
Department of Mathematics and Computer Science, Eindhoven University of Technology

A Subexponential Time Algorithm for
Makespan Scheduling of Unit Jobs with Precedence Constraints

Jesper Nederlof

Saarland University and
Max Planck Institute for

Informatics

Céline Swennenhuis Karol Węgrzycki

Utrecht University Eindhoven University of
Technology

𝑷𝟑 𝒑𝒓𝒆𝒄, 𝒑𝒋 = 𝟏 𝑪𝐦𝐚𝐱

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints2

𝑷𝟑 𝒑𝒓𝒆𝒄, 𝒑𝒋 = 𝟏 𝑪𝐦𝐚𝐱

3 identical
parallel machines

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints3

𝑷𝟑 𝒑𝒓𝒆𝒄, 𝒑𝒋 = 𝟏 𝑪𝐦𝐚𝐱

Given:

• 𝑛 jobs of length 1

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints4

𝑷𝟑 𝒑𝒓𝒆𝒄, 𝒑𝒋 = 𝟏 𝑪𝐦𝐚𝐱

Given:

• 𝑛 jobs of length 1

• A precedence graph 𝐺

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints5

a

c

e

f

g

ib

d

j

h

𝑷𝟑 𝒑𝒓𝒆𝒄, 𝒑𝒋 = 𝟏 𝑪𝐦𝐚𝐱

Given:

• 𝑛 jobs of length 1

• A precedence graph 𝐺

• 𝑇 ∈ ℕ

Q: Is there a schedule of makespan 𝑇?

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints6

a

c

e

f

g

ib

d

j

h

𝑷𝟑 𝒑𝒓𝒆𝒄, 𝒑𝒋 = 𝟏 𝑪𝐦𝐚𝐱

Given:

• 𝑛 jobs of length 1

• A precedence graph 𝐺

• 𝑇 ∈ ℕ

Q: Is there a schedule of makespan 𝑇?

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints7

1 2 3 4

1 a c f i

2 b d g j

3 e h

time

a

c

e

f

g

ib

d

j

h

𝑷𝟑 𝒑𝒓𝒆𝒄, 𝒑𝒋 = 𝟏 𝑪𝐦𝐚𝐱

Given:

• 𝑛 jobs of length 1

• A precedence graph 𝐺

• 𝑇 ∈ ℕ

Q: Is there a schedule of makespan 𝑇?

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

1 2 3 4

1 a c f i

2 b d g j

3 e h

time

Observation:
Jobs of length one ⇒ `timeslots’

8

a

c

e

f

g

ib

d

j

h

𝐺 defines the problem

List of Open Problems by Garey and Johnson 1979

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

1. Graph Isomorphism

2. Subgraph Homeomorphism

3. Graph genus

4. Chordal graph completion

5. Chromatic index

6. Spanning tree parity problem

7. Partial order dimension

8. Precedence constrained 3-processor
scheduling

9. Linear Programming

10. Total unimodularity

11. Composite number

12. Minimum length triangulation

9

List of Open Problems by Garey and Johnson 1979

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

1. Graph Isomorphism

2. Subgraph Homeomorphism

3. Graph genus

4. Chordal graph completion

5. Chromatic index

6. Spanning tree parity problem

7. Partial order dimension

8. Precedence constrained 3-processor
scheduling

9. Linear Programming

10. Total unimodularity

11. Composite number

12. Minimum length triangulation

10

List of Open Problems by Garey and Johnson 1979

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

1. Graph Isomorphism

2. Subgraph Homeomorphism

3. Graph genus

4. Chordal graph completion

5. Chromatic index

6. Spanning tree parity problem

7. Partial order dimension

8. Precedence constrained 3-processor
scheduling

9. Linear Programming

10. Total unimodularity

11. Composite number

12. Minimum length triangulation

11

List of Open Problems by Garey and Johnson 1979

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

1. Graph Isomorphism

2. Subgraph Homeomorphism

3. Graph genus

4. Chordal graph completion

5. Chromatic index

6. Spanning tree parity problem

7. Partial order dimension

8. Precedence constrained 3-processor
scheduling

9. Linear Programming

10. Total unimodularity

11. Composite number

12. Minimum length triangulation

2
𝑂 log 𝑛 3

 time
[Babai 2017]

12

List of Open Problems by Garey and Johnson 1979

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

1. Graph Isomorphism

2. Subgraph Homeomorphism

3. Graph genus

4. Chordal graph completion

5. Chromatic index

6. Spanning tree parity problem

7. Partial order dimension

8. Precedence constrained 3-processor
scheduling

9. Linear Programming

10. Total unimodularity

11. Composite number

12. Minimum length triangulation

2
𝑂 log 𝑛 3

 time
[Babai 2017]

2𝑂 𝑛⋅log 𝑛 time
This talk

13

Why Focus on Subexponential?

