
Mixed integer linear programming for
resource-constrained scheduling

Christian Artigues

LAAS - CNRS & Université de Toulouse, France
artigues@laas.fr

Scheduling Seminar - 30/03/2022

Christian Artigues MILP for resource-constrained scheduing LAAS-CNRS 1 / 68



Outline

1 Resource-constrained project scheduling problem (RCPSP)

2 MILP for scheduling : principles

3 MILP formulations and solution approaches for the RCPSP

4 Why using MILP for scheduling in practice ?

5 Co-authors

6 References

Christian Artigues MILP for resource-constrained scheduing LAAS-CNRS 2 / 68



Resource-constrained project scheduling problem (RCPSP)

Resource-constrained project scheduling problem
(RCPSP) : Introduction

Scheduling problem with standard “finish-start” precedence
constraints and resources of limited availabilities.

Find the start time of tasks while satisfying precedence and resource
constraints.

Minimize the makespan (total project duration)

→Computationnally challenging NP-hard combinatorial optimization
problem
→Generalizes many standard scheduling problem 1-machine,
parallel-machines, X-shop, Assembly line balancing
→At the core of many industrial applications
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Resource-constrained project scheduling problem (RCPSP)

The RCPSP : parameters
R set of resources, limited constant availability Bk ≥ 0,

A set of activities, duration pi ≥ 0, resource requirement bik ≥ 0 on
each resource k,

E set of precedence constraints (i , j), i , j ∈ A, i < j

T time interval (scheduling horizon)
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|R| = 1,B = 4, T = [0, 30)
i pi bi
1 3 2
2 5 3
3 1 3
4 3 1
5 2 1
6 4 2
7 5 3
8 6 1
9 4 1
10 4 1
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Resource-constrained project scheduling problem (RCPSP)

The RCPSP : variables, objective and constraints

Si ≥ 0 start time of activity i
Cmax makespan or total project duration

RCPSP (conceptual formulation)
min Cmax = max

i∈A
Si + pi

s.t.



Sj ≥ Si + pi (i , j) ∈ E Precedence constraints
∑

i∈A(t)
bik ≤ Bk t ∈ T , k ∈ R Resource constraints

Sj ≥ 0 i ∈ A

where A(t) = {j ∈ A|t ∈ [Sj , Sj + pj)}, ∀t ∈ T
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Resource-constrained project scheduling problem (RCPSP)

The RCPSP : solution example
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|R| = 1,B = 4, T = [0, 30)

i pi bi
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4 3 1
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8 6 1
9 4 1
10 4 1
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Resource-constrained project scheduling problem (RCPSP)

The Resource-Constrained Project Scheduling
Problem (RCPSP)

A central problem in many industrial applications
Project management, manufacturing, process industry, parallel
processor architectures

The “standard” RCPSP : An NP-hard problem posing a
computational challenge since the the eighties

Benchmark instances [Patterson 1984], [Alvarez-Valdes and
Tamarit 1989], [Kolisch, Sprecher and Drexl 1995,1997]
(PSPLIB), [Baptiste and Le Pape 2000], [Carlier and Néron
2003] (PACK). [Coelho and Vanhoucke 2020]
24 (out of 480) still open instances with 60 activities and 4
resources from PSPLIB
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Resource-constrained project scheduling problem (RCPSP)

Data instances and best known results
[Vanoucke & Coelho 2018] http://solutionsupdate.ugent.be/
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Resource-constrained project scheduling problem (RCPSP)

The RCPSP : complexity, variants and methods
Strongly NP-hard
Generalizes single/parallel machine, X-shop problems
Many relevant variants

Other objectives : min
∑

i∈A wi(Si + pi)
Generalized precedence constraints Sj ≥ Si + lij
Setup times, multiple modes, non renewable resources,
preemption . . .
Uncertainty pi ∈ [pmin

i , pmax
i ], pi ∼ N (µi , σ

2
i )

Exact and heuristic Methods
Heuristics and metaheuristics
Dedicated branch and bound methods
Specific lower bounds
Constraint programming (CP) or hybrid SAT/CP
Mixed Integer Linear Programming (MILP)
Large Neighborhood search (LNS)
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Resource-constrained project scheduling problem (RCPSP) Applications

Scheduling the Philae lander experiments on the
comet 67P/Churyumov–Gerasimenko

credit : CNES

RCPSP with data transfer constraints
3-level Hierarchy of cumulative resource constraints
19 experiments, 752 activities, 926 precedence constraints,

[Simonin et al., 2012 2015] (solved by CP)
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Resource-constrained project scheduling problem (RCPSP) Applications

Scheduling the Airbus A330 Assembly line

credit : José Goulão, CC BY-SA 2.0

Multi-mode RCPSP with resource
leveling objective (fixed makespan of
14 to 25 days)
About 700 activities, resources
operator groups (5 to 15 operators
per groupes), limited space
[Borreguerro et al., 2021]
(solved by CP-LNS)
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Resource-constrained project scheduling problem (RCPSP) Applications

