

### A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

#### Jesper Nederlof



**Utrecht University** 

#### Céline Swennenhuis



Eindhoven University of Technology

Saarland University and Max Planck Institute for Informatics

#### Karol Węgrzycki

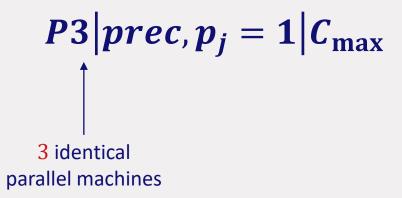


#### Department of Mathematics and Computer Science, Eindhoven University of Technology

$$P3|prec, p_j = 1|C_{\max}$$

2 A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints







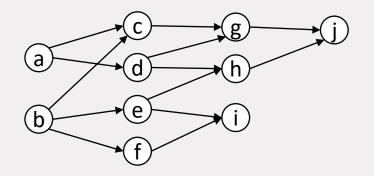
$$P3|prec, p_j = 1|C_{\max}$$

• *n* jobs of length 1



$$P3|prec, p_j = 1|C_{\max}$$

- *n* jobs of length 1
- A precedence graph *G*

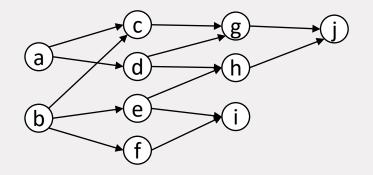




$$P3|prec, p_j = 1|C_{\max}$$

- *n* jobs of length 1
- A precedence graph *G*
- $T \in \mathbb{N}$

#### **Q**: Is there a schedule of makespan *T*?

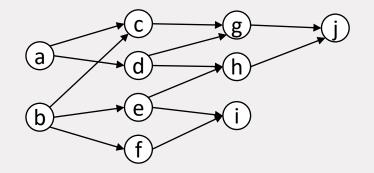


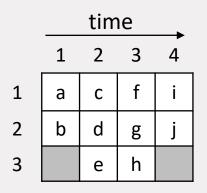


$$P3|prec, p_j = 1|C_{\max}$$

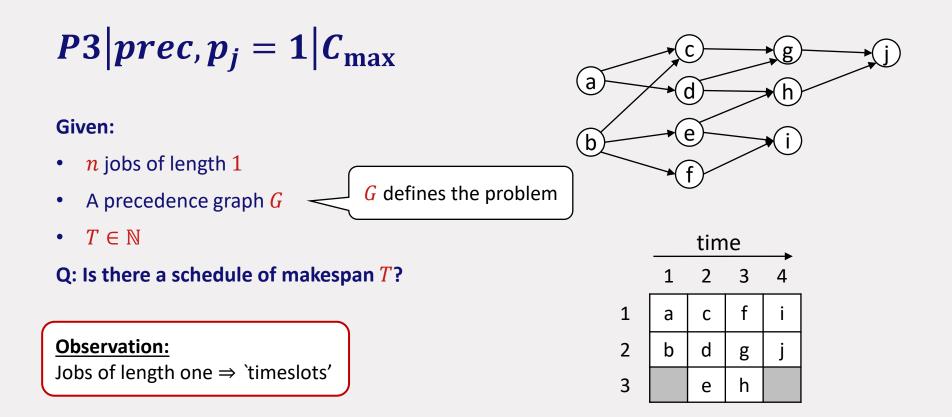
- *n* jobs of length 1
- A precedence graph *G*
- $T \in \mathbb{N}$

#### Q: Is there a schedule of makespan *T*?









- 1. Graph Isomorphism
- 2. Subgraph Homeomorphism
- 3. Graph genus
- 4. Chordal graph completion
- 5. Chromatic index
- 6. Spanning tree parity problem
- 7. Partial order dimension

- 8. Precedence constrained 3-processor scheduling
- 9. Linear Programming
- 10. Total unimodularity
- 11. Composite number
- 12. Minimum length triangulation

- 1. Graph Isomorphism
- 2. Subgraph Homeomorphism
- 3. Graph genus
- 4. Chordal graph completion
- 5. Chromatic index
- 6. Spanning tree parity problem
- 7. Partial order dimension

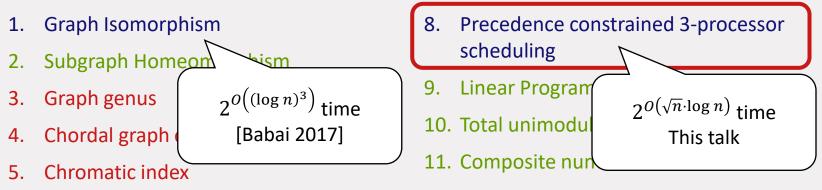
- 8. Precedence constrained 3-processor scheduling
- 9. Linear Programming
- 10. Total unimodularity
- 11. Composite number
- 12. Minimum length triangulation

- 1. Graph Isomorphism
- 2. Subgraph Homeomorphism
- 3. Graph genus
- 4. Chordal graph completion
- 5. Chromatic index
- 6. Spanning tree parity problem
- 7. Partial order dimension

- 8. Precedence constrained 3-processor scheduling
- 9. Linear Programming
- 10. Total unimodularity
- 11. Composite number
- 12. Minimum length triangulation

- Graph Isomorphism
   Subgraph Homeon
   Graph genus
   Chordal graph
   Chromatic index
- 6. Spanning tree parity problem
- 7. Partial order dimension

- 8. Precedence constrained 3-processor scheduling
- 9. Linear Programming
- 10. Total unimodularity
- 11. Composite number
- 12. Minimum length triangulation



- 6. Spanning tree parity problem
- 7. Partial order dimension

12. Minimum length triangulation

## Why Focus on Subexponential?

- Typically for NP-complete problems with
  - o geometrical properties (planar graph, Euclidean settings)
  - Parameters > number of vertices (edge deletion to ...)
- Stepping stone towards (quasi)-polynomial

(e.g. Parity Games, Independent Set on Pk-free graphs)



#### • NP-complete<sup>1</sup> *m* = #machines given *as input*

<sup>1</sup>Jeffrey D. Ullman. *NP-complete scheduling problems*. Journal of Computer and System sciences, 10(3):384–393, 1975.

#### • NP-complete<sup>1</sup> *m* = #machines given *as input*

<sup>1</sup>Jeffrey D. Ullman. *NP-complete scheduling problems*. Journal of Computer and System sciences, 10(3):384–393, 1975.

• Poly-time solvable<sup>2</sup> for m = 2

<sup>2</sup>M. Fujii, T. Kasami, and K. Ninomiya. *Optimal sequencing of two equivalent processors*. SIAM Journal on Applied Mathematics, 17(4):784–789, 1969.

#### • NP-complete<sup>1</sup> *m* = #machines given *as input*

<sup>1</sup>Jeffrey D. Ullman. *NP-complete scheduling problems*. Journal of Computer and System sciences, 10(3):384–393, 1975.

#### • Poly-time solvable<sup>2</sup> for m = 2

<sup>2</sup>M. Fujii, T. Kasami, and K. Ninomiya. *Optimal sequencing of two equivalent processors*. SIAM Journal on Applied Mathematics, 17(4):784–789, 1969.

#### • ???? for $m \ge 3$ constant OPEN<sup>3</sup>

<sup>3</sup>Michael R. Garey and David S. Johnson. *Computers and Intractability: A Guide to the Theory of NP-Completeness*. W. H. Freeman, 1979.

