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Q: Is there a schedule of makespan 𝑇?
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Jobs of length one ⇒ `timeslots’

8

a

c

e

f

g

ib

d

j

h

𝐺 defines the problem



List of Open Problems by Garey and Johnson 1979
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1. Graph Isomorphism 

2. Subgraph Homeomorphism

3. Graph genus

4. Chordal graph completion

5. Chromatic index

6. Spanning tree parity problem

7. Partial order dimension

8. Precedence constrained 3-processor 
scheduling

9. Linear Programming

10. Total unimodularity

11. Composite number

12. Minimum length triangulation
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Why Focus on Subexponential?
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• Typically for NP-complete problems with 

o geometrical properties (planar graph, Euclidean settings) 

o Parameters > number of vertices (edge deletion to …)

• Stepping stone towards (quasi)-polynomial

(e.g. Parity Games, Independent Set on Pk-free graphs)
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Before:

𝑃𝑚 𝑝𝑟𝑒𝑐, 𝑝𝑗 = 1 𝐶max can be solved in O 2𝑛 ⋅ 𝑛
𝑚

 time.
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Our Result
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𝑛

𝑚
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time.
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Our result:

𝑃𝑚 𝑝𝑟𝑒𝑐, 𝑝𝑗 = 1 𝐶max can be solved in 1 +
𝑛

𝑚

𝑂 𝑛𝑚
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Our Result
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Our result:

𝑃𝑚 𝑝𝑟𝑒𝑐, 𝑝𝑗 = 1 𝐶max can be solved in 1 +
𝑛

𝑚

𝑂 𝑛𝑚
time.

Corollary:

𝑃3 𝑝𝑟𝑒𝑐, 𝑝𝑗 = 1 𝐶max can be solved in 2𝑂 𝑛 ⋅ log 𝑛 time.

Two ways to explain, but main insights:
1. Use of look-up table
2. Keeping track of number of isolated vertices
3. Finding win-win strategy
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• succ {𝑐, 𝑑} = 𝑐, 𝑑, 𝑒, 𝑓
• sources 𝑐, 𝑑, 𝑒, 𝑓 = 𝑐, 𝑑

succ 𝐴 = succ 𝐴 ∖ 𝐴
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Def: A chain is a set 𝐴 whose elements are 
pairwise comparable.
Def: The height ℎ(𝐺) is the size of the 
longest chain (in #arcs). 
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Def: A chain is a set 𝐴 whose elements are 
pairwise comparable.
Def: The height ℎ(𝐺) is the size of the 
longest chain (in #arcs). 

In the example ℎ 𝐺 = 2

If ℎ 𝐺 = 0 , then 
there are no arcs
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Definitions

Precedence Constraints Graph 𝐺

Examples of antichains in 𝐺
✓ 𝑏, 𝑐, 𝑑
✓ 𝑏, 𝑐
✓ 𝑑, 𝑓

Def: An antichain is a set 𝐴 whose elements 
are pairwise incomparable.

35

Def: A chain is a set 𝐴 whose elements are 
pairwise comparable.
Def: The height ℎ(𝐺) is the size of the 
longest chain (in #arcs). 

In the example ℎ 𝐺 = 2

Jobs in one timeslot 
always form an antichain



Zero-Adjusted Schedule (D&W)
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time
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1 2 3 𝑇𝑧

Assumption: 𝑛 = 3 ⋅ 𝑇

Let 𝑧 ∈ 1, 𝑇 be the first moment with a sink.
D&W: W.m.a. Each job 𝑥 after z is a sink or a successor of a job at time z.