Scheduling hazardous material examinations

credit : ASN

Multi-skill partially preemptive RCPSP with makespan objective
About 100 activities a week, 180 operators
[Polo et al., 2020, 2021] (solved by CP, MILP and MILP-LNS)
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Resource-constrained project scheduling problem (RCPSP) Applications

Scheduling integrated runway snow removals and
aircraft operation scheduling

credit : John Murphy, CC BY-SA 2.0

Parallel-machine problem with setup times
Objective : sum of convex earliness/tardiness costs
3 runways, 2 snow removal groups, up to 75 aircrafts
2 hours planning, 40 operations per hour
[Pohl et al., 2022] (solved by CP, MILP and hybrids)
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Resource-constrained project scheduling problem (RCPSP) Applications

The RCPSP : pre-processing and trivial bounds

Upper bounds |T | : parallel/serial list scheduling heuristics (24)
CPM lower bound : longest 0–n + 1 path (16)
Resource lower bound maxk∈R

∑
i∈A bik ∗ pi/Bk (16.5 → 17)

Reduce time windows [ESi , LSi ] by constraint propagation :
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Temporal constraint
propagation TW
Temporal + Resource
constraint propagation TW +

UB = 24 (parallel SGS / Min LFT rule)
i pi bi TW TW +

1 3 2 [0, 10] [0, 10]
2 5 3 [0, 8] [0, 6]
3 1 3 [0, 12] [0, 12]
4 3 1 [3, 13] [3, 13]
5 2 1 [5, 13] [6, 13]
6 4 2 [6, 16] [8, 16]
7 5 3 [7, 15] [9, 15]
8 6 1 [7, 18] [8, 18]
9 4 1 [7, 20] [8, 20]
10 4 1 [12, 20] [18, 20]
11 0 0 [16, 24] [22, 24]
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MILP for scheduling : principles

MILP for scheduling : the scheduling polyhedron

Example (release dates ri , deadlines d̃i)
|A| = 2, |R| = 1, b1 = b2 = B = 1
p1 = 3, p2 = 2, r1 = 0, r2 = 1, d̃1 = 9, d̃2 = 7).
Objective function f (S) = S1 + S2 + p1 + p2.

S1

S2 S
conv(S)

(P) can be solved by LP on conv(S)

(P) min S1 + S2+5
S1 ≥ 0
S2 ≥ 1
S1 ≤ 6
S2 ≤ 5

S2 ≥ S1 + 3 ∨ S1 ≥ S2 + 2

0 1 2 3 4 5 6
J1 J2
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MILP for scheduling : principles

MILP for RCPSP : principle
Let S, c S and S denote the start time vector,the linear objective and
the feasible set of the RCPSP.

Let x denote a vector of additional p binary variables.

The MILP minS,x{c S|M S + N x ≤ q,S ≥ 0, x ∈ {0, 1}p}
is a correct formulation for the RCPSP if we have

S = {S ≥ 0|∃x ∈ {0, 1}p,M S + N x ≤ q}

S can be searched by branch and bound (and cut)
Branching : tree search on x
Bounding : solve at each node the LP relaxation by considering
unfixed xq ∈ [0, 1] (and possibly incorporating valid inequalities)

The bound is tight if the relaxed set
S̃ = {S ≥ 0|∃x ∈ [0, 1]p,M S + N x ≤ q} is close to conv(S) .
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MILP for scheduling : principles

MILP for RCPSP : example and issues

Design a MIP formulation for the scheduling problem
Solve by branch-and-bound

(P) min S1 + S2 + 5
S1 ≥ 0
S2 ≥ 1
S1 ≤ 6
S2 ≤ 5

S2 − S1 + 8x ≥ 3
S1 − S2 + 7(1− x) ≥ 2

x ∈ {0, 1}

S1

S2 S

S̃
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MILP for scheduling : principles

MILP for RCPSP : example and issues

Design a MIP formulation for the scheduling problem
Solve by branch-and-bound

(P) min S1 + S2 + 5
S1 ≥ 0
S2 ≥ 1
S1 ≤ 6
S2 ≤ 5

S2 − S1 + 8x ≥ 3
S1 − S2 + 7(1− x) ≥ 2

x ∈ {0, 1}

S1

S2 S

S̃

The projection of the MILP
feasible set on S maps S

Christian Artigues MILP for resource-constrained scheduing LAAS-CNRS 17 / 68



MILP for scheduling : principles

MILP for RCPSP : example and issues

Design a MIP formulation for the scheduling problem
Solve by branch-and-bound
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MILP for scheduling : principles

