulation based on variables ¢/, =1 < S; + p; < t. We can
shown that it is equivalent to (SDDT) by NST [A. 2017|.
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_ Pseudo-polynomial time-indexed formulations
On/off time-indexed step variables
@ "On/off” binary variable
pie =1 &t €[Si,Si+ pil

@ Introduced by [Lawler 1964, Kaplan 1998] for preemptive problems
and [Sousa, 1989], then [Klein, 2000] and then again [Kopanos 2014]
for the RCPSP.

01234567 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

- B
=

: | —
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_ Pseudo-polynomial time-indexed formulations
Time-indexed formulations with on/off variables

Consider the following non singular transformation [Sousa, 1989] :

ot
@ Lt = D rt—pt1 Xir

Xjr = EZS"J i t—kp; — Z;L((:tal)/pd I t—kpi—1

[A. 2017] : Applying the transformation yields a time-indexed
formulations with on/off variables OODDT equivalent to DDT
and tighter than that of [Klein 2000] and [Kopanos 2014]

@ Many “new” formulations presented in the literature are in fact
weaker than or equivalent to DDT.

Need to be distinguished from actual cutting planes or extended
formulations
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_ Extended time-indexed formulations and valid inequalities
Extended formulations

@ Formulation having better relaxations...
@ ... with an exponential number of constraints and/or variables
@ Need to use cut and/or column generation techniques

Small example again. SE dominant set of earliest schedules Let x; = 1 iff
schedule S = SF is selected. S; = 3" g Sixs

g [T 121 ,>G=8 g _[ZTT1T1,5>G6G=9

0123456 0123456

minS; + 5, +5 S = S
S1 =3x g
S =3x1 +x —
x1+x=1

x1,x2 € {0,1}

S1
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_ Extended time-indexed formulations and valid inequalities
Forbidden sets

e Minimal forbidden set (MFS) F : a minimal set of activities that
cannot be scheduled in parallel :
Yier bik > B and Vj € C, X icp\ gy bik < B

01234567 8 9101112131415161718192021222324252627282930

F={{1,2},{1,3},{2,3},...,{7,8,9},...}
@ There is in general an exponential number of MFS.

@ Can be reduced by excluding MFS having two activities with a
precedence relation or non intersecting time windows.
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Valid inequalities

@ MFS-based (cover) valid inequalities [Hardin et a/ 2008]
e Basic inequality :
Siead it p1Xis <|F|—=1, VFeF,teT
— too many up to O(2")) = cut generation
e A more general family of inequalities : extension to an interval
of length v : the cover-clique inequalities
t t+v
o ) xs+ > xs<|F|-1 VFeF,teT,v>0
ieF\{j}s=t—pi+1+v s=t—p;+1
Finding a minimal forbidden sets that violate such inequality
(separation) is NP-hard = separation heuristics

@ other valid inequalities [Christofides et al. 1987, de Sousa and Wolsey 1997,
Cavalcante et al. 2001, Baptiste and Demassey 2004, Demassey et al 2005, Zhu et al

2006, Araujo et al 2020 ]
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Lifting

t t+v
S Y w3 xslF-1 vFer
ieF\{j} s=t—pi+1+v s=t—p;+1

The inequality defines the facets for the DT polyhedron without the
precedence constraints and by setting all variables xxs to 0 with
k¢ F.
e Lifting : reinforcing the constraint by adding to the constraint
variables x,s with k & F
o Finding the larget a4, such that

t t+v
Z Z Xis + Z Xjs + apsxus < |F| =1 VF e F
ieF\{j} s=t—pi+1+v s=t—p;+1
is valid.
[Hardin et al 2008]
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Feasible subsets

@ Feasible subset P : a set of activities that can be scheduled in
parallel :
> iep bik < B and (i,j) ¢ TA and
[ES,', LS; + p,'] N [ESJ', LSJ' + Pj] #0

012345678 91011121314151617 18192021 222324252627 282930
P ={{1},{2},...,{10},{1,5},{2,4},...,}
@ There is in general an exponential number of FS.