#### • NP-complete<sup>1</sup> *m* = #machines given *as input*

<sup>1</sup>Jeffrey D. Ullman. *NP-complete scheduling problems*. Journal of Computer and System sciences, 10(3):384–393, 1975.

• Poly-time solvable<sup>2</sup> for m = 2

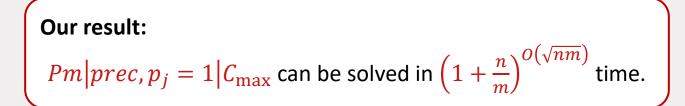
<sup>2</sup>M. Fujii, T. Kasami, and K. Ninomiya. *Optimal sequencing of two equivalent processors*. SIAM Journal on Applied Mathematics, 17(4):784–789, 1969.

#### • ???? for $m \ge 3$ constant **OPEN**<sup>3</sup>

<sup>3</sup>Michael R. Garey and David S. Johnson. *Computers and Intractability: A Guide to the Theory of NP-Completeness*. W. H. Freeman, 1979.

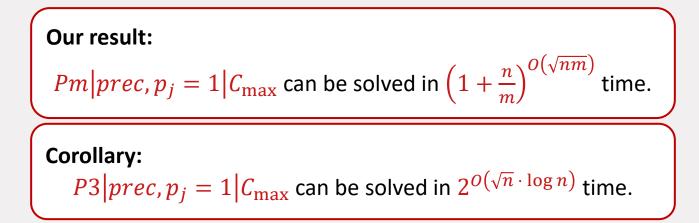
Before:  $Pm|prec, p_j = 1|C_{\max}$  can be solved in  $O\left(2^n \cdot \binom{n}{m}\right)$  time.

### **Our Result**



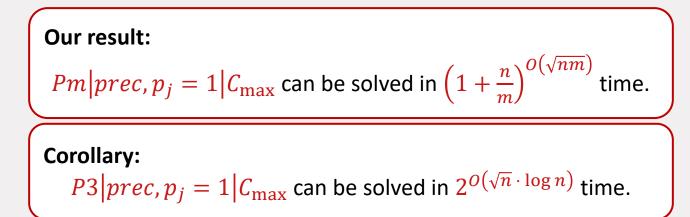


### **Our Result**



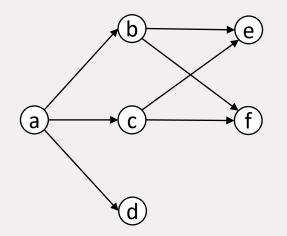


### **Our Result**



Two ways to explain, but main insights:

- 1. Use of look-up table
- 2. Keeping track of number of isolated vertices
- 3. Finding win-win strategy

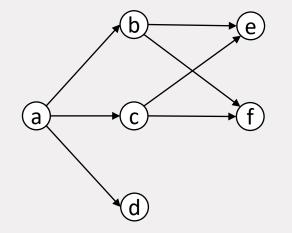


Precedence Constraints Graph G

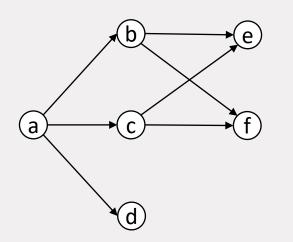
23 A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints



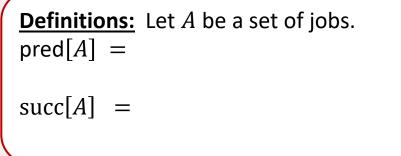
 $G \Rightarrow$  partial order: •  $i \prec j$  if  $(i,j) \in G$ 



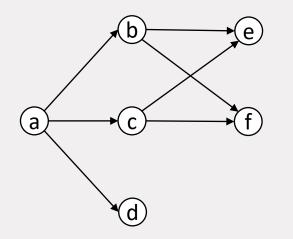




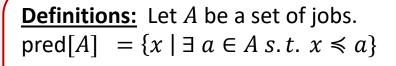
```
G \Rightarrow partial order:
• i \prec j if (i,j) \in G
```





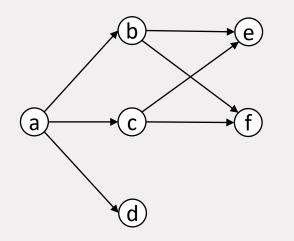


 $G \Rightarrow$  partial order: •  $i \prec j$  if  $(i, j) \in G$ 



```
\operatorname{succ}[A] = \{x \mid \exists a \in A \text{ s. t. } x \ge a\}
```





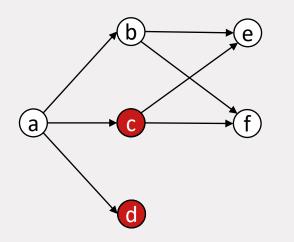
Precedence Constraints Graph G

27

$$G \Rightarrow$$
 partial order:  
•  $i \prec j$  if  $(i,j) \in G$ 

**Definitions:** Let *A* be a set of jobs. pred[*A*] = { $x \mid \exists a \in A \text{ s. } t. x \leq a$ } sinks(*A*) = max{*A*} succ[*A*] = { $x \mid \exists a \in A \text{ s. } t. x \geq a$ } sources(*A*) = min{*A*}

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

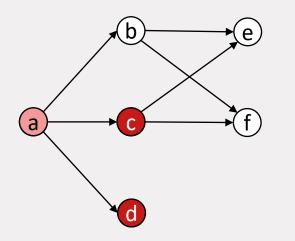


Precedence Constraints Graph G

 $G \Rightarrow$  partial order: •  $i \prec j$  if  $(i,j) \in G$ 

**Definitions:** Let *A* be a set of jobs. pred[*A*] = { $x \mid \exists a \in A \text{ s. } t. x \leq a$ } sinks(*A*) = max{*A*} succ[*A*] = { $x \mid \exists a \in A \text{ s. } t. x \geq a$ } sources(*A*) = min{*A*}





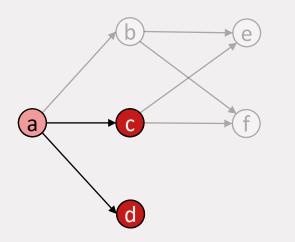
Precedence Constraints Graph G

 $G \Rightarrow$  partial order: • i < j if  $(i, j) \in G$ 

**Definitions:** Let *A* be a set of jobs. pred[*A*] = { $x \mid \exists a \in A \text{ s. } t. x \leq a$ } sinks(*A*) = max{*A*} succ[*A*] = { $x \mid \exists a \in A \text{ s. } t. x \geq a$ } sources(*A*) = min{*A*}

Ex. {*c*, *d*}, then: • pred[{*c*, *d*}] = {*a*, *c*, *d*}





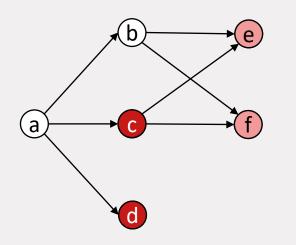
Precedence Constraints Graph G

 $G \Rightarrow$  partial order: •  $i \prec j$  if  $(i,j) \in G$ 

**Definitions:** Let *A* be a set of jobs. pred[*A*] = { $x \mid \exists a \in A \text{ s. } t. x \leq a$ } sinks(*A*) = max{*A*} succ[*A*] = { $x \mid \exists a \in A \text{ s. } t. x \geq a$ } sources(*A*) = min{*A*}