MILP for RCPSP : example and issues

Design a MIP formulation for the scheduling problem
Solve by branch-and-bound

(P) min S1 + S2 + 5
S1 ≥ 0
S2 ≥ 1
S1 ≤ 6
S2 ≤ 5

S2 − S1 + 8x ≥ 3
S1 − S2 + 7(1− x) ≥ 2

x ∈ {0, 1}

S1

S2 S
S̃

Root node LB=6
issue x = 0.5 always feasible
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MILP for scheduling : principles

MILP for RCPSP : example and issues

Design a MIP formulation for the scheduling problem
Solve by branch-and-bound

(P) min S1 + S2 + 5
S1 ≥ 0
S2 ≥ 1
S1 ≤ 6
S2 ≤ 5

S2 − S1 + 8x ≥ 3
S1 − S2 + 7(1− x) ≥ 2

x ∈ {0, 1}
S1

S2 S
S̃

Left node x = 1, obj=9
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MILP for scheduling : principles

MILP for RCPSP : example and issues

Design a MIP formulation for the scheduling problem
Solve by branch-and-bound

(P) min S1 + S2 + 5
S1 ≥ 0
S2 ≥ 1
S1 ≤ 6
S2 ≤ 5

S2 − S1 + 8x ≥ 3
S1 − S2 + 7(1− x) ≥ 2

x ∈ {0, 1}
S1

S2 S
S̃

Right node x = 0, obj=8
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MILP for scheduling : principles

MILP for RCPSP : tradeoffs

1 Compact formulations (polynomial size)
Pros : fast node evaluation, mode nodes explored
Cons : poor LP relaxation → Branch & Cut

2 Pseudo-polynomial or extended formulations
Pros : obtain better LP relaxations, early node pruning in the
search tree
Cons : increase of the MILP size (number of binary variables,
constraints) towards pseudo-polynomial and even exponential
sizes → Branch (& Cut) & Price techniques
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MILP for scheduling : principles

MILP for RCPSP : why ?

Scheduling problems are in general better solved by hybrid CP/SAT
techniques, but :

Tremendous progress of MILP solvers in the last years
MILP can be preferred in identified cases (dual and primal
bounds, special constraints/objectives)
MILP can be integrated in hybrid methods (e.g. LNS)
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MILP for scheduling : principles

MILP for RCPSP : families of formulations

[Queyranne and Schulz 1994] classify the scheduling MILP for
scheduling according to the type of decision variables, each yielding
different families of valid inequalities.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 2 3
4

5
6 7

8

9 10

1 Time-indexed variables
2 Linear-ordering variables → Strict-order or sequencing variables
3 Positional dates and assignment variables → Event-based

formulations
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MILP formulations and solution approaches for the RCPSP Pseudo-polynomial time-indexed formulations

Time-indexed pulse variables

For integer data, S can be restricted to its integer vectors S int.

“Pulse” binary variable xit = 1⇔ Si = t, for t ∈ T = T ∩ N

Pseudo-polynomial number of variables |A||T |

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
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MILP formulations and solution approaches for the RCPSP Pseudo-polynomial time-indexed formulations

The aggregated time-indexed formulation
Si = ∑

t∈T t xit

A(t) = {i ∈ A|∃τ ∈ {t − pi + 1, . . . , t}, xiτ = 1}

(DT )Min.
∑
t∈T

txn+1,t

s. t.
∑
t∈T

txjt −
∑
t∈H

txit ≥ pi (i , j) ∈ E

∑
i∈V

t∑
τ=t−pi +1

bikxiτ ≤ Bk t ∈ T ; k ∈ R
∑
t∈T

xit = 1 i ∈ A

xit ∈ {0, 1} i ∈ A

[Pritsker et al. 1969]
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MILP formulations and solution approaches for the RCPSP Pseudo-polynomial time-indexed formulations

Back to the small example : a better relaxation...
(P) min S1 + S2 + 5

S1 = x1,1 + 2x1,2 + 3x1,3 + 4x1,4 + 5x1,5 + 6x1,6

S2 = x2,1 + 2x2,2 + 3x2,3 + 4x2,4 + 5x2,5

x1,0 + x1,1 + x1,2 + x1,3 + x1,4 + x1,5 + x1,6 = 1
x2,1 + x2,2 + x2,3 + x2,4 + x2,5 = 1

x1,0 + x1,1 + x2,1 ≤ 1
x2,1 + x2,2 + x1,0 + x1,1 + x1,2 ≤ 1
x2,2 + x2,3 + x1,1 + x1,2 + x1,3 ≤ 1
x2,3 + x2,4 + x1,2 + x1,3 + x1,4 ≤ 1
x2,4 + x2,5 + x1,3 + x1,4 + x1,5 ≤ 1

x2,5 + x1,4 + x1,5 + x1,6 ≤ 1
x1,t ∈ {0, 1} t ∈ {0, . . ., 6}
x2,t ∈ {0, 1} t ∈ {1, . . ., 5}