@ a schedule : an assignment of feasible subset to each time period
1-2:{1};3-5:{2,4};6,7: {2};8:{3};9,10: {5,6}; ...
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The feasible subset-based formulation (FS)

[Mingozzi et al 1998]

@ obtained from (DDT) by replacing the resource constraints by

sst. Y Y ypm=p €A p=>1

PeP; teT
Z ype <1 teT
PeP

XX = ype— > ype-1>0 i€A teT

PeP; PeP;

Yat - {O, 1} P - 7); t e ﬂ,’gp{ES,', Ceey LS,}

where P; C P is the set of all feasible subsets that contain
activity /.

(Dantzig-Wolfe decomposition)

Exponential number of variables — B&C&P
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Limits of time-indexed formulations

@ Equivalent relaxations does not mean equivalent behaviour of
the MILP solver for obtaining integer solutions

o [Bianco and Caramia 2013] show that the &/, formulation
outperforms others in terms of integer solving (thanks to
sparsity)

© Even weaker relaxations may yield better integer solutions

o Well-known that (DT) formulation may sometimes perform
better than (DDT) formulation for integer solving.

© Time-indexed formulation cannot be used for problems where
large horizons are needed

e Some examples with 15 activities are out of reach of
time-indexed formulation [Kone et al. 2011]

Need of compact and/or hybrid formulations
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_ Compact sequencing and natural date variable formulations
Sequencing or strict ordering variable

@ Principle : adding precedence constraints such that all resource
conflicts are resolved

@ Any schedule satisfying these new precedence constraints is
feasible

@ Sequencing variable z; =1 5, > S5, + p,-

o\
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_ Compact sequencing and natural date variable formulations
Sequencing or strict ordering variable

@ Principle : adding precedence constraints such that all resource
conflicts are resolved

@ Any schedule satisfying these new precedence constraints is
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@ Sequencing variable z; =1 < §5; > S, + p;
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A first formulation based on forbidden sets

The set of additional precedence constraints has to “destroy” all forbidden
sets.

Min. Sp11
s.t. zj+zi <1 i,jeV,i<j
Zij+zin—zin <1l i,jheV, i#j#h)
zy=1 (i,j)eE
Sj=Si+(1=My)zj>p i,jeV,i#]j
Z zi>1 FeF
iJEF,i#j
zj€{0,1} i, jeV,i#j
[Alvarez-Valdés and Tamarit 1993]
Extension of the disjunctive formulation for the job-shop problem [Balas

1985] with an exponential number of constraints
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Compact sequencing and natural date variable formulations

Resource flow variables

,’-‘j > 0 : numbers of units of resource k transferred from i to j

012 3 456 7 8 910111213141516 1718 19 20 21 22 23 24 25 26 27 28 29

@é\/ =
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Resource flow variables

,’-‘j > 0 : numbers of units of resource k transferred from i to j
1
1

012 3 456 7 8 910111213141516 1718 19 20 21 22 23 24 25 26 27 28 29

Enforcing sequencing variables to be compatible with the flow
K>0=2z;=1
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A formulation based on resource flows

@ Replace the forbidden set constraints by the following flow
constraints

k—min(Fu, Fi)zy <0 (i jeV, i#j, VkeR)

Yo d5=Fx (ieV\{n+1})
jeV\{i}

Y. op=Fk (e V\{0})

ieV\{j}
0 < g <min(Fa, Fi) (1.j €V, i#n+1, j#0, i#]; kER)

e O(]JAJ?R) additional continuous variables
e FB : A compact formulation. [A. et al 2003]
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_ Compact sequencing and natural date variable formulations
Valid inequalities for sequencing formulations

Sz
@ Relaxation of poor quality, need to generate T

valid inequalities

@ Example 1 : Extension of valid inequalities
by [Balas 85,Applegate & Cook 1991,Dyer & 51
Wolsey 1990] for the disjunctive formulation
of the job-shop (half-cuts, late job cuts...)