- $pred[\{c, d\}] = \{a, c, d\}$
- $sinks(\{a, c, d\}) = \{c, d\}$



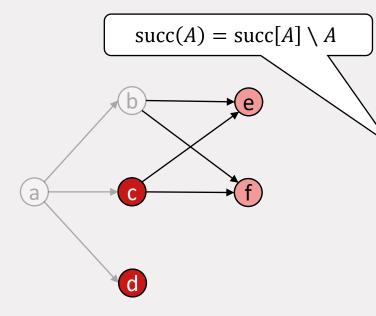


Precedence Constraints Graph G

 $G \Rightarrow$  partial order: •  $i \prec j$  if  $(i,j) \in G$ 

**Definitions:** Let *A* be a set of jobs. pred[*A*] = { $x \mid \exists a \in A \text{ s. } t. x \leq a$ } sinks(*A*) = max{*A*} succ[*A*] = { $x \mid \exists a \in A \text{ s. } t. x \geq a$ } sources(*A*) = min{*A*}

- $pred[\{c, d\}] = \{a, c, d\}$
- $sinks(\{a, c, d\}) = \{c, d\}$
- $succ[\{c, d\}] = \{c, d, e, f\}$



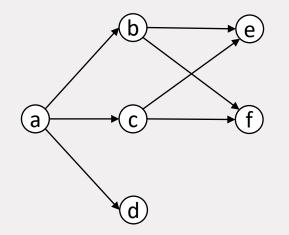
Precedence Constraints Graph G

 $G \Rightarrow$  partial order: •  $i \prec j$  if  $(i,j) \in G$ 

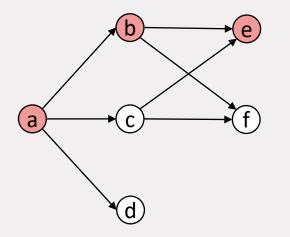
**Definitions:** Let *A* be a set of jobs. pred[*A*] = { $x \mid \exists a \in A \text{ s. } t. x \leq a$ } sinks(*A*) = max{*A*} succ[*A*] = { $x \mid \exists a \in A \text{ s. } t. x \geq a$ } sources(*A*) = min{*A*}

- $pred[\{c, d\}] = \{a, c, d\}$
- $sinks(\{a, c, d\}) = \{c, d\}$
- $succ[\{c, d\}] = \{c, d, e, f\}$
- sources( $\{c, d, e, f\}$ ) =  $\{c, d\}$

**Def:** A *chain* is a set *A* whose elements are pairwise **comparable**.

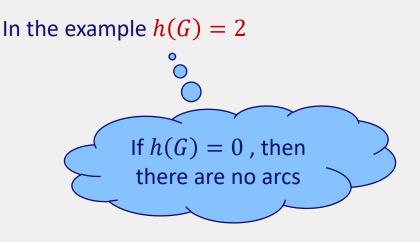




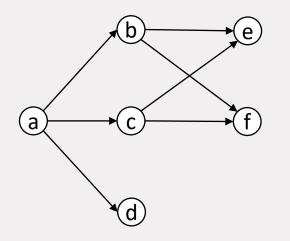


Precedence Constraints Graph G

**Def:** A *chain* is a set *A* whose elements are pairwise **comparable**. **Def:** The *height* h(G) is the size of the longest chain (in #arcs).







Precedence Constraints Graph G

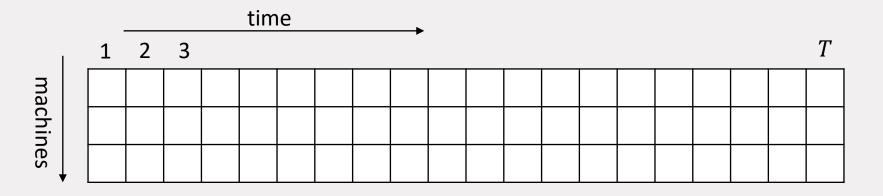
**Def:** A *chain* is a set *A* whose elements are pairwise **comparable**. **Def:** The *height* h(G) is the size of the longest chain (in #arcs).

In the example h(G) = 2

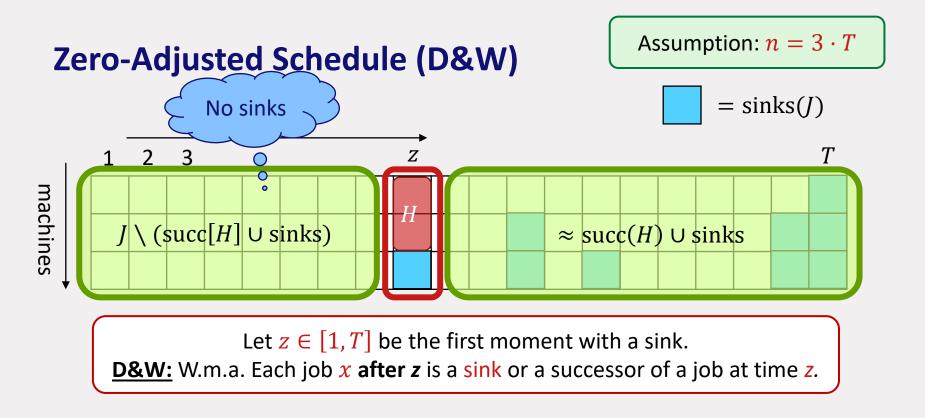
**Def:** An *antichain* is a set *A* whose elements are pairwise **incomparable**.

Examples of antichains in G  $\checkmark$  {b, c, d}  $\checkmark$  {b, c}  $\checkmark$  {d, f}  $\downarrow$  {d, f}  $\downarrow$  {b, c}  $\downarrow$  {d, f}  $\downarrow$  {d, f}

### **Zero-Adjusted Schedule (D&W)**











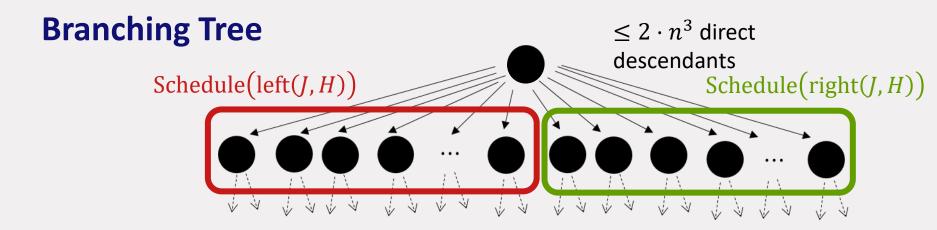
1. **if** h(G[J]) = 0 (i.e. sinks(J) = J) **return**  $\frac{|J|}{3}$ 

2. **else return**  $\min_{H \in \text{Sep}(J)} \{ \text{Schedule}(\text{left}(J, H)) + \text{Schedule}(\text{right}(J, H)) + 1 \}$ 