S1

S2 S
Sint

S̃

In this example S̃ = conv(S) and the relaxation is tight...
... but we need 11 binary variables for a 2-task example
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MILP formulations and solution approaches for the RCPSP Pseudo-polynomial time-indexed formulations

Back to the small example : a better relaxation...
(P) min S1 + S2 + 5

S1 = x1,1 + 2x1,2 + 3x1,3 + 4x1,4 + 5x1,5 + 6x1,6

S2 = x2,1 + 2x2,2 + 3x2,3 + 4x2,4 + 5x2,5
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x1,t ∈ {0, 1} t ∈ {0, . . ., 6}
x2,t ∈ {0, 1} t ∈ {1, . . ., 5}

S1

S2 S
Sint

S̃

In this example S̃ = conv(S) and the relaxation is tight...
... but we need 11 binary variables for a 2-task example
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MILP formulations and solution approaches for the RCPSP Pseudo-polynomial time-indexed formulations

... but not so good in general
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|R| = 1,B = 4, T = [0, 30)

i pi bi
1 3 2
2 5 3
3 1 3
4 3 1
5 2 1
6 4 2
7 5 3
8 6 1
9 4 1
10 4 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Bound = 16.46 (17) (not better than trivial Res. Bount)
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MILP formulations and solution approaches for the RCPSP Pseudo-polynomial time-indexed formulations

The disaggregated time-indexed formulation
(DDT)
The model can be reinforced by disaggregation of the precedence
constraints, i.e. replacing precedence constraints by

t−pi∑
τ=0

xiτ −
t∑

τ=0
xjτ ≥ 0 (i , j) ∈ E ; t ∈ T

[Christofides et al. 1997]
Modeling the logical relation : Sj ≤ t ⇒ Si ≤ t − pi

The constraint matrix without resource constraints is totally
unimodular.
Total unimodularity preserved by lagrangean relaxation of the
resource constraints Also efficiently computable by a max flow
algorithm [Möhring et al. 2003]
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MILP formulations and solution approaches for the RCPSP Pseudo-polynomial time-indexed formulations

DDT : relaxation quality
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|R| = 1,B = 4, T = [0, 30)

i pi bi
1 3 2
2 5 3
3 1 3
4 3 1
5 2 1
6 4 2
7 5 3
8 6 1
9 4 1
10 4 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Bound = 17.14 (18) Strictly better than trivial bounds
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MILP formulations and solution approaches for the RCPSP Pseudo-polynomial time-indexed formulations

Time-indexed step variables

“Step” binary variable ξit = 1⇔ Si ≤ t, for t ∈ T

Introduced by [Pritsker and Watters 1968] rediscovered several
times... [citations removed]
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MILP formulations and solution approaches for the RCPSP Pseudo-polynomial time-indexed formulations

Time-indexed formulations with step variables
The time-indexed formulation with step variable (SDDT) can be
obtained by (DDT) by the following transformation :

ξit =
t∑

τ=0
xit

Conversely, xit = ξit − ξit−1

This is a non-singular transformation (NST)
Formulations that can be obtained from each other by a NST
are strictly equivalent. They have the same S̃ and the same
relaxation value.
[Bianco and Caramia 2013] present a variant of the step
formulation based on variables ξ′it = 1⇔ Si + pi ≤ t. We can
shown that it is equivalent to (SDDT) by NST [A. 2017|.
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MILP formulations and solution approaches for the RCPSP Pseudo-polynomial time-indexed formulations

On/off time-indexed step variables
“On/off” binary variable

µit = 1⇔ t ∈ [Si ,Si + pi [

Introduced by [Lawler 1964, Kaplan 1998] for preemptive problems
and [Sousa, 1989], then [Klein, 2000] and then again [Kopanos 2014]
for the RCPSP.
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MILP formulations and solution approaches for the RCPSP Pseudo-polynomial time-indexed formulations

Time-indexed formulations with on/off variables

Consider the following non singular transformation [Sousa, 1989] :
µit = ∑t

τ=t−pi +1 xiτ

xit = ∑bt/pic
k=0 µi ,t−kpi −

∑b(t−1)/pic
k=0 µi ,t−kpi−1

[A. 2017| : Applying the transformation yields a time-indexed
formulations with on/off variables OODDT equivalent to DDT
and tighter than that of [Klein 2000] and [Kopanos 2014]
Many “new” formulations presented in the literature are in fact
weaker than or equivalent to DDT.
Need to be distinguished from actual cutting planes or extended
formulations
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MILP formulations and solution approaches for the RCPSP Extended time-indexed formulations and valid inequalities

Extended formulations
Formulation having better relaxations...
... with an exponential number of constraints and/or variables
Need to use cut and/or column generation techniques

Small example again. SE dominant set of earliest schedules Let xs = 1 iff
schedule Ss = SE is selected. Si =