≈ succ 𝐻 ∪ sinks𝐽 ∖ (succ 𝐻 ∪ sinks)
𝐻

= sinks(𝐽)No sinks
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Dolev and Warmuth
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Sep 𝐽 ≔ { 𝐻 ⊆ 𝐽 s.t.
(1) 𝐻 ≤ 3, 
(2) 𝐻 is antichain, 
(3) 𝐻 ∖ sinks 𝐽 < 3}

left 𝐽, 𝐻 ≔ 𝐽 ∖ succ H ∪ sinks 𝐽

right 𝐽, 𝐻 ≔ 𝐽 ∩ (succ(𝐻) ∪ sinks 𝐽 ∖ 𝐻

Schedule(𝐽):

1. if ℎ 𝐺 𝐽 = 0 (i.e. sinks 𝐽 = 𝐽) return
𝐽

3

2. else return min
𝐻∈Sep(𝐽)

Schedule left 𝐽, 𝐻 + Schedule right 𝐽, 𝐻 + 1

38

Recursive

Each subproblem: height decreases by ≥ 1!



Branching Tree
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Schedule left 𝐽, 𝐻 Schedule right 𝐽, 𝐻

≤ 2 ⋅ 𝑛3 direct 
descendants



Branching Tree
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⋯ ⋯

≤ 2 ⋅ 𝑛3 direct 
descendants

≤ ℎ 𝐺      
    levels

⋯

⋯

= base case (ℎ = 0)

Number of subproblems:

2𝑛3 ℎ(𝐺) = 𝑛𝑂 ℎ 𝐺

Total runtime:

𝑛𝑂 ℎ 𝐺

ℎ decreases



D&W
Schedule(𝐽):

1. if ℎ 𝐺 𝐽 = 0 return
𝐽

3

2. for each 𝐻 ∈ Sep(𝐽) do:

3. OPT left 𝐽, 𝐻 ≔ Schedule left 𝐽, 𝐻

4. OPT right 𝐽, 𝐻 ≔ Schedule(right 𝐽, 𝐻 )

5. OPT 𝐽 := min
𝐻∈Sep(𝐽)

OPT left 𝐽, 𝐻 + OPT right 𝐽, 𝐻 + 1

6. Return OPT[𝐽]

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

Sep 𝐽 ≔ { 𝐻 ⊆ 𝐽 s.t.
(1) 𝐻 ≤ 3, 
(2) 𝐻 is antichain, 
(3) 𝐻 ∖ sinks 𝐽 < 3}

left 𝐽, 𝐻 ≔ 𝐽 ∖ succ H ∪ sinks 𝐽

right 𝐽, 𝐻 ≔ 𝐽 ∩ (succ(𝐻) ∪ sinks 𝐽 ∖ 𝐻
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D&W + LookUp Table
Schedule(𝐽):

1. return LUT[𝐽] if it was already set 

2. if ℎ 𝐺 𝐽 = 0 return
𝐽

3

3. for each 𝐻 ∈ Sep(𝐽) do:

4. OPT left 𝐽, 𝐻 ≔ Schedule left 𝐽, 𝐻

5. OPT right 𝐽, 𝐻 ≔ Schedule(right 𝐽, 𝐻 )

6. OPT 𝐽 := min
𝐻∈Sep(𝐽)

OPT left 𝐽, 𝐻 + OPT right 𝐽, 𝐻 + 1

7. LUT[𝐽] = OPT[𝐽]

8. Return OPT[𝐽]

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

Sep 𝐽 ≔ { 𝐻 ⊆ 𝐽 s.t.
(1) 𝐻 ≤ 3, 
(2) 𝐻 is antichain, 
(3) 𝐻 ∖ sinks 𝐽 < 3}

left 𝐽, 𝐻 ≔ 𝐽 ∖ succ H ∪ sinks 𝐽

right 𝐽, 𝐻 ≔ 𝐽 ∩ (succ(𝐻) ∪ sinks 𝐽 ∖ 𝐻

Too many different problems!
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What to store?
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What to store?
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D&W + LookUp Table
Schedule(𝐽):

1. return LUT[core 𝐽 , #iso(𝐽)] if it was already set 

2. if 𝐽 = ∅ return 0

3. for each 𝐻 ∈ Sep(𝐽) do:

4. OPT left 𝐽, 𝐻 ≔ Schedule left 𝐽, 𝐻

5. OPT right 𝐽, 𝐻 ≔ Schedule(right 𝐽, 𝐻 )

6. OPT 𝐽 := min
𝐻∈Sep(𝐽)

OPT left 𝐽, 𝐻 + OPT right 𝐽, 𝐻 + 1

7. LUT[core 𝐽 , #iso(𝐽)] = OPT[𝐽]

8. Return OPT[𝐽]

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

Sep 𝐽 ≔ { 𝐻 ⊆ 𝐽 s.t.
(1) 𝐻 ≤ 3, 
(2) 𝐻 is antichain, 
(3) 𝐻 ∖ sinks 𝐽 < 3}

left 𝐽, 𝐻 ≔ 𝐽 ∖ succ H ∪ sinks 𝐽

right 𝐽, 𝐻 ≔ 𝐽 ∩ (succ(𝐻) ∪ sinks 𝐽 ∖ 𝐻

How does this help?
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Feasible Job sets

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

Let 𝐽 be a feasible set of jobs.
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Feasible Job sets

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

Let 𝐽 be a feasible set of jobs. 

Jobs 𝐽 can be described as

𝐽 = succ[𝐿] ∩ pred 𝑅

where

𝐿 = minimal elements = sources of 𝐽

𝑅 = maximal elements = sinks of 𝐽
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Feasible Job sets
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Let 𝐽 be a feasible set of jobs. 

Jobs 𝐽 can be described as

𝐽 = succ[𝐿] ∩ pred 𝑅

where

𝐿 = minimal elements = sources of 𝐽

𝑅 = maximal elements = sinks of 𝐽
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Feasible Job sets
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Let 𝐽 be a feasible set of jobs. 

Jobs 𝐽 can be described as

𝐽 = succ[𝐿] ∩ pred 𝑅

where

𝐿 = minimal elements = sources of 𝐽

𝑅 = maximal elements = sinks of 𝐽
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2 isolated vertices

𝐜𝐨𝐫𝐞(𝑱)

51

𝐜𝐨𝐫𝐞(𝑱)



Feasible Job sets

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

Let 𝐽 be a feasible set of jobs. 

Jobs 𝐽 can be described as

𝐽 = succ[𝐿] ∩ pred 𝑅

where

𝐿 = minimal elements = sources of 𝐽

𝑅 = maximal elements = sinks of 𝐽

𝐿 𝑅
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𝐬𝐮𝐜𝐜(𝑳)

𝐿

𝐜𝐨𝐫𝐞(𝑱)
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Going to the right
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= 𝑅
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Going to the right
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time

m
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es

1 2 3 𝑇𝑧1

Assumption: 𝑛 = 3 ⋅ 𝑇

≈ succ 𝐻1 ∪ sinks𝐽 ∖ (succ 𝐻1 ∪ sinks)
𝐻1

= 𝑅
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Going to the right
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Assumption: 𝑛 = 3 ⋅ 𝑇

𝐽 ∖ (succ 𝐻1 ∪ sinks)
𝐻1

= 𝑅
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core 𝐽2 = succ 𝐻2 ∩ pred[𝑅]
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Going to the right
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Assumption: 𝑛 = 3 ⋅ 𝑇

𝐽 ∖ (succ 𝐻1 ∪ sinks)
𝐻1

= 𝑅
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Going to the right

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

time

m
ach

in
es

1 2 3 𝑇𝑧

Assumption: 𝑛 = 3 ⋅ 𝑇

𝐽 ∖ (succ 𝐻1 ∪ sinks)
𝐻1

= 𝑅
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𝐻2
≈ succ 𝐻3

∪ sinks

𝐻3

core 𝐽3 = succ 𝐻3 ∩ pred[𝑅]Isolated vertex 
w.r.t. 𝐽3

1. Every right subproblem has 𝑳 ≤ 𝟑
2. There are ≤ 𝑛3+1 different `right descendants’ 

𝑧1 𝑧2 𝑧3

`right descendant’ 
=

subproblem achieved by 
consecutively going into right 

subproblems



Going to the left
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= 𝑅
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Going to the left
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time