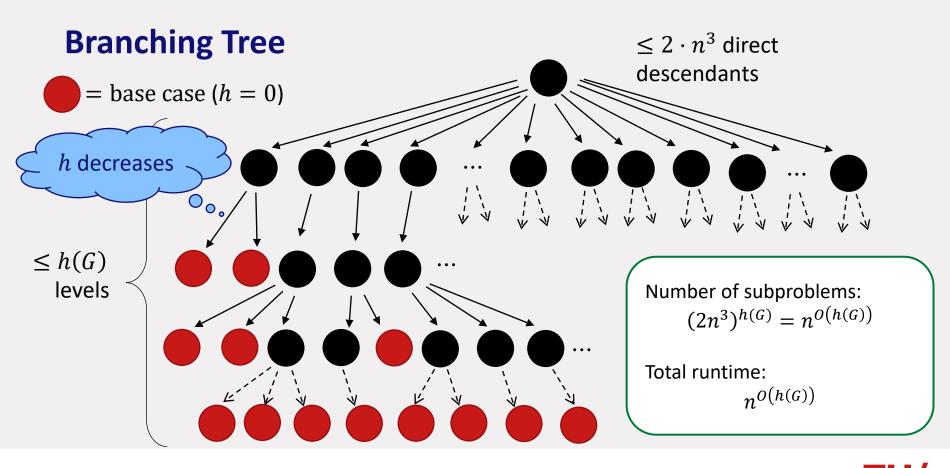
$$\begin{split} \operatorname{Sep}(J) &\coloneqq \{ H \subseteq J \text{ s.t.} \\ &(1) |H| \leq 3, \\ &(2) H \text{ is antichain,} \\ &(3) |H \setminus \operatorname{sinks}(J)| < 3 \rbrace \end{split}$$

 $left(J, H) \coloneqq J \setminus (succ[H] \cup sinks(J))$ right(J, H) := J \circ ((succ(H) \circ sinks(J)) \ H

Each subproblem: height decreases by  $\geq 1!$ 







e

#### D&W

Schedule(J):

- 1. if h(G[J]) = 0 return  $\left\lceil \frac{|J|}{3} \right\rceil$
- 2. for each  $H \in \text{Sep}(J)$  do:

 $Sep(J) \coloneqq \{ H \subseteq J \text{ s.t.}$   $(1) |H| \le 3,$  (2) H is antichain,  $(3) |H \setminus sinks(J)| < 3 \}$ 

 $left(J, H) \coloneqq J \setminus (succ[H] \cup sinks(J))$ right(J, H) := J \circ ((succ(H) \circ sinks(J)) \circ H

- 3.  $OPT[left(J, H)] \coloneqq Schedule(left(J, H))$
- 4.  $OPT[right(J, H)] \coloneqq Schedule(right(J, H))$
- 5.  $OPT[J] := \min_{H \in Sep(J)} \{OPT[left(J, H)] + OPT[right(J, H)] + 1\}$
- 6. Return OPT[*J*]

# D&W + LookUp Table

Schedule(*J*):

- 1. **return** LUT[*J*] if it was already set
- 2. if h(G[J]) = 0 return  $\left[\frac{|J|}{3}\right]$
- 3. for each  $H \in \text{Sep}(J)$  do:

 $Sep(J) \coloneqq \{ H \subseteq J \text{ s.t.}$   $(1) |H| \le 3,$  (2) H is antichain,  $(3) |H \setminus sinks(J)| < 3 \}$ 

 $left(J, H) \coloneqq J \setminus (succ[H] \cup sinks(J))$ right(J, H) := J \circ ((succ(H) \circ sinks(J)) \circ H

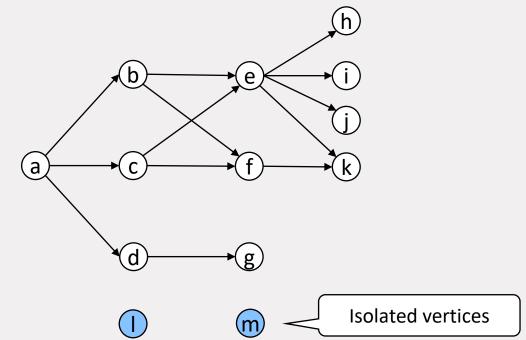
- 4.  $OPT[left(J, H)] \coloneqq Schedule(left(J, H))$
- 5.  $OPT[right(J, H)] \coloneqq Schedule(right(J, H))$
- 6.  $OPT[J] := \min_{H \in Sep(J)} \{OPT[left(J, H)] + OPT[right(J, H)] + 1\}$
- 7. LUT[J] = OPT[J]

#### 8. Return OPT[*J*]

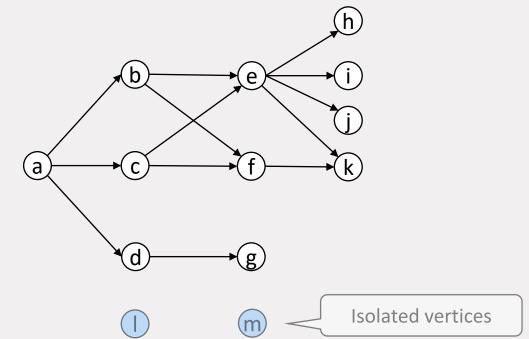
#### Too many different problems!



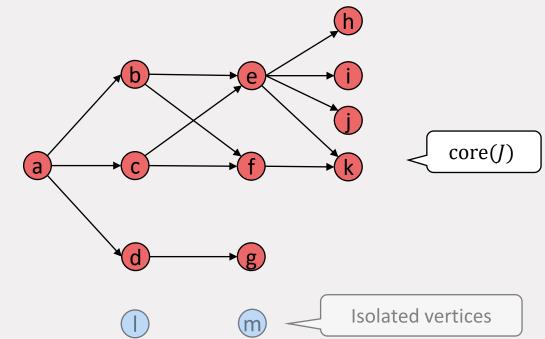














# D&W + LookUp Table

Schedule(*J*):

- 1. **return** LUT[core(*J*), #iso(*J*)] if it was already set
- 2. if  $J = \emptyset$  return 0
- 3. for each  $H \in \text{Sep}(J)$  do:

 $left(J, H) \coloneqq J \setminus (succ[H] \cup sinks(J))$ right(J, H) := J \circ ((succ(H) \circ sinks(J)) \ H

(1)  $|H| \leq 3$ ,

(2) H is antichain,

(3)  $|H \setminus sinks(J)| < 3$ 

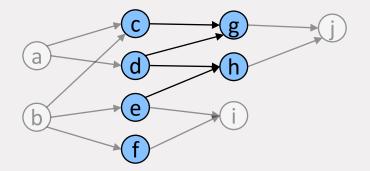
 $\operatorname{Sep}(J) \coloneqq \{ H \subseteq J \text{ s.t.} \}$ 

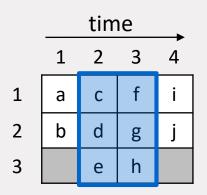
 $\bigcirc$ 

- 4.  $OPT[left(J, H)] \coloneqq Schedule(left(J, H))$
- 5.  $OPT[right(J, H)] \coloneqq Schedule(right(J, H))$
- 6.  $OPT[J] := \min_{H \in Sep(J)} \{OPT[left(J, H)] + OPT[right(J, H)] + 1\}$
- 7. LUT[core(J), #iso(J)] = OPT[J]
- 8. Return OPT[*J*]

How does this help?

Let *J* be a *feasible set of jobs*.







Let *J* be a *feasible set of jobs*.