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

• Typically for NP-complete problems with

o geometrical properties (planar graph, Euclidean settings)

o Parameters > number of vertices (edge deletion to …)

• Stepping stone towards (quasi)-polynomial

(e.g. Parity Games, Independent Set on Pk-free graphs)

14

Literature overview 𝑷𝒎 𝒑𝒓𝒆𝒄, 𝒑𝒋 = 𝟏 𝑪𝐦𝐚𝐱

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints15

Literature overview 𝑷𝒎 𝒑𝒓𝒆𝒄, 𝒑𝒋 = 𝟏 𝑪𝐦𝐚𝐱

• NP-complete1 𝑚 = #machines given as input
1Jeffrey D. Ullman. NP-complete scheduling problems. Journal of Computer and System sciences, 10(3):384–393, 1975.

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints16

Literature overview 𝑷𝒎 𝒑𝒓𝒆𝒄, 𝒑𝒋 = 𝟏 𝑪𝐦𝐚𝐱

• NP-complete1 𝑚 = #machines given as input
1Jeffrey D. Ullman. NP-complete scheduling problems. Journal of Computer and System sciences, 10(3):384–393, 1975.

• Poly-time solvable2 for 𝑚 = 2
2M. Fujii, T. Kasami, and K. Ninomiya. Optimal sequencing of two equivalent processors. SIAM Journal on Applied Mathematics,
17(4):784–789, 1969.

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints17

Literature overview 𝑷𝒎 𝒑𝒓𝒆𝒄, 𝒑𝒋 = 𝟏 𝑪𝐦𝐚𝐱

• NP-complete1 𝑚 = #machines given as input
1Jeffrey D. Ullman. NP-complete scheduling problems. Journal of Computer and System sciences, 10(3):384–393, 1975.

• Poly-time solvable2 for 𝑚 = 2
2M. Fujii, T. Kasami, and K. Ninomiya. Optimal sequencing of two equivalent processors. SIAM Journal on Applied Mathematics,
17(4):784–789, 1969.

• ???? for 𝑚 ≥ 3 constant OPEN3

3Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H.
Freeman, 1979.

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints18

Literature overview 𝑷𝒎 𝒑𝒓𝒆𝒄, 𝒑𝒋 = 𝟏 𝑪𝐦𝐚𝐱

• NP-complete1 𝑚 = #machines given as input
1Jeffrey D. Ullman. NP-complete scheduling problems. Journal of Computer and System sciences, 10(3):384–393, 1975.

• Poly-time solvable2 for 𝑚 = 2
2M. Fujii, T. Kasami, and K. Ninomiya. Optimal sequencing of two equivalent processors. SIAM Journal on Applied Mathematics,
17(4):784–789, 1969.

• ???? for 𝑚 ≥ 3 constant OPEN3

3Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H.
Freeman, 1979.

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

Before:

𝑃𝑚 𝑝𝑟𝑒𝑐, 𝑝𝑗 = 1 𝐶max can be solved in O 2𝑛 ⋅ 𝑛
𝑚

 time.

19

Our Result

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

Our result:

𝑃𝑚 𝑝𝑟𝑒𝑐, 𝑝𝑗 = 1 𝐶max can be solved in 1 +
𝑛

𝑚

𝑂 𝑛𝑚
time.

20

Our Result

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

Our result:

𝑃𝑚 𝑝𝑟𝑒𝑐, 𝑝𝑗 = 1 𝐶max can be solved in 1 +
𝑛

𝑚

𝑂 𝑛𝑚
time.

Corollary:

𝑃3 𝑝𝑟𝑒𝑐, 𝑝𝑗 = 1 𝐶max can be solved in 2𝑂 𝑛 ⋅ log 𝑛 time.

21

Our Result

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

Our result:

𝑃𝑚 𝑝𝑟𝑒𝑐, 𝑝𝑗 = 1 𝐶max can be solved in 1 +
𝑛

𝑚

𝑂 𝑛𝑚
time.

Corollary:

𝑃3 𝑝𝑟𝑒𝑐, 𝑝𝑗 = 1 𝐶max can be solved in 2𝑂 𝑛 ⋅ log 𝑛 time.

Two ways to explain, but main insights:
1. Use of look-up table
2. Keeping track of number of isolated vertices
3. Finding win-win strategy

