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Train Scheduling: Two basic versions

 Operational (real-time): train rescheduling (dispatching)
 Tactical/Strategical: train timetabling
1 Train scheduling: a job-shop scheduling problem

1 Job-shop scheduling problem arising in other applications
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[15:50:01] CLU1585 type: C525 call: CLU1585 gate: P45 TOBT: 15:52:21 TTOT: 16:05:00 Gate:
[15:50:02] BER503 type: F100 call: BER503 gate: P44 TOBT: 15:57:37 TTOT: 16:05:00 Gate: P,
15:50:03] BERS05 type: A320 call: BERS05 gate: G35 TOBT: 16:00:27 TTOT: 16:10:00 Gate: G
15:50:04] DLH3WY type: CRJ2 call: DLH3WY gate: P46 TOBT: 16:00:41 TTOT: 16:05:00 Gate
15:50:05] DLHO55 type: A320 call: DLHO55 gate: G38 TOBT: 16:00:53 TTOT: 16:05:00 Gate: C
15:50:06] BER66Z type: B738 call: BER66Z gate: G40 TOBT: 16:08:05 TTOT: 16:10:00 Gate: (
15:50:07] DLH3FP type: CRJ2 call: DLH3FP gate: P47 TOBT: 16:10:24 TTOT: 16:15:00 Gate: F
15:50:08] DLHEUJ type: B733 call: DLHEUJ gate: P52 TOBT: 16:14:57 TTOT: 16:20:00 Gate: F
15:50:09] BER8OW type: B738 call: BER80OW gate: G41 TOBT: 16:16:08 TTOT: 16:25:00 Gate
15:50:10] DLH4824 type: AT45 call: DLH4824 gate: P51 TOBT: 16:18:19 TTOT: 16:30:00 Gate
15:50:11] DLHO87 type: B733 call: DLH087 gate: P54 TOBT: 16:21:05 TTOT: 16:20:00 Gate: P
15:50:12] BER724 type: B737 call: BER724 gate: P55 TOBT: 16:21:56 TTOT: 16:30:00 Gate: P
15:50:13] A: BER561K D: BER633 type: B733 call: BER633 gate: G04 TOBT: 16:24:25 TTOT: |
15:50:14] DAT42WU type: RJ1H call: DAT42WU gate: P48 TOBT: 16:25:43 TTOT: 16:30:00 G
15:50:15] A: DLH5CK D: DLH77X type: B735 call: DLH77X gate: G81 TOBT: 16:25:54 TTOT: 1
15:50:16] DLHO21 type: A321 call: DLH021 gate: P53 TOBT: 16:29:39 TTOT: 16:40:00 Gate: P -
15:50:17] KLM36B type: F70 call: KLM36B gate: P65 TOBT: 16:30:00 TTOT: 16:45:00 Gate: P€
15:50:18] DLH74C type: B733 call: DLH74C gate: P63 TOBT: 16:32:10 TTOT: 16:40:00 Gate: F
15:50:19] DLH3RT type: CRJ2 call: DLH3RT gate: P61 TOBT: 16:32:33 TTOT: 16:35:00 Gate:
15:50:20] HLX4W type: B733 call: HLX4W gate: P62 TOBT: 16:33:08 TTOT: 16:35:00 Gate: P¢
15:50:21] A: GWI7SY D: GWI27H type: A315 call: GWI27H gate: G38 TOBT: 16:37:24 TTOT: 1
15:50:22] A: DLH4UX D: DLHAWA type: A306 call: DLHAWA gate: G06 TOBT: 16:35:09 TTOT
15:50:23] DLH8EN type: CRJ7 call: DLH8EN gate: P73 TOBT: 16:40:24 TTOT: 16:50:00 Gate:
15:50:24] MAK311 type: B733 call: MAK311 gate: P64 TOBT: 16:40:25 TTOT: 16:45:00 Gate: F
15:50:25] AFR2211 type: A320 call: AFR2211 gate: P71A TOBT: 16:46:27 TTOT: 16:50:00 Gat(
15:50:26] HLX8HD type: B737 call: HLX8HD gate: G42 TOBT: 16:46:38 TTOT: 16:50:00 Gate:
15:50:27] A: DLH2CL D: DLH6CP type: CRJ2 call: DLHECP gate: P45 TOBT: 16:46:57 TTOT: 1
15:50:28] A: DLH4KY D: DLH1HV type: CRJ2 call: DLH1HV gate: P46 TOBT: 16:49:01 TTOT:
15:50:29] EIN333 type: A320 call: EIN393 gate: GO7 TOBT: 16:50:09 TTOT: 16:55:00 Gate: GO
15:50:30] A: FINB55K D: FIN856K type: E170 call: FIN856K gate: P47 TOBT: 16:50:37 TTOT: 1
15:50:31] A: DLH5CK D: DLH77X type: B735 call: DLH5CK gate: G81 runway: RW23 TLDT: 15
15:50:32] A: BER561K D: BER633 type: B733 call: BER561K gate: G04 runway: RW23 TLDT: -
15:50:33] HBVNV type: LJ60 call: HBVNV gate: P44 unway: RW23 TLDT: 16:05:07 Gate: P44
15:50:34] A: DLH4UX D: DLH4WA type: A306 call: DLH4UX gate: GO6 runway: RW23 TLDT: 1
15:50:35] A: GWI79Y D: GWI27H type: A319 call: GWI7SY gate: G38 unway: RW23 TLDT: 16
15:50:36] A: DLH2CL D: DLHECP type: CRJ2 call: DLH2CL gate: P45 unway: RW23 TLDT: 16
15:50:37] A: DLH4KY D: DLH1HV type: CRJ2 call: DLH4KY gate: P46 runway: RW23 TLDT: 1¢
15:50:38] A: FIN855K D: FIN856K type: E170 call: FIN855K gate: P47 unway: RW23 TLDT: 16