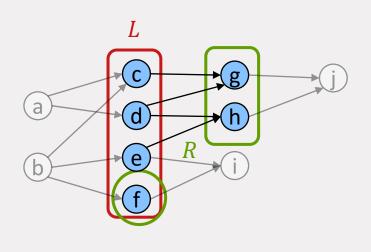
Jobs **J** can be described as

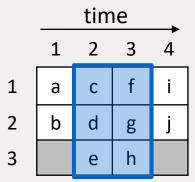
 $J = \operatorname{succ}[L] \cap \operatorname{pred}[R]$ 

#### where

L = minimal elements = sources of J

R = maximal elements = sinks of J







Let *J* be a *feasible set of jobs*.

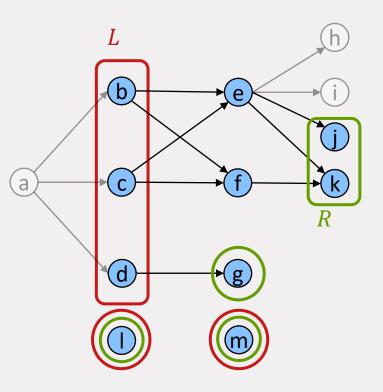
Jobs **J** can be described as

 $J = \operatorname{succ}[L] \cap \operatorname{pred}[R]$ 

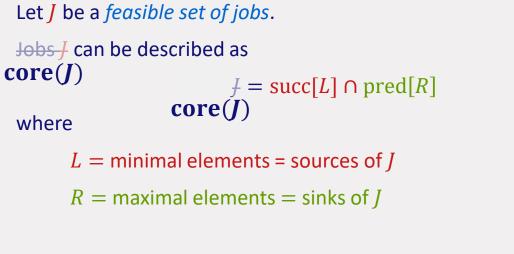
where

L = minimal elements = sources of J

R = maximal elements = sinks of J

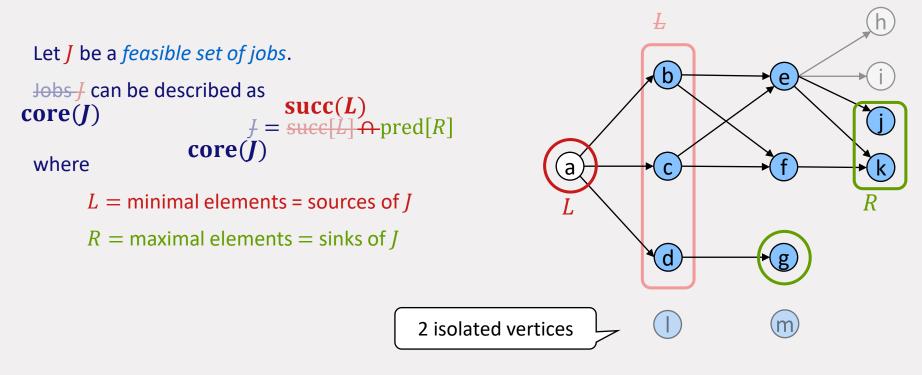


ГU/е

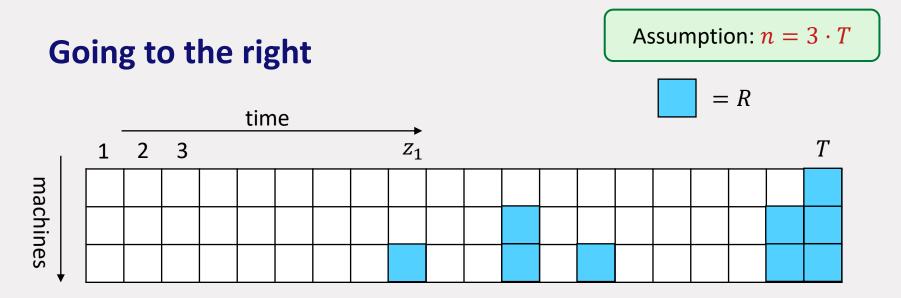