2517352 > 9

@ Example 2 : constraint propagation-based cutting planes
[Demassey et al 2005]

o Compute conditional distances d,-j“’, d,-’fk and d,;fw by CP
e Lifted distance inequalities

5 S > th/ (dl:i;-<l h”’)z + (dl-<h d,?lll)zlh
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_ Compact event-based formulations
Start and End Event variables

o & : set of remarkable events.

@ t. > 0 : event date : representing the start and end of at least
one activity

@ Start binary assignment variables a, =1+ 5; = t,

@ End binary assignment variables af =1+« S;+ p; = t.

@ Maximum n+ 1 events = 2(n+ 1)|&| binary variables.

01234567 8 9101112131415161718192021222324252627282930

Extension of models proposed for machine scheduling [Lasserre and
Queyranne 1994, Dauzére-Pérés and Lasserre 1995], widely used also in
the process scheduling industry [Pinto and Grossmann 1995, Zapata et

al 2008].
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_ Compact event-based formulations
Start/End Event-based formulation (SEE)

min t,
to =0
tfzte+p;a,.;fp,-(1faf;) V(e,f) € E2,f > eVie T
tet1 > te Vee &,e<n

aZ =1, Z af=1 vieJ
Zees € ecs €
e n
Z ai+v+z a, <1 Vie J,Vee&
v=0 v=e

n e—1
+ _ PR
Ze/:e al + Ze/:o . <1 v(i,j) € E,Ne€ &
ok = ZIGA b,-kal.g Vk e R
ek = Ne—1)k T ZIGJ bika;, — Ziej bixyie Veec,e>1,keR
rek < By Vec&E,kER
a, €{0,1}, 4 € {0,1} Vie JuU{0,n+1},Vec &
te>0,ry >0 Vec &, kER.
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_ Compact event-based formulations
On/Off Event variables

o & : set of remarkable events.
@ t. > 0 : event date : representing the start of at least one activity
@ On/off binary variable aie =1 < [S;, S; + pi] N [te, te + 1] # 0
@ Each activity such that a,, = 1 can be assumed of length

[te, te + 1]
e n|&| binary variables

0123456 78 9101112131415161718192021222324252627282930
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(OOE) Min. Crmax

s.t. Cmax > te + (Eie —5;(671))p,' (e €¢ i€ A)

ter1 >te (e£n—1€&)

tr > te + (3ie — Bie—1 — 3 +35,r—1 — 1)pi ((e,f,i) EE2X A, f > e+#0)

e—1
Zs,e, >e(l—3e+3ie1)) ((€EAet0€E)

Zs,.e, >e(l+3e—3e1) (I€EAe#0E€E)
e'=e

Y ae>1 (e

ec&

e
3je + ZE,-E/ <1+ (1-3e)e (e€&; (i,j) €E)
e/=0
n—1
Zr;kgieng (eES; kER)
i=0
te >0 (e€f)

3 €{0,1} (i€ A e€&) [Koné et al. 2011]
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_ Compact event-based formulations
Valid inequalities for event-based formulations

@ [Nattaf et al. 2019] Non-preemption inequalities for OOE

2/

S (~1)%, <1 VjeAV{e,...,en} CE

q=0

Polynomial separation algorithm
@ [Tesch 2020]

e New valid inequalities for OOE and SEE

o New event interval-based model |EE : variables ajor = ai;af;

o Reformulation of SEE in a LP-equivalent (but sparser)
formulation — RSEE

e Dominance proofs in terms of relaxation strength
OOE < SEE,RSEE < IEE

o Good performance of RSEE for primal and dual bounds [Koné
et al. 2011]
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MILP for solving resource-constrained scheduling
problems : a few hints

@ Small time horizons : use the disaggregated discrete time
formulation (DDT)

@ Large time horizons : use the sparse start-end event based
formulation (RSEE)

e Difficulty to model some (even-linear) objective functions with
event based formulations and non-linear with continuous time
formulations.