m
ach

in
es

1 2 3 𝑇𝑧

Assumption: 𝑛 = 3 ⋅ 𝑇

≈ succ 𝐻1 ∪ sinks𝐽 ∖ (succ 𝐻1 ∪ sinks)
𝐻1

= 𝑅
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core = 𝐬𝐮𝐜𝐜 𝑳 ∩ pred[𝑅new]

1. Every left subproblem has 𝑳 ≤ 𝟑
2. Problem size decreases by |𝑹|



Win-Win strategy

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

Invariant: 𝐽 = succ 𝐿 ∩ pred 𝑅 ∪ 𝑘 isolated vertices, 𝐿 ≤ 3

≤ 𝑛3
≤ 𝑛

Win-win 
strategy

Case 𝑅 ≤ 𝑛 Case 𝑅 > 𝑛

⇒ only 𝑛
𝑛

= 2𝑂 𝑛⋅log 𝑛 different R’s In next left step: make 𝑛 jobs progress!
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Branching Tree
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Either already in Lookup Table:
- Base case

Or not yet in Lookup Table:
- View as its `own tree’

- ⇒ 𝑛 𝑛 such trees

= 𝑅 ≤ 𝑛

= 𝑅 > 𝑛



Branching Tree
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Either already in Lookup Table:
- Base case

Or not yet in Lookup Table:
- View as its `own tree’

- ⇒ 𝑛 𝑛 such trees

= 𝑅 ≤ 𝑛

= 𝑅 > 𝑛



Branching Tree

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints63

Either already in Lookup Table:
- Base case

Or not yet in Lookup Table:
- View as its `own tree’

- ⇒ 𝑛𝑂 𝑛 such trees

= 𝑅 ≤ 𝑛

= 𝑅 > 𝑛

Base case

+



Branching Tree

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

≤ 𝑛4 right 
descendants

≤ 𝑛4 ⋅ 𝑛3

`first left’ 
descendants

64

≥ 𝑛 jobs 
progress

⋯

`first left descendant’ 
=

subproblem achieved by 
consecutively going into right 
subproblems, then once left

= 𝑅 ≤ 𝑛

= 𝑅 > 𝑛



Branching Tree
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≥ 𝑛 jobs 
progress

⋯

≤ 𝑛4 right 
descendants

≤ 𝑛4 ⋅ 𝑛3

`first left’ 
descendants

= 𝑅 ≤ 𝑛

= 𝑅 > 𝑛



Branching Tree
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≥ 𝑛 jobs 
progress

⋯

⋯

≤ 𝑛7 2  
`second left’ 
descendants

≤ 𝑛4 right 
descendants

≤ 𝑛4 ⋅ 𝑛3

`first left’ 
descendants

≥ 2 𝑛 jobs 
progress

= 𝑅 ≤ 𝑛

= 𝑅 > 𝑛



Branching Tree
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⋯

⋯

≤ 𝑛4 right 
descendants

≤ 𝑛4 ⋅ 𝑛3

`first left’ 
descendants

= 𝑅 ≤ 𝑛

= 𝑅 > 𝑛



Branching Tree
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⋯

⋯

⋯

⋯

≤ 𝑛4 right 
descendants

≤ 𝑛4 ⋅ 𝑛3

`first left’ 
descendants

≤ 𝑛 levels
= 𝑅 ≤ 𝑛

= 𝑅 > 𝑛



Branching Tree
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⋯

⋯

⋯

⋯

≤ 𝑛4 right 
descendants

≤ 𝑛4 ⋅ 𝑛3

`first left’ 
descendants

≤ 𝑛 levels

Number of subproblems in this tree:

𝑛7 𝑛 = 𝑛𝑂 𝑛

Total number of different subproblems:

𝑛𝑂 𝑛 ⋅ 𝑛𝑂 𝑛 = 2𝑂 𝑛⋅log 𝑛

= 𝑅 ≤ 𝑛

= 𝑅 > 𝑛



Algorithm
Schedule(𝐽):

1. return LUT[core 𝐽 , #iso(𝐽)] if it was already set 

2. if 𝐽 = ∅ return 0

3. for each 𝐻 ∈ Sep(𝐽) do:

4. OPT left 𝐽, 𝐻 ≔ Schedule left 𝐽, 𝐻

5. OPT right 𝐽, 𝐻 ≔ Schedule(right 𝐽, 𝐻 )

6. OPT 𝐽 := min
𝐻∈Sep(𝐽)

OPT left 𝐽, 𝐻 + OPT right 𝐽, 𝐻 + 1

7. LUT[core 𝐽 , #iso(𝐽)] = OPT[𝐽]

8. Return OPT[𝐽]

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

Sep 𝐽 ≔ { 𝐻 ⊆ 𝐽 s.t.
(1) 𝐻 ≤ 3, 
(2) 𝐻 is antichain, 
(3) 𝐻 ∖ sinks 𝐽 < 3}

left 𝐽, 𝐻 ≔ 𝐽 ∖ succ H ∪ sinks 𝐽

right 𝐽, 𝐻 ≔ 𝐽 ∩ (succ(𝐻) ∪ sinks 𝐽 ∖ 𝐻

Only 2𝑂 𝑛⋅log 𝑛  different 
problems encountered
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Corollaries

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

Our result:

𝑃𝑚 𝑝𝑟𝑒𝑐, 𝑝𝑗 = 1 𝐶max can be solved in 1 +
𝑛

𝑚

𝑂 𝑛𝑚
time.

Corollary 1

𝑃𝑚 𝑝𝑟𝑒𝑐, 𝑝𝑗 = 1 𝐶max can be solved in subexponential time 

whenever 𝑚 = 𝑜(𝑛).

Corollary 2

𝑷 𝑝𝑟𝑒𝑐, 𝑝𝑗 = 1 𝐶max can be solved in 1.997𝑛 ⋅ 𝑝𝑜𝑙𝑦(𝑛) time.
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Conclusion
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Conclusion

Main result: 

𝑃3 𝑝𝑟𝑒𝑐, 𝑝𝑗 = 1 𝐶max in 2𝑂 𝑛⋅log 𝑛 time. 
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Conclusion

Main result: 

𝑃3 𝑝𝑟𝑒𝑐, 𝑝𝑗 = 1 𝐶max in 2𝑂 𝑛⋅log 𝑛 time. 

Key idea’s: 

1. Use of look-up table

2. Keeping track of core + # isolated vertices

3. Finding win-win strategy using number of sinks
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Open Problems:

• 𝑃3 𝑝𝑟𝑒𝑐, 𝑝𝑗 = 1 𝐶max in quasi-polynomial time? 
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Open Problems:

• 𝑃3 𝑝𝑟𝑒𝑐, 𝑝𝑗 = 1 𝐶max in quasi-polynomial time? 

• Approximation algorithms, does a PTAS exist (for fixed 𝑚)?
- QPTAS by 

▪ Garg 2018

▪ Li, 2021

▪ Das, Wiese, 2022

1 + 𝜀 -approximation in      𝑛
𝑂

𝑚4

𝜀3
log3 log 𝑛

time
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Open Problems:

• 𝑃3 𝑝𝑟𝑒𝑐, 𝑝𝑗 = 1 𝐶max in quasi-polynomial time? 

• Approximation algorithms, does a PTAS exist (for fixed 𝑚)?
- QPTAS by 

▪ Garg 2018

▪ Li, 2021

▪ Das, Wiese, 2022

1 + 𝜀 -approximation in      𝑛
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𝜀3
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time
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Thanks for your 
attention!
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