b С а R d g (m)2 isolated vertices

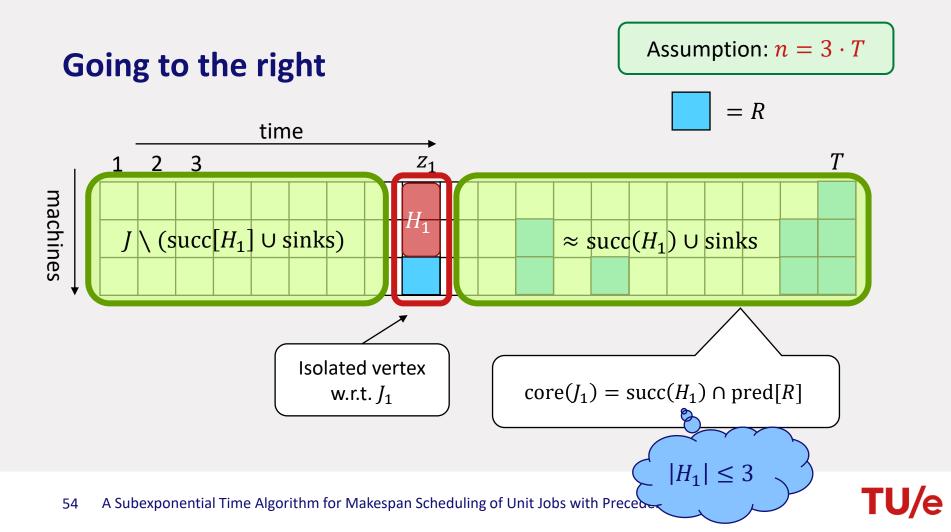
L

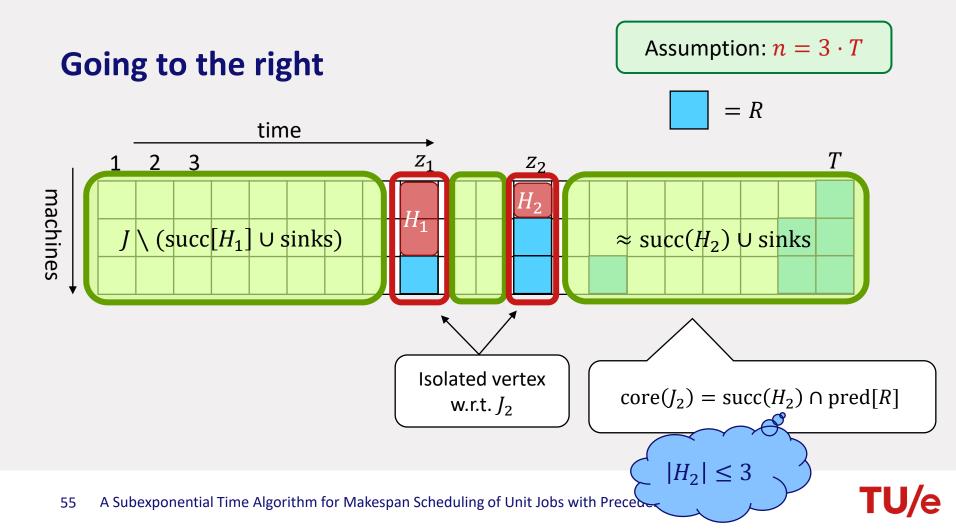


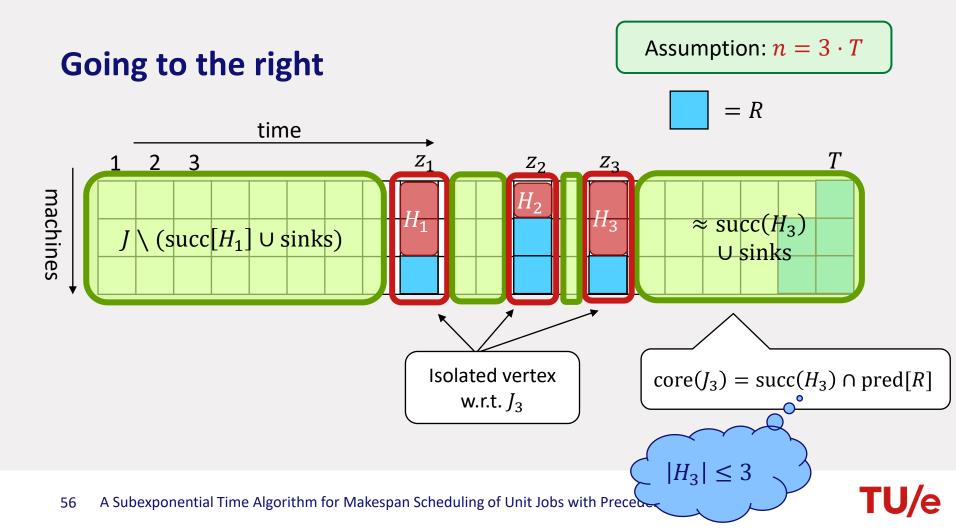
U/e

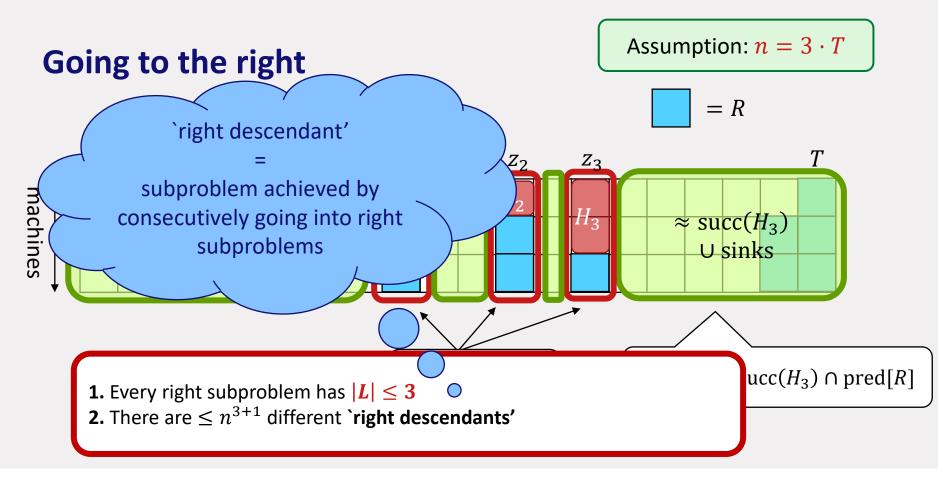




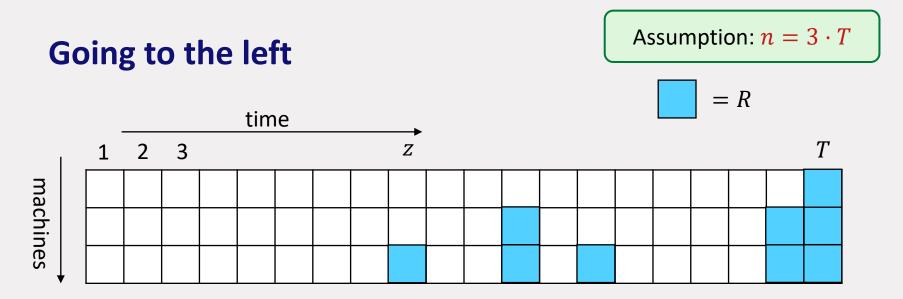




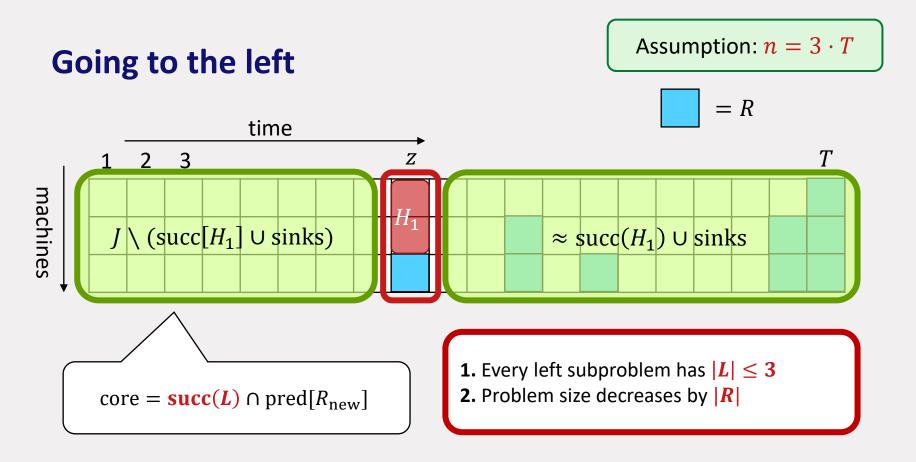






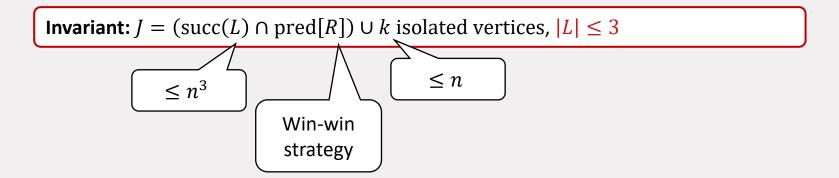






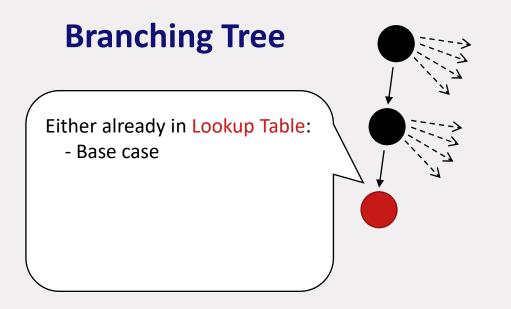


#### Win-Win strategy



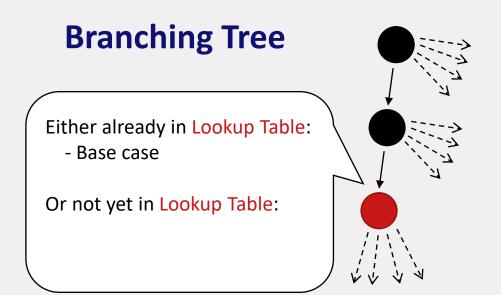
Case 
$$|R| \le \sqrt{n}$$
Case  $|R| > \sqrt{n}$  $\Rightarrow$  only  $\binom{n}{\sqrt{n}} = 2^{O(\sqrt{n} \cdot \log n)}$  different R'sIn next left step: make  $\sqrt{n}$  jobs progress!