22

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

a

b

c

d

e

f

Definitions

Precedence Constraints Graph 𝐺

23

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

a

b

c

d

e

f

Definitions

Precedence Constraints Graph 𝐺

G ⇒ partial order:
• 𝑖 ≺ 𝑗 if 𝑖, 𝑗 ∈ 𝐺

24

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

a

b

c

d

e

f

Definitions

Precedence Constraints Graph 𝐺

G ⇒ partial order:
• 𝑖 ≺ 𝑗 if 𝑖, 𝑗 ∈ 𝐺

Definitions: Let 𝐴 be a set of jobs.
pred 𝐴 =

succ 𝐴 =

25

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

a

b

c

d

e

f

Definitions

Precedence Constraints Graph 𝐺

G ⇒ partial order:
• 𝑖 ≺ 𝑗 if 𝑖, 𝑗 ∈ 𝐺

Definitions: Let 𝐴 be a set of jobs.
pred[𝐴] = 𝑥 ∃ 𝑎 ∈ 𝐴 𝑠. 𝑡. 𝑥 ≼ 𝑎}

succ[𝐴] = 𝑥 ∃ 𝑎 ∈ 𝐴 𝑠. 𝑡. 𝑥 ≽ 𝑎}

26

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

a

b

c

d

e

f

Definitions

Precedence Constraints Graph 𝐺

G ⇒ partial order:
• 𝑖 ≺ 𝑗 if 𝑖, 𝑗 ∈ 𝐺

Definitions: Let 𝐴 be a set of jobs.
pred[𝐴] = 𝑥 ∃ 𝑎 ∈ 𝐴 𝑠. 𝑡. 𝑥 ≼ 𝑎}
sinks 𝐴 = max{𝐴}
succ[𝐴] = 𝑥 ∃ 𝑎 ∈ 𝐴 𝑠. 𝑡. 𝑥 ≽ 𝑎}
sources 𝐴 = min 𝐴

27

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

a

b

c

d

e

f

Definitions

Precedence Constraints Graph 𝐺

G ⇒ partial order:
• 𝑖 ≺ 𝑗 if 𝑖, 𝑗 ∈ 𝐺

c

d

Definitions: Let 𝐴 be a set of jobs.
pred[𝐴] = 𝑥 ∃ 𝑎 ∈ 𝐴 𝑠. 𝑡. 𝑥 ≼ 𝑎}
sinks 𝐴 = max{𝐴}
succ[𝐴] = 𝑥 ∃ 𝑎 ∈ 𝐴 𝑠. 𝑡. 𝑥 ≽ 𝑎}
sources 𝐴 = min 𝐴

Ex. {𝑐, 𝑑}, then:

28

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

a

b

c

d

e

f

Definitions

Precedence Constraints Graph 𝐺

G ⇒ partial order:
• 𝑖 ≺ 𝑗 if 𝑖, 𝑗 ∈ 𝐺

c

d

Definitions: Let 𝐴 be a set of jobs.
pred[𝐴] = 𝑥 ∃ 𝑎 ∈ 𝐴 𝑠. 𝑡. 𝑥 ≼ 𝑎}
sinks 𝐴 = max{𝐴}
succ[𝐴] = 𝑥 ∃ 𝑎 ∈ 𝐴 𝑠. 𝑡. 𝑥 ≽ 𝑎}
sources 𝐴 = min 𝐴

Ex. {𝑐, 𝑑}, then:
• pred {𝑐, 𝑑} = 𝑎, 𝑐, 𝑑

29

a

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

a c

d

Definitions G ⇒ partial order:
• 𝑖 ≺ 𝑗 if 𝑖, 𝑗 ∈ 𝐺

ca

d

Definitions: Let 𝐴 be a set of jobs.
pred[𝐴] = 𝑥 ∃ 𝑎 ∈ 𝐴 𝑠. 𝑡. 𝑥 ≼ 𝑎}
sinks 𝐴 = max{𝐴}
succ[𝐴] = 𝑥 ∃ 𝑎 ∈ 𝐴 𝑠. 𝑡. 𝑥 ≽ 𝑎}
sources 𝐴 = min 𝐴

Ex. {𝑐, 𝑑}, then:
• pred {𝑐, 𝑑} = 𝑎, 𝑐, 𝑑
• sinks 𝑎, 𝑐, 𝑑 = 𝑐, 𝑑

30

Precedence Constraints Graph 𝐺

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

a

b

c

d

e

f

Definitions

Precedence Constraints Graph 𝐺

G ⇒ partial order:
• 𝑖 ≺ 𝑗 if 𝑖, 𝑗 ∈ 𝐺

c

e

f

d

Definitions: Let 𝐴 be a set of jobs.
pred[𝐴] = 𝑥 ∃ 𝑎 ∈ 𝐴 𝑠. 𝑡. 𝑥 ≼ 𝑎}
sinks 𝐴 = max{𝐴}
succ[𝐴] = 𝑥 ∃ 𝑎 ∈ 𝐴 𝑠. 𝑡. 𝑥 ≽ 𝑎}
sources 𝐴 = min 𝐴

Ex. {𝑐, 𝑑}, then:
• pred {𝑐, 𝑑} = 𝑎, 𝑐, 𝑑
• sinks 𝑎, 𝑐, 𝑑 = 𝑐, 𝑑
• succ {𝑐, 𝑑} = 𝑐, 𝑑, 𝑒, 𝑓

31

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

c

d

e

f

Definitions

Precedence Constraints Graph 𝐺

G ⇒ partial order:
• 𝑖 ≺ 𝑗 if 𝑖, 𝑗 ∈ 𝐺

c

e

f

d

Definitions: Let 𝐴 be a set of jobs.
pred[𝐴] = 𝑥 ∃ 𝑎 ∈ 𝐴 𝑠. 𝑡. 𝑥 ≼ 𝑎}
sinks 𝐴 = max{𝐴}
succ[𝐴] = 𝑥 ∃ 𝑎 ∈ 𝐴 𝑠. 𝑡. 𝑥 ≽ 𝑎}
sources 𝐴 = min 𝐴

Ex. {𝑐, 𝑑}, then:
• pred {𝑐, 𝑑} = 𝑎, 𝑐, 𝑑
• sinks 𝑎, 𝑐, 𝑑 = 𝑐, 𝑑
• succ {𝑐, 𝑑} = 𝑐, 𝑑, 𝑒, 𝑓
• sources 𝑐, 𝑑, 𝑒, 𝑓 = 𝑐, 𝑑

succ 𝐴 = succ 𝐴 ∖ 𝐴

32

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

a

b

c

d

e

f

Definitions

Precedence Constraints Graph 𝐺

33

Def: A chain is a set 𝐴 whose elements are
pairwise comparable.
Def: The height ℎ(𝐺) is the size of the
longest chain (in #arcs).