∑
s∈SE Ss

i xs

0 1 2 3 4 5 6 0 1 2 3 4 5 6
1 2

∑
Ci = 8 2 1

∑
Ci = 9S1 S2

min S1 + S2 + 5
S1 = 3x2

S2 = 3x1 + x2
x1 + x2 = 1

x1, x2 ∈ {0, 1}

S1

S2 S
S̃
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MILP formulations and solution approaches for the RCPSP Extended time-indexed formulations and valid inequalities

Forbidden sets

Minimal forbidden set (MFS) F : a minimal set of activities that
cannot be scheduled in parallel :∑

i∈F bik > Bk and ∀j ∈ C ,∑i∈F\{j} bik ≤ Bk

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 2 3
4

5
6 7

8

9 10

F = {{1, 2}, {1, 3}, {2, 3}, . . . , {7, 8, 9}, . . .}
There is in general an exponential number of MFS.
Can be reduced by excluding MFS having two activities with a
precedence relation or non intersecting time windows.
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MILP formulations and solution approaches for the RCPSP Extended time-indexed formulations and valid inequalities

Valid inequalities
MFS-based (cover) valid inequalities [Hardin et al 2008]

Basic inequality :∑
i∈A

∑t
s=t−pi +1 xis ≤ |F | − 1, ∀F ∈ F , t ∈ T

→ too many up to O(2n)) =⇒ cut generation
A more general family of inequalities : extension to an interval
of length v : the cover-clique inequalities∑
i∈F\{j}

t∑
s=t−pi +1+v

xis +
t+v∑

s=t−pj +1
xjs ≤ |F | − 1 ∀F ∈ F , t ∈ T , v ≥ 0

Finding a minimal forbidden sets that violate such inequality
(separation) is NP-hard =⇒ separation heuristics

other valid inequalities [Christofides et al. 1987, de Sousa and Wolsey 1997,
Cavalcante et al. 2001, Baptiste and Demassey 2004, Demassey et al 2005, Zhu et al
2006, Araujo et al 2020 ]
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MILP formulations and solution approaches for the RCPSP Extended time-indexed formulations and valid inequalities

Lifting

∑
i∈F\{j}

t∑
s=t−pi +1+v

xis +
t+v∑

s=t−pj +1
xjs ≤ |F | − 1 ∀F ∈ F

The inequality defines the facets for the DT polyhedron without the
precedence constraints and by setting all variables xks to 0 with
k 6∈ F .

Lifting : reinforcing the constraint by adding to the constraint
variables xks with k 6∈ F
Finding the larget αks such that∑
i∈F\{j}

t∑
s=t−pi +1+v

xis +
t+v∑

s=t−pj +1
xjs + αksxks ≤ |F | − 1 ∀F ∈ F

is valid.
[Hardin et al 2008]
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MILP formulations and solution approaches for the RCPSP Extended time-indexed formulations and valid inequalities

Feasible subsets

Feasible subset P : a set of activities that can be scheduled in
parallel :∑

i∈P bik ≤ Bk and (i , j) 6∈ TA and
[ESi , LSi + pi ] ∩ [ESj , LSj + pj ] 6= ∅

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 2 3
4

5
6 7

8

9 10

P = {{1}, {2}, ..., {10}, {1, 5}, {2, 4}, . . . , }
There is in general an exponential number of FS.
a schedule : an assignment of feasible subset to each time period
1–2 : {1} ; 3–5 : {2, 4} ; 6,7 : {2} ; 8 : {3} ; 9,10 : {5, 6} ; . . .
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MILP formulations and solution approaches for the RCPSP Extended time-indexed formulations and valid inequalities

The feasible subset-based formulation (FS)
[Mingozzi et al 1998]

obtained from (DDT) by replacing the resource constraints by

s. t.
∑

P∈Pi

∑
t∈T

yPt = pi i ∈ A, pi ≥ 1
∑
P∈P

yPt ≤ 1 t ∈ T

x t
i −

∑
P∈Pi

yPt −
∑

P∈Pi

yP,t−1 ≥ 0 i ∈ A; t ∈ T

yAt ∈ {0, 1} P ∈ P ; t ∈ ∩i∈P{ESi , . . . , LSi}

where Pi ⊆ P is the set of all feasible subsets that contain
activity i .
(Dantzig-Wolfe decomposition)
Exponential number of variables → B&C&P
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MILP formulations and solution approaches for the RCPSP Extended time-indexed formulations and valid inequalities

Limits of time-indexed formulations

1 Equivalent relaxations does not mean equivalent behaviour of
the MILP solver for obtaining integer solutions

[Bianco and Caramia 2013] show that the ξ′it formulation
outperforms others in terms of integer solving (thanks to
sparsity)

2 Even weaker relaxations may yield better integer solutions
Well-known that (DT) formulation may sometimes perform
better than (DDT) formulation for integer solving.