Also look at instance characteristics NC (network complexity), RS
(resource strength), RF (resource factor) [Kolisch et al. 2015] :

@ large NC can narrow time windows = DDT

@ small RS : “disjunctive resources” —> FB better than X-E
[Koné et al. 2011] (?)
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~ o Whyusing MILP for scheduling in practice?
Why using MILP for scheduling in practice ?

@ Lower Bounds

e LP relaxation of MILP formulations

e Exact solution of preemptive or aggregated formulations
@ Interest for particular cases

e Preemption

e Sequence-dependent setups

o (Time-dependent) sum objective .o wirxi
@ Hybrid methods

o CP : logic-based benders decomp. [Hooker 2011],

optimization-oriented global constraints [Focacci et al. 2002]...
e LNS
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_ Why using MILP for scheduling in practice? | 1 ur b
Destructive lower bounds based on CP and LP

Fix a target Makespan M. Apply CP, then LP relaxation + cuts. If M
is shown infeasible, iterate with M 4+ 1.

@ [Demassey et al 2005] DT, FB + cuts

@ Weighted Node packing combinatorial bound issued from the dual of
the preemptive FS relaxation [Mingozzi et al. 1998]

@ Destructive preemptive relaxation solved by constraint propagation
and column generation or lagrangian relaxation [Brucker and Knust
2000, Demassey et al 2004, Baptiste and Demassey 2004]

@ Best method [Baptiste and Demassey 2004] : use energetic reasoning
cuts.

.. Until Lazy Clause Generation (CP-SAT hybrid)[Schutt et al. 2009,2013]
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MILP LB : Solving the preemptive FS exactly

instance LCG12 %RDDT %DDT(1h) PFS(3h) | instance LCG12 %RDDT %DDT(1h) PFS13(3h
j609_1 85 17.65% 2.35% j6029_1 98 19.39% 3.06%

j609_3 99 17.17% 9.09% j6029_2 123 17.89% 7.32% -3.25%
j609_5 81 14.81% 3.70% j6029_3 114 19.30% 1.75% -3.51%
j609_6 105 11.43% 4.76% j6029_4 126 15.87% 7.14% -3.17%
j609_7 105 18.10% 2.86% j6029_5 102 12.75% 3.92% -2.94%
j609_8 95 18.95% 7.37% j6029_6 144 17.36% 9.03% -1.39%
j609_9 99 12.12% 7.07% j6029_7 117 19.66% 4.27%

j609_10 90 15.56% 3.33% j6029_8 98 13.27% 2.04% -9.18%
j6013_1 105 16.19% 1.90% -1.90% j6029_9 105 18.10% 4.76%

j6013_2 103 20.39% 1.94% j6029_10 111 20.72% 1.80%

j6013_3 84 19.05% 1.19% j6030_2 69 4.35% 1.45%

j6013_4 98 20.41% 3.06% j6041_3 90 16.67% 4.44%

j6013_5 92 21.74% 1.09% j6041_5 109 20.18% 7.34%

j6013_6 91 16.48% 1.10% j6041_10 108 12.04% 2.78%

j6013_7 83 19.28% 3.61% j6045_1 90 12.22% 4.44% -1.11%
j6013_8 115 20.00% 3.48% j6045_2 134 20.90% 11.94% -2.99%
j6013_9 97 16.49% 2.06% j6045_3 133 13.53% 6.02% -3.76%
j6013_10 114 24.56% 0.88% j6045_4 101 15.84% 4.95% -1.98%
j6025_2 95 14.74% 5.26% j6045_5 99 21.21% 3.03% -2.02%
j6025_4 106 18.87% 8.49% j6045_6 132 21.97% 21.21% -3.79%
j6025_6 105 14.29% 4.76% j6045_7 113 19.47% 5.31% -3.54%
j6025_7 88 15.91% 6.82% j6045_8 119 15.13% 5.04% -3.36%
j6025_8 95 22.11% 5.26% j6045_9 114 16.67% 5.26% -4.39%
j6025_10 107 15.89% 6.54% j6045_10 102 16.67% 3.92% -4.90%