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

a

b

c

d

e

f

Definitions

Precedence Constraints Graph 𝐺

34

Def: A chain is a set 𝐴 whose elements are
pairwise comparable.
Def: The height ℎ(𝐺) is the size of the
longest chain (in #arcs).

In the example ℎ 𝐺 = 2

If ℎ 𝐺 = 0 , then
there are no arcs

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

a

b

c

d

e

f

Definitions

Precedence Constraints Graph 𝐺

Examples of antichains in 𝐺
✓ 𝑏, 𝑐, 𝑑
✓ 𝑏, 𝑐
✓ 𝑑, 𝑓

Def: An antichain is a set 𝐴 whose elements
are pairwise incomparable.

35

Def: A chain is a set 𝐴 whose elements are
pairwise comparable.
Def: The height ℎ(𝐺) is the size of the
longest chain (in #arcs).

In the example ℎ 𝐺 = 2

Jobs in one timeslot
always form an antichain

Zero-Adjusted Schedule (D&W)

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

time

m
ach

in
es

1 2 3 𝑇

36

Zero-Adjusted Schedule (D&W)

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

time

m
ach

in
es

1 2 3 𝑇𝑧

Assumption: 𝑛 = 3 ⋅ 𝑇

Let 𝑧 ∈ 1, 𝑇 be the first moment with a sink.
D&W: W.m.a. Each job 𝑥 after z is a sink or a successor of a job at time z.

≈ succ 𝐻 ∪ sinks𝐽 ∖ (succ 𝐻 ∪ sinks)
𝐻

= sinks(𝐽)No sinks

37

Dolev and Warmuth

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

Sep 𝐽 ≔ { 𝐻 ⊆ 𝐽 s.t.
(1) 𝐻 ≤ 3,
(2) 𝐻 is antichain,
(3) 𝐻 ∖ sinks 𝐽 < 3}

left 𝐽, 𝐻 ≔ 𝐽 ∖ succ H ∪ sinks 𝐽

right 𝐽, 𝐻 ≔ 𝐽 ∩ (succ(𝐻) ∪ sinks 𝐽 ∖ 𝐻

Schedule(𝐽):

1. if ℎ 𝐺 𝐽 = 0 (i.e. sinks 𝐽 = 𝐽) return
𝐽

3

2. else return min
𝐻∈Sep(𝐽)

Schedule left 𝐽, 𝐻 + Schedule right 𝐽, 𝐻 + 1

38

Recursive

Each subproblem: height decreases by ≥ 1!

Branching Tree

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints39

Schedule left 𝐽, 𝐻 Schedule right 𝐽, 𝐻

≤ 2 ⋅ 𝑛3 direct
descendants

Branching Tree

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints40

⋯ ⋯

≤ 2 ⋅ 𝑛3 direct
descendants

≤ ℎ 𝐺
 levels

⋯

⋯

= base case (ℎ = 0)

Number of subproblems:

2𝑛3 ℎ(𝐺) = 𝑛𝑂 ℎ 𝐺

Total runtime:

𝑛𝑂 ℎ 𝐺

ℎ decreases

D&W
Schedule(𝐽):

1. if ℎ 𝐺 𝐽 = 0 return
𝐽

3

2. for each 𝐻 ∈ Sep(𝐽) do:

3. OPT left 𝐽, 𝐻 ≔ Schedule left 𝐽, 𝐻

4. OPT right 𝐽, 𝐻 ≔ Schedule(right 𝐽, 𝐻)

5. OPT 𝐽 := min
𝐻∈Sep(𝐽)

OPT left 𝐽, 𝐻 + OPT right 𝐽, 𝐻 + 1

6. Return OPT[𝐽]

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

Sep 𝐽 ≔ { 𝐻 ⊆ 𝐽 s.t.
(1) 𝐻 ≤ 3,
(2) 𝐻 is antichain,
(3) 𝐻 ∖ sinks 𝐽 < 3}

left 𝐽, 𝐻 ≔ 𝐽 ∖ succ H ∪ sinks 𝐽

right 𝐽, 𝐻 ≔ 𝐽 ∩ (succ(𝐻) ∪ sinks 𝐽 ∖ 𝐻

41

D&W + LookUp Table
Schedule(𝐽):