3 Time-indexed formulation cannot be used for problems where
large horizons are needed

Some examples with 15 activities are out of reach of
time-indexed formulation [Kone et al. 2011]

Need of compact and/or hybrid formulations
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MILP formulations and solution approaches for the RCPSP Compact sequencing and natural date variable formulations

Sequencing or strict ordering variable
Principle : adding precedence constraints such that all resource
conflicts are resolved
Any schedule satisfying these new precedence constraints is
feasible
Sequencing variable zij = 1⇔ Sj ≥ Si + pi
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MILP formulations and solution approaches for the RCPSP Compact sequencing and natural date variable formulations

A first formulation based on forbidden sets
The set of additional precedence constraints has to “destroy” all forbidden
sets.

Min. Sn+1

s. t. zij + zji ≤ 1 i , j ∈ V , i < j
zij + zjh − zih ≤ 1 i , j , h ∈ V , i 6= j 6= h)
zij = 1 (i , j) ∈ E
Sj − Si + (1−Mij)zij ≥ pi i , j ∈ V , i 6= j∑
i ,j∈F ,i 6=j

zij ≥ 1 F ∈ F

zij ∈ {0, 1} i , j ∈ V , i 6= j

[Alvarez-Valdés and Tamarit 1993]
Extension of the disjunctive formulation for the job-shop problem [Balas
1985] with an exponential number of constraints
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MILP formulations and solution approaches for the RCPSP Compact sequencing and natural date variable formulations

Resource flow variables
φk

ij ≥ 0 : numbers of units of resource k transferred from i to j
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MILP formulations and solution approaches for the RCPSP Compact sequencing and natural date variable formulations

A formulation based on resource flows

Replace the forbidden set constraints by the following flow
constraints

φk
ij −min(r̃ik , r̃jk)zij ≤ 0 (i , j ∈ V , i 6= j , ∀k ∈ R)∑

j∈V\{i}
φk

ij = r̃ik (i ∈ V \ {n + 1})
∑

i∈V\{j}
φk

ij = r̃jk (j ∈ V \ {0})

0 ≤ φk
ij ≤ min(r̃ik , r̃jk) (i , j ∈ V , i 6=n+1, j 6=0, i 6= j ; k ∈ R)

O(|A|2R) additional continuous variables
FB : A compact formulation. [A. et al 2003]
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MILP formulations and solution approaches for the RCPSP Compact sequencing and natural date variable formulations

Valid inequalities for sequencing formulations

Relaxation of poor quality, need to generate
valid inequalities
Example 1 : Extension of valid inequalities
by [Balas 85,Applegate & Cook 1991,Dyer &
Wolsey 1990] for the disjunctive formulation
of the job-shop (half-cuts, late job cuts...)

S1

S2

2S1 + 3S2 ≥ 9

Example 2 : constraint propagation-based cutting planes
[Demassey et al 2005]

Compute conditional distances dk≺l
ij , d l≺k

ij and dk||l
ij by CP

Lifted distance inequalities

Sj − Si ≥ dh||l
ij + (dh≺l

ij − dh||l
ij )zhl + (d l≺h

ij − dh||l
ij )zlh
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MILP formulations and solution approaches for the RCPSP Compact event-based formulations

Start and End Event variables
E : set of remarkable events.
te ≥ 0 : event date : representing the start and end of at least
one activity
Start binary assignment variables a−ie = 1↔ Si = te
End binary assignment variables a+

ie = 1↔ Si + pi = te
Maximum n + 1 events =⇒ 2(n + 1)|E| binary variables.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 2 3
4

5
6 7

8

9 10

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Extension of models proposed for machine scheduling [Lasserre and
Queyranne 1994,Dauzère-Pérès and Lasserre 1995], widely used also in
the process scheduling industry [Pinto and Grossmann 1995, Zapata et
al 2008].
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MILP formulations and solution approaches for the RCPSP Compact event-based formulations

Start/End Event-based formulation (SEE)

min tn

t0 = 0
tf ≥ te + pi a−ie − pi (1− a+

if ) ∀(e, f ) ∈ E2, f > e, ∀i ∈ J
te+1 ≥ te ∀e ∈ E, e < n∑

e∈E
a−ie = 1,

∑
e∈E

a+
ie = 1 ∀i ∈ J∑e

v=0
a+

iv +
∑n

v=e
a−iv ≤ 1 ∀i ∈ J , ∀e ∈ E∑n

e′=e
a+

ie′ +
∑e−1

e′=0
a−je′ ≤ 1 ∀(i , j) ∈ E , ∀e ∈ E

r0k =
∑

i∈A
bika−i0 ∀k ∈ R

rek = r(e−1)k +
∑

i∈J
bika−ie −

∑
i∈J

bikyie ∀e ∈ E, e ≥ 1, k ∈ R

rek ≤ Bk ∀e ∈ E, k ∈ R

a−ie ∈ {0, 1}, a
+
ie ∈ {0, 1} ∀i ∈ J ∪ {0, n + 1}, ∀e ∈ E

te ≥ 0, rek ≥ 0 ∀e ∈ E, k ∈ R.
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MILP formulations and solution approaches for the RCPSP Compact event-based formulations