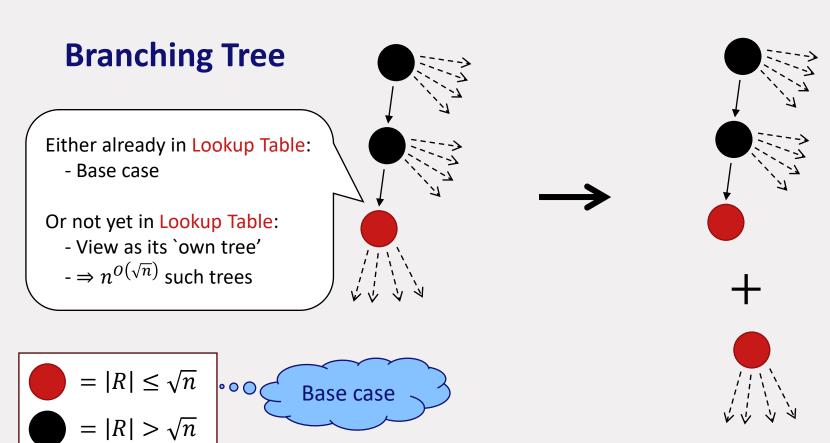
$$|R| \le \sqrt{n}$$
$$|R| > \sqrt{n}$$



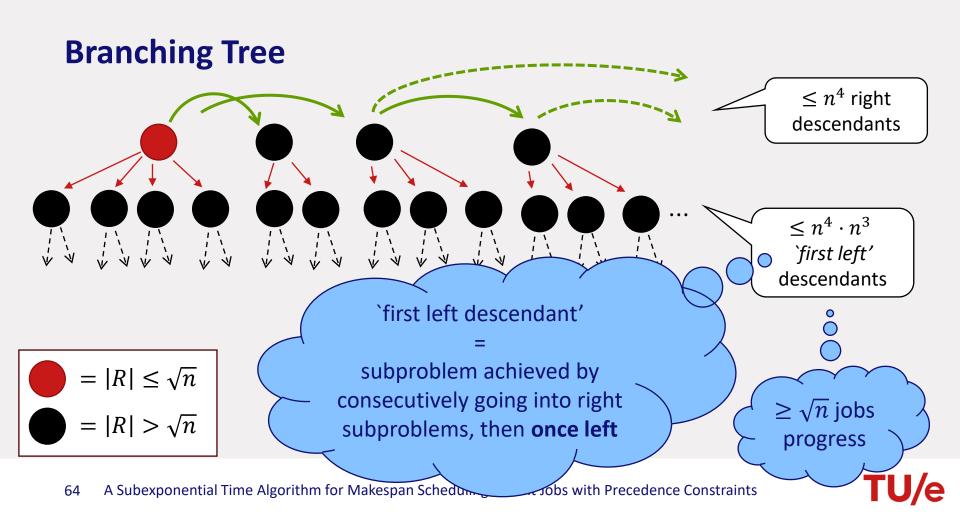


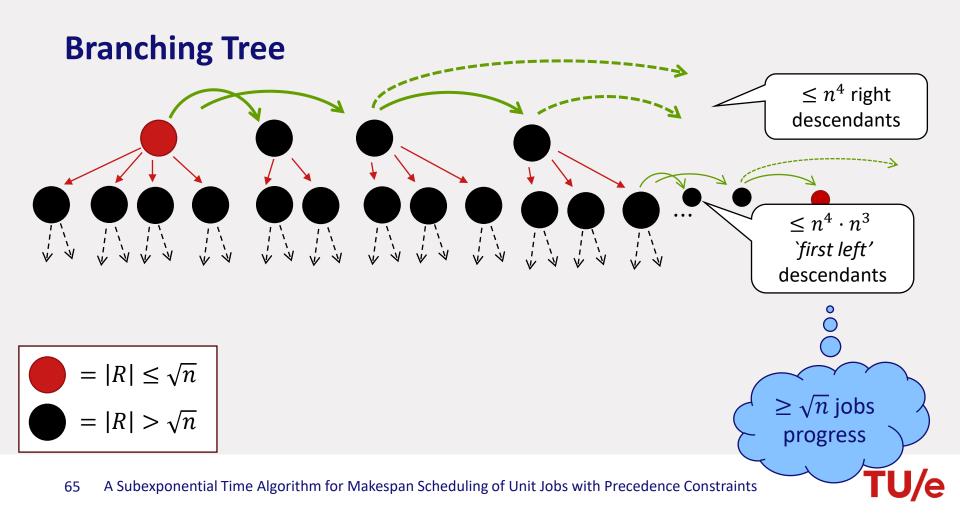
$$|R| \le \sqrt{n}$$
$$|R| > \sqrt{n}$$

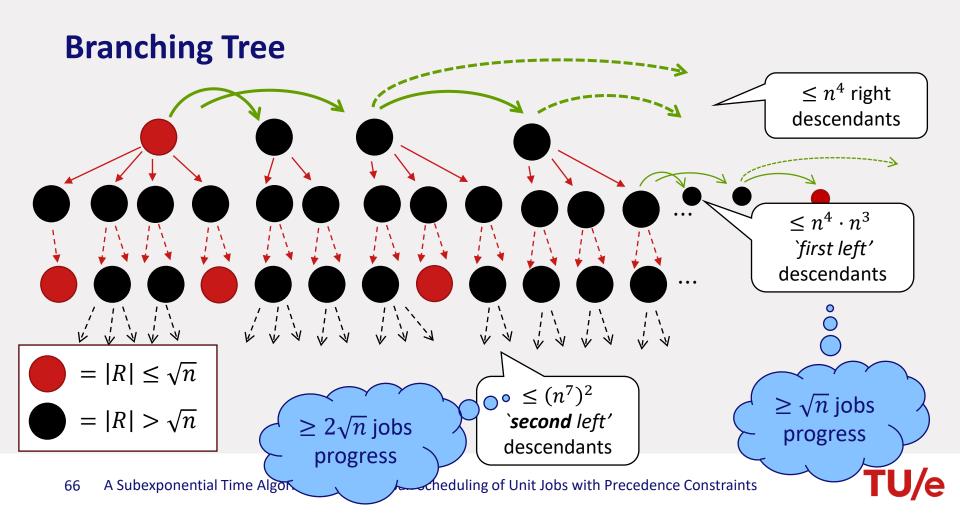


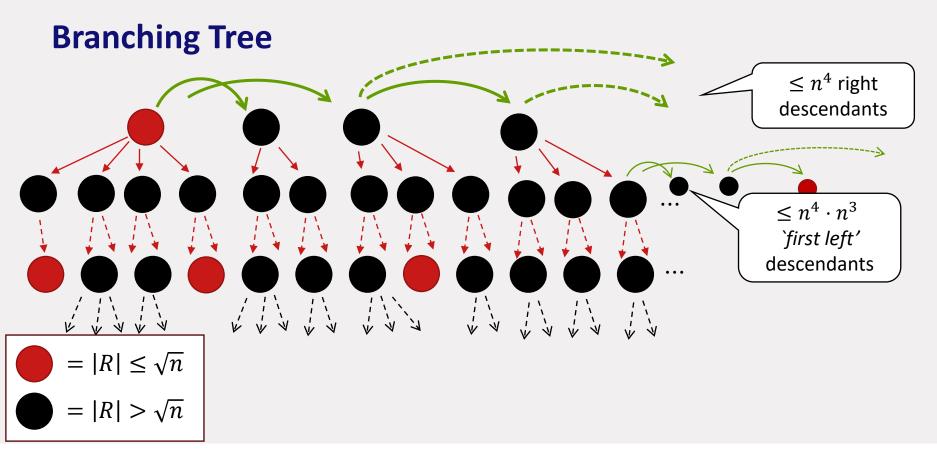




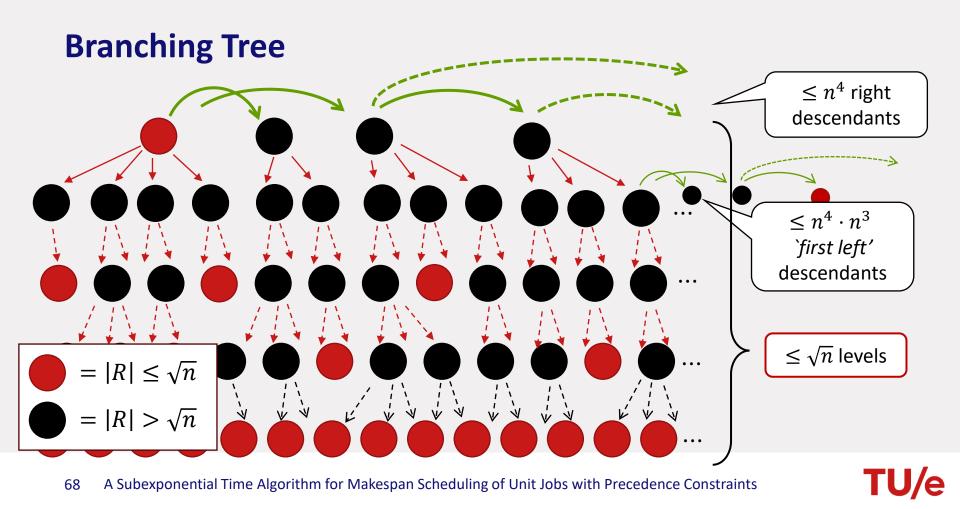


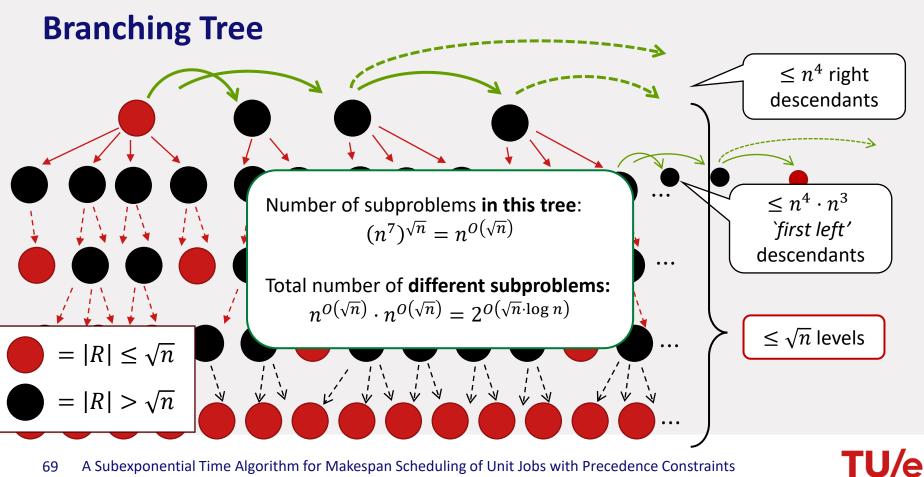












# Algorithm

Schedule(*J*):

- 1. **return** LUT[core(*J*), #iso(*J*)] if it was already set
- 2. if  $J = \emptyset$  return 0
- 3. for each  $H \in \text{Sep}(J)$  do:

 $left(J, H) \coloneqq J \setminus (succ[H] \cup sinks(J))$ right(J, H) := J \circ ((succ(H) \circ sinks(J)) \ H

(1)  $|H| \leq 3$ ,

(2) H is antichain,

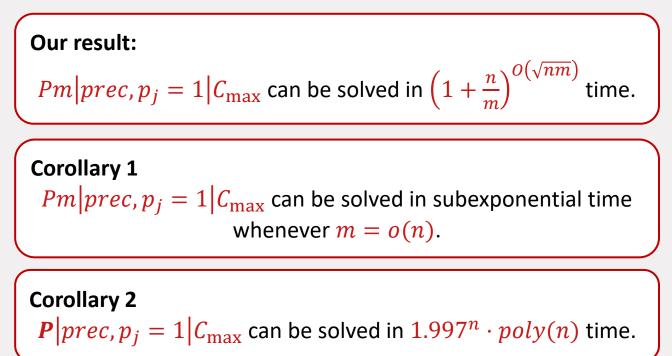
(3)  $|H \setminus sinks(J)| < 3$ 

- 4.  $OPT[left(J, H)] \coloneqq Schedule(left(J, H))$
- 5.  $OPT[right(J, H)] \coloneqq Schedule(right(J, H))$
- 6. OPT[J]: =  $\min_{H \in \text{Sep}(J)} \{ \text{OPT}[\text{left}(J, H)] + \text{OPT}[\text{right}(J, H)] + 1 \}$
- 7. LUT[core(J), #iso(J)] = OPT[J]
- 8. Return OPT[*J*]

Only  $2^{O(\sqrt{n} \cdot \log n)}$  different problems encountered