1. return LUT[𝐽] if it was already set

2. if ℎ 𝐺 𝐽 = 0 return
𝐽

3

3. for each 𝐻 ∈ Sep(𝐽) do:

4. OPT left 𝐽, 𝐻 ≔ Schedule left 𝐽, 𝐻

5. OPT right 𝐽, 𝐻 ≔ Schedule(right 𝐽, 𝐻)

6. OPT 𝐽 := min
𝐻∈Sep(𝐽)

OPT left 𝐽, 𝐻 + OPT right 𝐽, 𝐻 + 1

7. LUT[𝐽] = OPT[𝐽]

8. Return OPT[𝐽]

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

Sep 𝐽 ≔ { 𝐻 ⊆ 𝐽 s.t.
(1) 𝐻 ≤ 3,
(2) 𝐻 is antichain,
(3) 𝐻 ∖ sinks 𝐽 < 3}

left 𝐽, 𝐻 ≔ 𝐽 ∖ succ H ∪ sinks 𝐽

right 𝐽, 𝐻 ≔ 𝐽 ∩ (succ(𝐻) ∪ sinks 𝐽 ∖ 𝐻

Too many different problems!

42

What to store?

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

a

b

c

d

e

f

g

i

k

l

h

j

m

43

What to store?

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

a

b

c

d

e

f

g

i

k

l

h

j

m Isolated vertices

44

What to store?

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

a

b

c

d

e

f

g

i

k

h

j

45

What to store?

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

a

b

c

d

e

f

g

i

k

h

j

core(𝐽)

46

D&W + LookUp Table
Schedule(𝐽):

1. return LUT[core 𝐽 , #iso(𝐽)] if it was already set

2. if 𝐽 = ∅ return 0

3. for each 𝐻 ∈ Sep(𝐽) do:

4. OPT left 𝐽, 𝐻 ≔ Schedule left 𝐽, 𝐻

5. OPT right 𝐽, 𝐻 ≔ Schedule(right 𝐽, 𝐻)

6. OPT 𝐽 := min
𝐻∈Sep(𝐽)

OPT left 𝐽, 𝐻 + OPT right 𝐽, 𝐻 + 1

7. LUT[core 𝐽 , #iso(𝐽)] = OPT[𝐽]

8. Return OPT[𝐽]

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

Sep 𝐽 ≔ { 𝐻 ⊆ 𝐽 s.t.
(1) 𝐻 ≤ 3,
(2) 𝐻 is antichain,
(3) 𝐻 ∖ sinks 𝐽 < 3}

left 𝐽, 𝐻 ≔ 𝐽 ∖ succ H ∪ sinks 𝐽

right 𝐽, 𝐻 ≔ 𝐽 ∩ (succ(𝐻) ∪ sinks 𝐽 ∖ 𝐻

How does this help?

47

Feasible Job sets

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

Let 𝐽 be a feasible set of jobs.

48

1 2 3 4

1 a c f i

2 b d g j

3 e h

time

c

e

f

g

d h

Feasible Job sets

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

Let 𝐽 be a feasible set of jobs.

Jobs 𝐽 can be described as

𝐽 = succ[𝐿] ∩ pred 𝑅

where

𝐿 = minimal elements = sources of 𝐽

𝑅 = maximal elements = sinks of 𝐽

49

1 2 3 4

1 a c f i

2 b d g j

3 e h

time

𝐿

𝑅

c

e

f

g

d h

Feasible Job sets

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

Let 𝐽 be a feasible set of jobs.

Jobs 𝐽 can be described as

𝐽 = succ[𝐿] ∩ pred 𝑅

where

𝐿 = minimal elements = sources of 𝐽

𝑅 = maximal elements = sinks of 𝐽

𝐿

𝑅

b

c

d

e

f

g

k

l

j

m

50

Feasible Job sets

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

Let 𝐽 be a feasible set of jobs.

Jobs 𝐽 can be described as

𝐽 = succ[𝐿] ∩ pred 𝑅

where

𝐿 = minimal elements = sources of 𝐽

𝑅 = maximal elements = sinks of 𝐽

𝐿

𝑅

b

c

d

e

f

g

k

j

2 isolated vertices

𝐜𝐨𝐫𝐞(𝑱)

51

𝐜𝐨𝐫𝐞(𝑱)

Feasible Job sets

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

Let 𝐽 be a feasible set of jobs.

Jobs 𝐽 can be described as

𝐽 = succ[𝐿] ∩ pred 𝑅

where

𝐿 = minimal elements = sources of 𝐽

𝑅 = maximal elements = sinks of 𝐽

𝐿 𝑅

a

b

c

d

e

f

g

k

j

2 isolated vertices

𝐬𝐮𝐜𝐜(𝑳)

𝐿

𝐜𝐨𝐫𝐞(𝑱)

52

𝐜𝐨𝐫𝐞(𝑱)