LCG12 : [Schutt et al 2013] (hybrid CP/SAT method :

Lazy clause generation)

PFS13 : [MOU krim et al 2013] Preemptive feasible subset formulation solved by B&P

Christian Artigues MILP for resource-constrained scheduing
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MILP-based RCPSP lower bound : Solving a

resource-aggregated relaxation exactly

Periodically aggregated resource-constraints [Morin et al 2022] (see
also [Riedler et al 2020])

Compute the resource requirements in each interval only in time
buckets taking the overlapping of task execution and the interval.

name | LB (Schutetal 2013) LB Flst
° it Pack037 16 125
Pack046 110 18
e Pack030 94 100
Pack053 97 105

Reduction of time-indexed variables : can sometimes give good
bounds (highly cumulative instances)
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MILP-based multi-mode RCPSP

@ Extension of LCG to multi mode RCPSP obtained new
benchmark on this problem [Schnell et al. 2017]

@ Strong cutting planes + Branch-and-cut improved a lot of
MMRCPSP solutions [Araujo et al. 2020] (754 open instances
solved for the first time but with > 24h computing time)
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_ MILP-based partially preemptive multi-skill RCPSP
MILP-based partially preemptive multi-skill RCPSP

tech; |AL S

tech,

kS
&
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4

A A

Table 4. Distribution of preemption types per set of instances.

Set A1 | Set BI [ Set CI [ Set D1

Non-preemptive 10% 10% 80% 33.3%
Partially preemptive | 10% 80% 10% %
Preemptive 80% 10% 10% .3%

Table 6. Results of MILP and CP models after

10 min of computation using warm start

Number of instances | Average time | Average | Number of instances | Average time | Average

solved to optimality | to optimality gap solved to optimality | to optimality gap
16 87.39 s 0.05% 39 67.17 s 0.18%
15 154.12 s 2.69% 40 88.01 s 0.15%
0 - 9.45% 11 108.73 s 0.39%
19 216.12 s 99% 10 76.14 s 0.21%
80 130.48 s 3.55% 160 85;27 s 0.23%

On highly preemptive instances MILP beats CP [Polo et al. 2020]

Christian Artigues MILP for resource-constrained scheduing

LAAS-CNRS

54 / 68



_ Hybrid MILP/CP method for runway sequencing
Hybrid MILP/CP method for runway sequencing

Aircraft landing/take-off and snow removal separation handed with

clique constraints — Extended formulation

[ Preprocessing computes dominant snow removal patterns

I

CP model

‘ Constraint propagation reduces variable domains J

I

it [ BP after preprocessing with set ¥ of Z,, variables 1

solution | T
(columms) ! N
Column generation solves LP relaxation of BP

: Master problem: LP relaxation of BP with Subset X' C X of 2oy variables
Lo Pricing subproblem: Compute reduced cost for all . variables in X'\ X'
Add @y, variables with negative reduced cost to X/

Optimal solution of LP relaxation serves as lower bound LB J

Tars variables in X'\ X' with reduced cost r < UB® — LB" are added to master problem J(

I

[ Column-reduced BP with all required variables for integer optimality 1

1

{ Branch-and-Bound solves column-reduced BP ‘

Christian Artigues MILP for resource-constrained scheduing

{ CP start heuristic generates solution for enhanced time discretization and as upper bound UBC” } -

i Upper
bound
TUBP
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_ Hybrid MILP/CP method for runway sequencing
Hybrid MILP/CP method for runway sequencing :
results