On/Off Event variables

E : set of remarkable events.
te ≥ 0 : event date : representing the start of at least one activity
On/off binary variable aie = 1⇔ [Si , Si + pi ] ∩ [te, te + 1] 6= ∅
Each activity such that aie = 1 can be assumed of length
[te, te + 1]
n|E| binary variables

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
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t0 t1 t2 t3 t4 t5 t6 t7
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MILP formulations and solution approaches for the RCPSP Compact event-based formulations

(OOE) Min. Cmax

s. t. Cmax ≥ te + (aie − ai(e−1))pi (e ∈ E; i ∈ A)
t0 = 0
te+1 ≥ te (e 6= n − 1 ∈ E)
tf ≥ te + (aie − ai,e−1 − aif + ai,f−1 − 1)pi ((e, f , i) ∈ E2 × A, f > e 6= 0)
e−1∑
e′=0

aie′ ≥ e(1− aie + ai,e−1)) (i ∈ A; e 6= 0 ∈ E)

n−1∑
e′=e

aie′ ≥ e(1 + aie − ai,e−1) (i ∈ A; e 6= 0 ∈ E)∑
e∈E

aie ≥ 1 (i ∈ A)

aie +
e∑

e′=0

aje′ ≤ 1 + (1− aie)e (e ∈ E; (i , j) ∈ E)

n−1∑
i=0

rikaie ≤ Rk (e ∈ E; k ∈ R)

te ≥ 0 (e ∈ E)
aie ∈ {0, 1} (i ∈ A; e ∈ E) [Koné et al. 2011]
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MILP formulations and solution approaches for the RCPSP Compact event-based formulations

Valid inequalities for event-based formulations
[Nattaf et al. 2019] Non-preemption inequalities for OOE

2l∑
q=0

(−1)qajeq ≤ 1 ∀j ∈ A,∀{e0, . . . , e2l} ⊆ E

Polynomial separation algorithm
[Tesch 2020]

New valid inequalities for OOE and SEE
New event interval-based model IEE : variables aief = a−ie a+

if
Reformulation of SEE in a LP-equivalent (but sparser)
formulation → RSEE
Dominance proofs in terms of relaxation strength
OOE ≺ SEE ,RSEE ≺ IEE
Good performance of RSEE for primal and dual bounds [Koné
et al. 2011]
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MILP formulations and solution approaches for the RCPSP Compact event-based formulations

MILP for solving resource-constrained scheduling
problems : a few hints

Small time horizons : use the disaggregated discrete time
formulation (DDT)
Large time horizons : use the sparse start-end event based
formulation (RSEE)
Difficulty to model some (even-linear) objective functions with
event based formulations and non-linear with continuous time
formulations.

Also look at instance characteristics NC (network complexity), RS
(resource strength), RF (resource factor) [Kolisch et al. 2015] :

large NC can narrow time windows =⇒ DDT
small RS : “disjunctive resources” =⇒ FB better than X-E
[Koné et al. 2011] ( ?)
Christian Artigues MILP for resource-constrained scheduing LAAS-CNRS 48 / 68



Why using MILP for scheduling in practice ?

Why using MILP for scheduling in practice ?

Lower Bounds
LP relaxation of MILP formulations
Exact solution of preemptive or aggregated formulations

Interest for particular cases
Preemption
Sequence-dependent setups
(Time-dependent) sum objective

∑
t∈T witxit

Hybrid methods
CP : logic-based benders decomp. [Hooker 2011],
optimization-oriented global constraints [Focacci et al. 2002]...
LNS
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Why using MILP for scheduling in practice ? Lower bounds

Destructive lower bounds based on CP and LP

Fix a target Makespan M. Apply CP, then LP relaxation + cuts. If M
is shown infeasible, iterate with M + 1.

[Demassey et al 2005] DT, FB + cuts

Weighted Node packing combinatorial bound issued from the dual of
the preemptive FS relaxation [Mingozzi et al. 1998]

Destructive preemptive relaxation solved by constraint propagation
and column generation or lagrangian relaxation [Brucker and Knust
2000, Demassey et al 2004, Baptiste and Demassey 2004]

Best method [Baptiste and Demassey 2004] : use energetic reasoning
cuts.