Going to the right

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

time

m
ach

in
es

1 2 3 𝑇𝑧1

Assumption: 𝑛 = 3 ⋅ 𝑇

= 𝑅

53

Going to the right

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

time

m
ach

in
es

1 2 3 𝑇𝑧1

Assumption: 𝑛 = 3 ⋅ 𝑇

≈ succ 𝐻1 ∪ sinks𝐽 ∖ (succ 𝐻1 ∪ sinks)
𝐻1

= 𝑅

54

core 𝐽1 = succ 𝐻1 ∩ pred[𝑅]
Isolated vertex

w.r.t. 𝐽1

𝐻1 ≤ 3

Going to the right

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

time

m
ach

in
es

1 2 3 𝑇𝑧1

Assumption: 𝑛 = 3 ⋅ 𝑇

𝐽 ∖ (succ 𝐻1 ∪ sinks)
𝐻1

= 𝑅

55

𝐻2

≈ succ 𝐻2 ∪ sinks

core 𝐽2 = succ 𝐻2 ∩ pred[𝑅]
Isolated vertex

w.r.t. 𝐽2

𝑧2

𝐻2 ≤ 3

Going to the right

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

time

m
ach

in
es

1 2 3 𝑇

Assumption: 𝑛 = 3 ⋅ 𝑇

𝐽 ∖ (succ 𝐻1 ∪ sinks)
𝐻1

= 𝑅

56

𝐻2
≈ succ 𝐻3

∪ sinks

𝐻3

core 𝐽3 = succ 𝐻3 ∩ pred[𝑅]Isolated vertex
w.r.t. 𝐽3

𝑧1 𝑧2 𝑧3

𝐻3 ≤ 3

Going to the right

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

time

m
ach

in
es

1 2 3 𝑇𝑧

Assumption: 𝑛 = 3 ⋅ 𝑇

𝐽 ∖ (succ 𝐻1 ∪ sinks)
𝐻1

= 𝑅

57

𝐻2
≈ succ 𝐻3

∪ sinks

𝐻3

core 𝐽3 = succ 𝐻3 ∩ pred[𝑅]Isolated vertex
w.r.t. 𝐽3

1. Every right subproblem has 𝑳 ≤ 𝟑
2. There are ≤ 𝑛3+1 different `right descendants’

𝑧1 𝑧2 𝑧3

`right descendant’
=

subproblem achieved by
consecutively going into right

subproblems

Going to the left

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

time

m
ach

in
es

1 2 3 𝑇𝑧

Assumption: 𝑛 = 3 ⋅ 𝑇

= 𝑅

58

Going to the left

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

time

m
ach

in
es

1 2 3 𝑇𝑧

Assumption: 𝑛 = 3 ⋅ 𝑇

≈ succ 𝐻1 ∪ sinks𝐽 ∖ (succ 𝐻1 ∪ sinks)
𝐻1

= 𝑅

59

core = 𝐬𝐮𝐜𝐜 𝑳 ∩ pred[𝑅new]

1. Every left subproblem has 𝑳 ≤ 𝟑
2. Problem size decreases by |𝑹|

Win-Win strategy

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

Invariant: 𝐽 = succ 𝐿 ∩ pred 𝑅 ∪ 𝑘 isolated vertices, 𝐿 ≤ 3

≤ 𝑛3
≤ 𝑛

Win-win
strategy

Case 𝑅 ≤ 𝑛 Case 𝑅 > 𝑛

⇒ only 𝑛
𝑛

= 2𝑂 𝑛⋅log 𝑛 different R’s In next left step: make 𝑛 jobs progress!

60

Branching Tree

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints61

Either already in Lookup Table:
- Base case

Or not yet in Lookup Table:
- View as its `own tree’

- ⇒ 𝑛 𝑛 such trees

= 𝑅 ≤ 𝑛

= 𝑅 > 𝑛

Branching Tree

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints62

Either already in Lookup Table:
- Base case

Or not yet in Lookup Table:
- View as its `own tree’

- ⇒ 𝑛 𝑛 such trees

= 𝑅 ≤ 𝑛

= 𝑅 > 𝑛

Branching Tree

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints63

Either already in Lookup Table:
- Base case

Or not yet in Lookup Table:
- View as its `own tree’

- ⇒ 𝑛𝑂 𝑛 such trees

= 𝑅 ≤ 𝑛

= 𝑅 > 𝑛

Base case

+

Branching Tree

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

≤ 𝑛4 right
descendants

≤ 𝑛4 ⋅ 𝑛3

`first left’
descendants

64

≥ 𝑛 jobs
progress

⋯

`first left descendant’
=

subproblem achieved by
consecutively going into right
subproblems, then once left