Table 7: Computational Times
Our approach (Time-discrete WRSP using TD5e)

Time-contimions Pure CP model of the WRSP P start heuristic Column generation BP
WRSP implementation to solve LP relaxation
(cf. Pohi ct al., 2021)
Instance Obj. Val.  Time (s) Obj. Val CP  Time (s)  Obj. Val P Time(s)  Bound lterations Time (s) Obj. Val Time(s)  Overall  Improvement
internal (UBCP)  internal (LB"P) Time (5)
Gap (%) Gap (%)
T /1 begin /2 /45 2,033 G 2,033 sT >0 2,033 &7 2 9 1 2,033 4 7 ,
T/1/begin/ 2/ 75 3,142 40 0 > 300 3,142 % 5 16 4 1 20 50%
T/ 1/ begin /3 / 45 1,683 601 00 > 300 1683 100 2 9 1 5 3 9%
T/1/begin /3 /75 1,763 1,680 00 > 500 1,763 100 3 16 4 63 2] 96%
T/1/cont /2/ 45 2,033 5 8 > a0 87 2 12 1 1 4 20%
T/1/cont /2/ 75 3,142 2% 88 >0 88 5 17 4 ] 12 54%
T/1/cont /3 /45 661 22 00 > 500 100 3 16 5 661 7 15 53%
T/1/cont /375 74 w0 00 > 300 100 G 15 7 44 23 96 60%
E+T /1/begin / 2/ 45 1,966 7 2 >30 92 i 8 2 2,001 20 36 -
E+T /1 begin / 2/ 75 2,133 6 o >3m0 o 0 13 6 2170 50 % -
E+T /1/begin / 3/ 45 1,08 1,454 00 > 500 100 17 1 3 1,003 ) 62 96%
E+T /1/ begin / 3/ 75 1,166 2,486 100 > 300 100 i 16 7 1175 101 156 94%
B+T /1) cont /2/ 45 1,066 6 [ 93 1 8 1 1999 s 20 -
E+T/1/cont /2/ 75 2,133 W0 o > a0 2,530 o £ i 4 2171 19 6 -
E+T /1) cont /3 /45 428 123 00 > 300 448 100 ” 13 4 430 8 20 6%
E+T /1/cont /3/ 75 586 1,503 00 > 500 618 100 49 18 15 45 109 93%
B+T /d [/ begin/ 2/ 45 2313 3 o > a0 2,686 %0 12 8 1 5 18 -
E+T /d [ begin / 2/ 75 2540 2 93 > a0 3,050 93 34 10 4 56 % -
E+T/d/begin / 3/ 45 1247 2770 00 > 500 1,507 100 17 10 2 5 % 9%
E+T /d /[ begin / 3/ 75 1327 > 3,600 00 > 300 154 100 49 1 G 104 159 96%
E+T/d/cont /245 2 >3 2,830 91 10 9 1 3 4 -
E+T /d /[ cont /2 /75 3 > a0 3288 03 2 1 4 12 W -
E+T/d/cont /3 /45 00 > 500 458 100 15 15 5 7 27 81%
E+T /d/cont /3 /75 625 100 > 300 647 100 46 15 12 55 13 9%

All objective values rounded to i

hybrid CP/Column generation + B&B better than CP [Pohl et al.
2020]
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Some perspectives....

Time aggregation / energetic reasoning / dual feasible functions
[Carlier and Néron 2000, Kooli 2012]

Mixed continuous/discrete models [Hait and A. 2012]
Dynamic Discretization Discovery [Lagos et al 2022]

Preprocessing [Baptiste et al 2010]

B&P for the non-preemptive feasible set formulations [Foulihoux et

al 2018]

CG for chain decomposition models [Kimms 2001,Van den Akker et

al. 2005

Hybrid SAT/CP/MILP e.g. linking Clause learning and MILP
[Stuckey 2010]
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