... Until Lazy Clause Generation (CP-SAT hybrid)[Schutt et al. 2009,2013]
Christian Artigues MILP for resource-constrained scheduing LAAS-CNRS 50 / 68



Why using MILP for scheduling in practice ? Lower bounds

MILP LB : Solving the preemptive FS exactly
instance LCG12 %RDDT %DDT(1h) PFS(3h)
j609_1 85 17.65% 2.35%
j609_3 99 17.17% 9.09%
j609_5 81 14.81% 3.70%
j609_6 105 11.43% 4.76%
j609_7 105 18.10% 2.86%
j609_8 95 18.95% 7.37%
j609_9 99 12.12% 7.07%
j609_10 90 15.56% 3.33%
j6013_1 105 16.19% 1.90% -1.90%
j6013_2 103 20.39% 1.94%
j6013_3 84 19.05% 1.19%
j6013_4 98 20.41% 3.06%
j6013_5 92 21.74% 1.09%
j6013_6 91 16.48% 1.10%
j6013_7 83 19.28% 3.61%
j6013_8 115 20.00% 3.48%
j6013_9 97 16.49% 2.06%
j6013_10 114 24.56% 0.88%
j6025_2 95 14.74% 5.26%
j6025_4 106 18.87% 8.49%
j6025_6 105 14.29% 4.76%
j6025_7 88 15.91% 6.82%
j6025_8 95 22.11% 5.26%
j6025_10 107 15.89% 6.54%

instance LCG12 %RDDT %DDT(1h) PFS13(3h)
j6029_1 98 19.39% 3.06%
j6029_2 123 17.89% 7.32% -3.25%
j6029_3 114 19.30% 1.75% -3.51%
j6029_4 126 15.87% 7.14% -3.17%
j6029_5 102 12.75% 3.92% -2.94%
j6029_6 144 17.36% 9.03% -1.39%
j6029_7 117 19.66% 4.27%
j6029_8 98 13.27% 2.04% -9.18%
j6029_9 105 18.10% 4.76%
j6029_10 111 20.72% 1.80%
j6030_2 69 4.35% 1.45%
j6041_3 90 16.67% 4.44%
j6041_5 109 20.18% 7.34%
j6041_10 108 12.04% 2.78%
j6045_1 90 12.22% 4.44% -1.11%
j6045_2 134 20.90% 11.94% -2.99%
j6045_3 133 13.53% 6.02% -3.76%
j6045_4 101 15.84% 4.95% -1.98%
j6045_5 99 21.21% 3.03% -2.02%
j6045_6 132 21.97% 21.21% -3.79%
j6045_7 113 19.47% 5.31% -3.54%
j6045_8 119 15.13% 5.04% -3.36%
j6045_9 114 16.67% 5.26% -4.39%
j6045_10 102 16.67% 3.92% -4.90%

LCG12 : [Schutt et al 2013] (hybrid CP/SAT method : Lazy clause generation)
PFS13 : [Moukrim et al 2013] Preemptive feasible subset formulation solved by B&P
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Why using MILP for scheduling in practice ? Lower bounds

MILP-based RCPSP lower bound : Solving a
resource-aggregated relaxation exactly
Periodically aggregated resource-constraints [Morin et al 2022] (see
also [Riedler et al 2020])
Compute the resource requirements in each interval only in time
buckets taking the overlapping of task execution and the interval.

Reduction of time-indexed variables : can sometimes give good
bounds (highly cumulative instances)

Christian Artigues MILP for resource-constrained scheduing LAAS-CNRS 52 / 68



Why using MILP for scheduling in practice ? Lower bounds

MILP-based multi-mode RCPSP

Extension of LCG to multi mode RCPSP obtained new
benchmark on this problem [Schnell et al. 2017]
Strong cutting planes + Branch-and-cut improved a lot of
MMRCPSP solutions [Araujo et al. 2020] (754 open instances
solved for the first time but with > 24h computing time)

Christian Artigues MILP for resource-constrained scheduing LAAS-CNRS 53 / 68



Why using MILP for scheduling in practice ? MILP-based partially preemptive multi-skill RCPSP

MILP-based partially preemptive multi-skill RCPSP

On highly preemptive instances MILP beats CP [Polo et al. 2020]

Christian Artigues MILP for resource-constrained scheduing LAAS-CNRS 54 / 68



Why using MILP for scheduling in practice ? Hybrid MILP/CP method for runway sequencing

Hybrid MILP/CP method for runway sequencing
Aircraft landing/take-off and snow removal separation handed with
clique constraints → Extended formulation
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Why using MILP for scheduling in practice ? Hybrid MILP/CP method for runway sequencing

Hybrid MILP/CP method for runway sequencing :
results

hybrid CP/Column generation + B&B better than CP [Pohl et al.
2020]
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Why using MILP for scheduling in practice ? Hybrid MILP/CP method for runway sequencing

Some perspectives....

Time aggregation / energetic reasoning / dual feasible functions
[Carlier and Néron 2000, Kooli 2012]

Mixed continuous/discrete models [Haït and A. 2012]

Dynamic Discretization Discovery [Lagos et al 2022]

Preprocessing [Baptiste et al 2010]

B&P for the non-preemptive feasible set formulations [Foulihoux et
al 2018]

CG for chain decomposition models [Kimms 2001,Van den Akker et
al. 2005

Hybrid SAT/CP/MILP e.g. linking Clause learning and MILP
[Stuckey 2010]
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