= 𝑅 ≤ 𝑛

= 𝑅 > 𝑛

Branching Tree

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints65

≥ 𝑛 jobs
progress

⋯

≤ 𝑛4 right
descendants

≤ 𝑛4 ⋅ 𝑛3

`first left’
descendants

= 𝑅 ≤ 𝑛

= 𝑅 > 𝑛

Branching Tree

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints66

≥ 𝑛 jobs
progress

⋯

⋯

≤ 𝑛7 2
`second left’
descendants

≤ 𝑛4 right
descendants

≤ 𝑛4 ⋅ 𝑛3

`first left’
descendants

≥ 2 𝑛 jobs
progress

= 𝑅 ≤ 𝑛

= 𝑅 > 𝑛

Branching Tree

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints67

⋯

⋯

≤ 𝑛4 right
descendants

≤ 𝑛4 ⋅ 𝑛3

`first left’
descendants

= 𝑅 ≤ 𝑛

= 𝑅 > 𝑛

Branching Tree

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints68

⋯

⋯

⋯

⋯

≤ 𝑛4 right
descendants

≤ 𝑛4 ⋅ 𝑛3

`first left’
descendants

≤ 𝑛 levels
= 𝑅 ≤ 𝑛

= 𝑅 > 𝑛

Branching Tree

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints69

⋯

⋯

⋯

⋯

≤ 𝑛4 right
descendants

≤ 𝑛4 ⋅ 𝑛3

`first left’
descendants

≤ 𝑛 levels

Number of subproblems in this tree:

𝑛7 𝑛 = 𝑛𝑂 𝑛

Total number of different subproblems:

𝑛𝑂 𝑛 ⋅ 𝑛𝑂 𝑛 = 2𝑂 𝑛⋅log 𝑛

= 𝑅 ≤ 𝑛

= 𝑅 > 𝑛

Algorithm
Schedule(𝐽):

1. return LUT[core 𝐽 , #iso(𝐽)] if it was already set

2. if 𝐽 = ∅ return 0

3. for each 𝐻 ∈ Sep(𝐽) do:

4. OPT left 𝐽, 𝐻 ≔ Schedule left 𝐽, 𝐻

5. OPT right 𝐽, 𝐻 ≔ Schedule(right 𝐽, 𝐻)

6. OPT 𝐽 := min
𝐻∈Sep(𝐽)

OPT left 𝐽, 𝐻 + OPT right 𝐽, 𝐻 + 1

7. LUT[core 𝐽 , #iso(𝐽)] = OPT[𝐽]

8. Return OPT[𝐽]

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

Sep 𝐽 ≔ { 𝐻 ⊆ 𝐽 s.t.
(1) 𝐻 ≤ 3,
(2) 𝐻 is antichain,
(3) 𝐻 ∖ sinks 𝐽 < 3}

left 𝐽, 𝐻 ≔ 𝐽 ∖ succ H ∪ sinks 𝐽

right 𝐽, 𝐻 ≔ 𝐽 ∩ (succ(𝐻) ∪ sinks 𝐽 ∖ 𝐻

Only 2𝑂 𝑛⋅log 𝑛 different
problems encountered

70

Corollaries

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

Our result:

𝑃𝑚 𝑝𝑟𝑒𝑐, 𝑝𝑗 = 1 𝐶max can be solved in 1 +
𝑛

𝑚

𝑂 𝑛𝑚
time.

Corollary 1

𝑃𝑚 𝑝𝑟𝑒𝑐, 𝑝𝑗 = 1 𝐶max can be solved in subexponential time

whenever 𝑚 = 𝑜(𝑛).

Corollary 2

𝑷 𝑝𝑟𝑒𝑐, 𝑝𝑗 = 1 𝐶max can be solved in 1.997𝑛 ⋅ 𝑝𝑜𝑙𝑦(𝑛) time.

71

Conclusion

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints72

Conclusion

Main result:

𝑃3 𝑝𝑟𝑒𝑐, 𝑝𝑗 = 1 𝐶max in 2𝑂 𝑛⋅log 𝑛 time.

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints73

Conclusion

Main result:

𝑃3 𝑝𝑟𝑒𝑐, 𝑝𝑗 = 1 𝐶max in 2𝑂 𝑛⋅log 𝑛 time.

Key idea’s:

1. Use of look-up table

2. Keeping track of core + # isolated vertices

3. Finding win-win strategy using number of sinks

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints74

Open Problems:

• 𝑃3 𝑝𝑟𝑒𝑐, 𝑝𝑗 = 1 𝐶max in quasi-polynomial time?

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints75

Open Problems:

• 𝑃3 𝑝𝑟𝑒𝑐, 𝑝𝑗 = 1 𝐶max in quasi-polynomial time?

• Approximation algorithms, does a PTAS exist (for fixed 𝑚)?
- QPTAS by

▪ Garg 2018

▪ Li, 2021

▪ Das, Wiese, 2022

1 + 𝜀 -approximation in 𝑛
𝑂

𝑚4

𝜀3
log3 log 𝑛

time

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints76

Open Problems:

• 𝑃3 𝑝𝑟𝑒𝑐, 𝑝𝑗 = 1 𝐶max in quasi-polynomial time?

• Approximation algorithms, does a PTAS exist (for fixed 𝑚)?
- QPTAS by

▪ Garg 2018

▪ Li, 2021

▪ Das, Wiese, 2022

1 + 𝜀 -approximation in 𝑛
𝑂

𝑚4

𝜀3
log3 log 𝑛

time

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints77

Thanks for your
attention!