[_| Showlogtime | | Show simulated time

l «. Name fitter: | pause | - |T| 16:28:10
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Network representation
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[ The tracks of the railway are segmented into elementary "blocks"

] Each block can accommodate at most one train at a time



Modelling train movement

1 A train runs through a sequence of blocks (its route)

d tcil is the time train i enters block g (schedule variable)

O If t, is the time the train enters a block, and t,, when it enters next one, then
t, —ty, = lyyp,

where [,,,, is the minimum running for the train through the block

10



The route graph

 The train movement represented by route graph

(J Nodes correspond to (the event) entering a block section.

 Edges represent time precedence constraints té

—ty =14,

11



A route graph in Oslo S
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The time origin

tl t} th tg th
N

1 Event d starting not before time A: t; —t, = 30

t, —t, = 10
, —tg = —10
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U Event a starting at time A: t, —t, = 10 — {t



(potential) Conflicts
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 Trains compete for the same blocks

 Either train j enters block g before j enters d: tgl — té >0

3 Or train j enters block ¢ before i enters d: t); — tg =0

té — té =0 \/ té — té >0 Disjunctive constraint

14



Disjunctive arc
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rain scheduling problem

 Network N, set trains I (with current position) and a wanted timetable T.
 T!is the arrival time of train i at station s.

WANT

U Find a schedule t* satisfying all fixed and disjunctive precedence constraints.
O Minimize f(t*) (deviation from T)

PS. Fixed route case.



On the objective function f(t)

 Typically computed in special events, i.e. the arrival time at some stations V* c V

d f(t) = Xyev- fuce,) is often separable

4 Typically f,(t,,) is non-decreasing.
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Disjunctive formulation

min f(t)
t, —ty = Ly (u,v) EE
ty —t, =0 OR t,—t, =0 {(v,w),(z,u)} €D
t RV

J I/ set of events (v € V is a certain train entering a certain block or the origin),

E set of precedence constraints, D set of disjunctive precedence constraints

 Train scheduling is a job-shop scheduling problem with blocking and no-wait

constraints, Mascis & Pacciarelli (2002)



Disjunctive graph ¢ =, EuED)

N N4 Y f
\ 3\/( min (£
\\ /// //A\\ tv_tuzluv (u:U)EE
N e N t,—t,=0OR ty—t, >0 {(w,w),(zu)} €D
~ 7 /7 N\
\\\\ /’// /// \\\
//&\ // \

F———0C

3 V nodes (events), E directed edges, D disjunctive arcs (pairs of "conflict" edges EP)

1 Each conflict edge corrsponds to a specific term in a specific disjunction



Solving the disjunctive problem

()

min f (t)

t, —ty =l (u,v) €EE

ty —t,=00R t,—t, =20 {(v,w),(z,u)} €D

teRY

G = (V,E UED)

 For each disjunction, we must decide which term is satisfied by the solution t
J Equivalent to picking exactly one (conflict) edge for each disjunctive arc

1 The set of conflict edges "picked" up is called (complete) selection.

21



Big-M formulation

min f(t)
Yl t,—t, =1 (u,v) EE
Yow + Yzu = 1 v v v
tw —t, =2—-MA — ypy) ¢ t,—t,=0OR t,—t, =0 {(vyw),(z,u)} €D
ty—t, =—M(1 — y,,,)
R ) t e RY, ye {01}

O Two binary (selection) variables vy, v,,, for each disjunction {(v,w), (z,u)} € D

d And the "big-M trick"!

22



Big-M formulation
min f (t)

Fixed precedence t, —ty, = L,y (u,v) € E

R . tw =ty 2 =M(1 — ypy)
Disjunctive constraints { tlvf— thZ —M(l _ yzi‘s \ {(v, W), (Z, u)} €D

Selection constraints Vow + Veu = 1 )

t e RV, y€{0,1}?P
[ Big-M formulations most used in the literature on train dispatching

1 An alternative: time-indexed formulations (often used in train timetabling)

Def. Feasible selections: ¥ = {y € {0,1}*2: y,,, + v, = 1,{(v,w), (z,u)} € D}

23



Big-M formulation

min f(t)

Fixed precedence t, —ty, = L,y (u,v) EE

tw —t, = —M(1 —
Disjunctive constraints tr:_ t: > —M((l B 33}};‘:3) {(v,w),(z,w)} €D

teERY, yeEY

For a given selection: y € Y let S(¥) be the set of selected terms. The problem becomes:

min {f(t):t, —t, = l, uv € EUS(y),t € RV} Sched(y)

(1 Dual of a min-cost flow problem when f(t) is linear.

24



Benders’ decomposition(s)



Conflict edges

(a) Y - f@ min £ (¢)
.. //,’/U \/{\\ /// ‘\\\ //,’/ t, —t, =L, (w,v) €EE
Yas S~ y\{f\ . \ \ f\gga/"\f” i 22_—%1 - 3;’5) (oW, (2.0} € D
:\_r/é\ ygy \?/ //x\\ ~ % :@ teERY, yevY
\‘;x\ J’vw,/' \ Yo
R \ G = (V,E UEP)

3 Each conflict edge e € EP is associated with a selection variable vy,

 y € Y is the incidence vector of a set S(y) € EP of (conflict) edges

26
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What to do with routing?

[ Add the alternative routing edges ET and binary (routing) variables y,, e € EX

Yab Ybn Yag
........................................................................... g = h
~\
\

\\\ ///.;’gd
//// \\\ycd
h > » d - >
; N\ & N i

1 Extend the set Y: new variables, multicommodity flow and coupling costraints.



Disjunctive graph and scheduling

O For y € Y the disjunctive graph becomes a standard graph G(y) = (V,E U S(¥))

D ——()) =@

Ymv=1

O How does G () relate to the associated
scheduling problem Sched(y)?

Sched(y)

min f (t)

t, —ty = L, uv € EUS(Y)

t e RV

28



Feasibility

Th. 1. For y € Y, Sched(y) has a solution, if and only if G(7) does not contain a

directed cycle C of positive length [(().

¢ = {q), (qu), (wv), (vw), (wr), (r))}

[(C)=104+20+15+5+4+3+3>0

29



Example of infeasible solution

Current time is 09:00

Train / leaves the station at 9:10 (exactly)
Train j can leave the station at any time from now
Suppose j wins the conflict on d

J wins — pick edge (cf, di)

Cycle C = {cjdi, dt o, od’, djcj}, length5>0



Feasible solutions

d y €Y,G(y) no positive directed cycles.

Th. 2. t,, = length of longest path fromotou € V in G(y) is feasible for Sched(y)

w GG =V,EuSH)

Sched(y)

min f(t)

t, —ty, = l,,,uv € EUS(y)

t e RV

31




Optimal solutions
d y €Y,G(Y) no positive dicycles. For u € V, t;; = length of longest ou-path in G (¥)

Th. 3. If f(t) is non-decreasing then t* is an optimal solution for Sched(y)

ty

min f(t)
Sched(¥) t, —ty, = l,,,uv € EUS(y)

teRY

Def. H* (V) longest path tree in G(y) thenlet c(H*) = f(f*) be the cost of H*

32



Scheduling problem for regular f(t)

Find y € Y, such that G () has no positive directed cycles and the cost c(H") of a longest
path tree H* in G (V) is minimized.

.

N
=) ‘5‘0 (m)

333

G(y)




The Path&Cycle formulation

[ This led to a new (Path&Cycle, 2019) formulation without annoying big-M constraints (but
potentially many constraints)

Q Based on disjunctive graph G = (V,E UE?) (G = (V,E U EP U ER))

3 Binary variables y, fore € EP (e € EP U EX),

 One real variable i representig the objective value.

1 Two types of constraints: feasibility and optimality

[ Feasibility constraints correspond to the positive lengths directed cycles of G

1 Optimality constraints correspond to longest path trees of .

34



Feasibility constraints

G = (V,E UED)

Let Ot be the set of positive directed cycles of G = (V,E U EP)

Feasibility constraint =~ YeecpYe = |CP|—1, forC? =EPnC,C € QF

35



Op imality constraints

G =((,EUED)

1 cost of solution

Y+:{yEY: z Ve S|CD|—1,forCD:CnED,CEQ+}

eeCnED

" = {H*(y) longest path tree in G(y):y € Y*}

Optimality cuts n=c(H)(X,cppve —|HP|—1), forHP =HNEP,He"

36



The Path and Cycle formulation
minn
Feasibility — Y,copYe < |CP|—1, for C® =EP n(,C et

Optimality n= C(H)(ZBEHDye — |HD| — 1) , for HP = Hn ED,H e Il*
neRr,  ye{01}F

(J Many constraints: solve by delayed row generation

Problem infeasible — there exists a family (0 € Q% of positive directed cycles
G = (V,E UEP) such every y € Y «contains» at least a cycle in (:

Fory € Y,3CY € O suchthatS(y)nCY = EP n Y

37



An example

Current time is 09:00
Train i must leave at 9:10
Train j must leave at 9:20

G = (V, EU ED) Disjunctive graph representation




Infeasibility proof

1 Problem infeasible: every y € Y
«contains» a cycle in 0 = {C*, C?}:

S(y)NCY =EP NCY, for some CY € Q)




A real-life pilot application



Greater Oslo Area Railway

(1 We can solve the Big-M or P&C formulations for very small instances

J Greater Oslo Area Railway is a combination of one large station

(Oslo S) and 10 municipal lines incident to Oslo S

(1 Almost 1000 trains daily

(1 Need: more decomposition/reformulation




Further decomposition

station line junction microscopic

O One popular decomposition approach is S Zx .i
the so called Macroscopic/Microscopic
decomposition. '< |

macroscopic
(Figure from Hansen and Pachl, Railway Timetable & Operations)

0 Subnetworks (as stations) are collapsed into "capacited" nodes.
0 A solution is found for the collapsed (macroscopic) representation

0 The solution is then extended to the original re-expanded (microscopic) areas



Collapsing Greater Oslo Railway

( Macroscopic solution = arrival and departure time for each train in each station (timetable)

1 Can we extend the macro solution? = For each station, is the timetable feasible?

43



Macroscopic representation of train routes

Microscopic representation

Station1l  Linel  Station2 Line?2 Lineg-1  station g

Macroscopic representation

tiy th
Q (D (D o) Q
sl » 11 > s2 > 12 » s3
,- O N N N2

Station 1 Line track 1
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Block structure of constraint matrix

min f(t1)
At + |BtT |+ 0 <b-— MLyL schedule on the line = macro network
0 + |Cthl+ Dt° <d- MSyS schedule in stations = micro network(s)

yL, y° binary, th, tT, t°real

Constraint matrix with quasi-block structure

Station tracks and line tracks share only timetable variables ¢t

The objective function is onlyin t”

cl, D1 M1
C?,D? M?

Station constraints decompose 3 3
c°,D



Logic Benders' Reformulation

min f(tT)
At"+ Bt < b — MlyL  scheduleontheline | MASTER
0 + CtT+ Dt5 <d—MSyS schedulein stations SLAVE

yE, y° binary, th, tT, t°real

‘ Reformulation

min f(t1)
Att + Bt! <b-— MLyL schedule on the line ]
Cc'tt <d — M'byS logic Benders' cuts J

y = (yL,yS) binary, tl t! real



Solving the Train Scheduling Problem

0 Apply row generation

Macro Problem Solve the current
Line scheduling restricted master
¢ttt yh)

Micro Problem(s)

Station scheduling Solve slave(s)

Logic Benders' cuts

NO

Feasible?

(tL, ¢T,¢5,yL,vy5)  optimal solution



The slave feasibility problem

0 The slave problem decomposes in many independent feasibility problem

Station feasibility problem:

A. Given a station and arrival and departure times for all trains (a timetable), does a
feasible solution (in the station) exist?

B. If the problem is infeasible, what are the constraints to return to the master?

0 We exploit the feasibility conditions of the P&C formulation



Individual station problem

Q Station problem: given arrival times T, T%, ..., departure times T3, T3, ...,
does there exist a feasible solution?

G = (V,E U EP ) disjunctive graph representing problem instance

Y = {y!,¥2, ...} setof (incident vectors of) edge selections

Station problem infeasible:

G contains a family Q. = {C!,C?, ..} of positive lengths
cycles such that every selection y € Y "contains" a cycle, i.e.

SO)NC=EPNC  forsome C' e




Combinatorial Benders' cuts

QO ={Cy,C,,..}. Suppose C € () contains a timetable edge.

Then C contains the origin 0 and exactly two timetable edges.

C timetable cycle

I(C)>0->Ti—T/ +6>0-T,-T, <6

To prevent [(C) > 0 a timetable must satisfy

j .
ty—th =6



Combinatorial Benders' cuts

Q: every selection y € Y “contains” a cycle in ()

QT € Q subset of "timetable" cycles of ()

For C; € Q", t7,t” time variable associated with (the other

endpoint of) the non-positive edge and non-negative edge,

Then, for any feasible timetable £, we must have:

ty —t; =6, ORt, —t; =6, OR..

Again, a disjunction of time precedence constraints!



The full reformulation

min f (t)

t, —ty = Ly (u,v) €EE

_ _ macro problem
other line constraints ...

Viegk ti — tr =6; ar e A logic Benders' cuts
l

t € RV

J Ais the set of all families of timetable cycles (for all stations!)

[ Disjunctions can be linearized by introducing binary variables and big Ms.

52



Dispatching system in Oslo

J We developed a real-time scheduling system for

dispatching trains in Oslo Greater Oslo Region
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