 $\operatorname{Sep}(J) \coloneqq \{ H \subseteq J \text{ s.t.} \}$ 

### Corollaries



### Conclusion



# Conclusion

#### **Main result:**

 $P3|prec, p_j = 1|C_{\max} \text{ in } 2^{O(\sqrt{n} \cdot \log n)} \text{ time.}$ 

# Conclusion

#### **Main result:**

 $P3|prec, p_j = 1|C_{\max} \text{ in } 2^{O(\sqrt{n} \cdot \log n)} \text{ time.}$ 

#### Key idea's:

- 1. Use of look-up table
- 2. Keeping track of core + # isolated vertices
- 3. Finding win-win strategy using number of sinks

# **Open Problems:**

•  $P3|prec, p_j = 1|C_{max}$  in quasi-polynomial time?



# **Open Problems:**

- $P3|prec, p_j = 1|C_{max}$  in quasi-polynomial time?
- Approximation algorithms, does a PTAS exist (for fixed m)?
   QPTAS by
  - Garg 2018
  - Li, 2021
  - Das, Wiese, 2022

 $(1 + \varepsilon)$ -approximation in

$$n^{O\left(rac{m^4}{arepsilon^3}\log n
ight)}$$
 time

# **Open Problems:**

- $P3|prec, p_i = 1|C_{max}$  in quasi-polynomial time?
- Thanks for Your attention Approximation algorithms, does a PTAS exist (for fixed m)? - QPTAS by
  - Garg 2018
  - Li, 2021
  - Das, Wiese, 2022

 $(1 + \varepsilon)$ -approximation in

 $n^{O\left(\frac{m^4}{\varepsilon^3}\log^3\log n\right)}$  time