	Slide 1: A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints
	Slide 2: bold italic cap P bold 3 absolute value bold italic p bold italic r bold italic e bold italic c ,, bold italic p sub bold italic j equals bold 1 , end absolute value , bold italic cap C sub bold m bold a. bold x
	Slide 3: bold italic cap P bold 3 absolute value bold italic p bold italic r bold italic e bold italic c ,, bold italic p sub bold italic j equals bold 1 , end absolute value , bold italic cap C sub bold m bold a. bold x
	Slide 4: bold italic cap P bold 3 absolute value bold italic p bold italic r bold italic e bold italic c ,, bold italic p sub bold italic j equals bold 1 , end absolute value , bold italic cap C sub bold m bold a. bold x
	Slide 5: bold italic cap P bold 3 absolute value bold italic p bold italic r bold italic e bold italic c ,, bold italic p sub bold italic j equals bold 1 , end absolute value , bold italic cap C sub bold m bold a. bold x
	Slide 6: bold italic cap P bold 3 absolute value bold italic p bold italic r bold italic e bold italic c ,, bold italic p sub bold italic j equals bold 1 , end absolute value , bold italic cap C sub bold m bold a. bold x
	Slide 7: bold italic cap P bold 3 absolute value bold italic p bold italic r bold italic e bold italic c ,, bold italic p sub bold italic j equals bold 1 , end absolute value , bold italic cap C sub bold m bold a. bold x
	Slide 8: bold italic cap P bold 3 absolute value bold italic p bold italic r bold italic e bold italic c ,, bold italic p sub bold italic j equals bold 1 , end absolute value , bold italic cap C sub bold m bold a. bold x
	Slide 9: List of Open Problems by Garey and Johnson 1979
	Slide 10: List of Open Problems by Garey and Johnson 1979
	Slide 11: List of Open Problems by Garey and Johnson 1979
	Slide 12: List of Open Problems by Garey and Johnson 1979
	Slide 13: List of Open Problems by Garey and Johnson 1979
	Slide 14: Why Focus on Subexponential?
	Slide 15: Literature overview bold italic cap P bold italic m absolute value bold italic p bold italic r bold italic e bold italic c ,, bold italic p sub bold italic j equals bold 1 , end absolute value , bold italic cap C sub bold m bold a. bold x
	Slide 16: Literature overview bold italic cap P bold italic m absolute value bold italic p bold italic r bold italic e bold italic c ,, bold italic p sub bold italic j equals bold 1 , end absolute value , bold italic cap C sub bold m bold a. bold x
	Slide 17: Literature overview bold italic cap P bold italic m absolute value bold italic p bold italic r bold italic e bold italic c ,, bold italic p sub bold italic j equals bold 1 , end absolute value , bold italic cap C sub bold m bold a. bold x
	Slide 18: Literature overview bold italic cap P bold italic m absolute value bold italic p bold italic r bold italic e bold italic c ,, bold italic p sub bold italic j equals bold 1 , end absolute value , bold italic cap C sub bold m bold a. bold x
	Slide 19: Literature overview bold italic cap P bold italic m absolute value bold italic p bold italic r bold italic e bold italic c ,, bold italic p sub bold italic j equals bold 1 , end absolute value , bold italic cap C sub bold m bold a. bold x
	Slide 20: Our Result
	Slide 21: Our Result
	Slide 22: Our Result
	Slide 23: Definitions
	Slide 24: Definitions
	Slide 25: Definitions
	Slide 26: Definitions
	Slide 27: Definitions
	Slide 28: Definitions
	Slide 29: Definitions
	Slide 30: Definitions
	Slide 31: Definitions
	Slide 32: Definitions
	Slide 33: Definitions
	Slide 34: Definitions
	Slide 35: Definitions
	Slide 36: Zero-Adjusted Schedule (D&W)
	Slide 37: Zero-Adjusted Schedule (D&W)
	Slide 38: Dolev and Warmuth
	Slide 39: Branching Tree
	Slide 40: Branching Tree
	Slide 41: D&W
	Slide 42: D&W + LookUp Table
	Slide 43: What to store?
	Slide 44: What to store?
	Slide 45: What to store?
	Slide 46: What to store?
	Slide 47: D&W + LookUp Table
	Slide 48: Feasible Job sets
	Slide 49: Feasible Job sets
	Slide 50: Feasible Job sets
	Slide 51: Feasible Job sets
	Slide 52: Feasible Job sets
	Slide 53: Going to the right
	Slide 54: Going to the right
	Slide 55: Going to the right
	Slide 56: Going to the right
	Slide 57: Going to the right
	Slide 58: Going to the left
	Slide 59: Going to the left
	Slide 60: Win-Win strategy
	Slide 61: Branching Tree
	Slide 62: Branching Tree
	Slide 63: Branching Tree
	Slide 64: Branching Tree
	Slide 65: Branching Tree
	Slide 66: Branching Tree
	Slide 67: Branching Tree
	Slide 68: Branching Tree
	Slide 69: Branching Tree
	Slide 70: Algorithm
	Slide 71: Corollaries
	Slide 72: Conclusion
	Slide 73: Conclusion
	Slide 74: Conclusion
	Slide 75: Open Problems:
	Slide 76: Open Problems:
	Slide 77: Open Problems:

