Carnegie
Mellon, rAl

University

Machine Learning for
Scheduling and Resource
Allocation

Ben Moseley

Operations Research
Tepper School of Business, Carnegie Mellon University
Relational-Al

schedulingseminar.com
1

Collaborators

b s

M. Dinitz R. Ravi S.Vassilvitskii

Online Scheduling via Learned Weights. SODA 2020.

Learnable and Instance-Robust Predictions for Matchings, Flows and Load Balancing. ESA 2021
Using Predicted Weights for Ad Delivery. ACDA 2021
Faster Matching via Learned Duals. NeurlPS 2021

Machine Learning Is
Transforming Society

* Has not fundamentally changed combinatorial

algorithms for resource allocation problems

e However, could it?

Optimization Augmented
with Machine Learning

Motivating Example
[Kraska et al. SIGMOD 2018]

* Array of nintegers A

* Over time queries arrive asking if g is in A

2 4/i 11 |16 | 22| 37 | 38|44 | 88 |89 |93 |94 | 95| 96 | 97 | 98

\/\/

Motivating Example

* Array of nintegers A

* Over time queries arrive asking if g is in A

O(log n) 2 4/i 11 |16 | 22| 37 | 38|44 | 88 |89 |93 |94 | 95| 96 | 97 | 98

lookup x__/
time \/

Motivating Example

e Train a predictor h(qg) to predict where g is in the array
e Estimates where the integer is based on prior queries
e Could be wrong, but hopefully not too far off

e Use doubling binary search from prediction

Motivating Example

o Analysis

« Let#n be the value of |h(qg) - OPT(qg)|, the error in the
prediction

« Runtime is O(log 7)
e Need to be careful about overhead of the prediction

« Can make this work in practice

_earning Augmentead
Algorithm

Run time binary search O(log n)

Run time prediction O(log 7)

Perfect predictions give constant lookup
Worst case is the same as the best classical algorithm
* Gracefully degrades to the worst case

Omitted empirical results show predictions using little space
can give much faster lookups

_earning Augmentead
Algorithms

e Punchline:

 Machine learning can be combined with
classical algorithms to obtain better results

e (GGives us new widely applicable models for
beyond worst-case analysis

10

Worst-Case Analysis

New

Instance
Adversary >| Algorithm

[

Evaluate performance
on worst instance

11

_earning Augmentead
Algorithms

Distribution
over Typical
Instances

Training | t
nstance
Sample Evaluate
performa nce!

L Learning
earming Prediction Augmented
Algorithm Algorithm

12

Learning Augmentead
Algorithms

What parameter
should be
predicted?

Distribution
over Typical
Instances
Training
Sample Algorithmically how

should we use the

prediction?

Learning Learning
: Prediction Augmented
Algorithm » AI%orithm

13

Learning Augmentead
Algorithms

Can the S What parameter
parameter be Distribution should be
learned? over Typical predicted?

Instances

Training
Sample

Learning Learning
_ Prediction Augmented
Algorithm » AI% orithm

Algorithmically how
should we use the
prediction?

14

Current Status

==L Desirable Analysis
Framework

* Existence: Predictions should allow the algorithm to go beyond worst-case
bounds

* Location in the array
* What to predict is often the main question

. . Algorithms are robust to minor changes in the problem input
* Algorithm is robust to incorrect location in the array

* Learnability: Predictions should be learnable if data is coming from a
distribution

* Example: PAC-Learning

16

Beyond Worst-Case
Analysis Frameworks

* Online algorithm design

« Competitive ratio parameterized by error in the
predictions

* Running time

* Worst case run time parameterized by error in the
predictions

17

Online Restricted Assignment
Makespan Minimization

» Client Server Scheduling

» Processed in m machines in the restricted assignment setting (some results hold for unrelated
machines)

* Jobs arrive over time in the online-list model
- All arrive at time 0
- Jobs revealed one at a time

» Assign jobs to the machines to minimize makespan

18

Restricted Assignment
Makespan Minimization

e M machines

e N jobs

* Online list: a job must be
immediately assigned before the
next job arrives

* N(j): feasible machines for job |
e p(]): size of job | (complexity

essentially the same if unit
sized)

e Minimize the maximum makespan

* Optimal makespanis T

19

[Nl

¢

Online Competitive Analysis
Model

e C-competitive ALG(I) < e
OPT(I) —
» \Worst case relative performance on each input |

* Problem well understood:
* A Q(logm) lower bound on any online algorithm

» Greedy is a O(log m)competitive algorithm [Azar,
Naor, and Rom 1995]

20

Beyond Worst Case via
Predictions

* Reasonable assumption:

 Access to last week’s job sequence

e Predict the future based on the past.
* \What should be predicted?

e How can it be used?

21

EXxistence

e First show natural predictions that fall

* Next give a good parameter to predict

22

What (not) to Predict?

* Number of jobs assigned to machines in the
optimal solution?

* Perhaps we can identify the contentious machines?

makespan 80

optimal solution 49

20

0

Machine 1 Machine2 Machine3 Machine 4

23

What (not) to Predict?

* Load of the machines in the optimal solution”

e Perhaps we can identity the contentious

machines”? No
new instance
padded with

0 dummy jobs

optimal solution 49
loads the

20 same

0

Machine 1 Machine2 Machine3 Machine 4

24

What (not) to Predict?

 Number of jobs that can be assigned to a machine?

* Perhaps machines that can be assigned more
jobs are more contentious”

25

What (not) to Predict?

 Number of jobs that can be assigned to a machine?

* Perhaps machines that can be assigned more
jobs are more contentious”

New |obs can be assigned s e

to old machines, skewing o
‘degrees’ adversarially 2 //
e
Old Machin
26

What (not) to Predict?

e Distribution on job types

 |s this the best predictive model?
« 2" job types possible

e Perhaps not the right model it information is
sparse

27

What (not) to Predict?

 Predict dual variables

* Known to be useful for matching in the random order
model [Devanur and Hayes, Vee et al.]

 Read a portion of the input
 Compute the duals

* Prove a primal assignment can be (approximately)
constructed from the duals online

e Use duals to make assignments on remaining input

28

What (not) to Predict?

* Predict dual variables for makespan scheduling
e Can derive primal based on dual
e Sensitive to small error (e.g. changing a variable

by a factor of 1+1/poly(n) has the potential to
drastically change the schedule)

29

What to Predict?

* |dea: capture contentiousness of a machine

* Seems like the most important quantity besides
types of jobs

30

Prediction:
Machine Weights

» Predict a weight for each machine
« Single number (compact)
e Lower weight means more restrictive machine
« Higher weight less restrictive
e Framework:
e Predict machine weights
« Using to construct fractional assignments online
 Round to an integral solution online

31

Fractional Assignments via
Weights

* Each machine | has a weight w;

* Job |is assigned to machine i fractionally as
follows:

EXxistence

Theorem (existence of weights): Let T be optimal max load. For any € > 0,
there exists machine weights such that the resulting fractional max load is at
most (1+¢€)T.

Theorem (rounding assignments): There exists an online algorithm that takes
as input fractional assignments and outputs integer assignments for which the
maximum load is bounded by O((loglog(m))3T’), where T is maximum fractional
load of the input. The algorithm is randomized and succeeds with probability
at least 1- 1/ mc

Theorem (tightness of rounding): Any randomized online rounding algorithm
has worst case load at least Q(T" log log m)

Large makespan case: [fractional makespan larger than log(m)]

« Randomized rounding gives gives a (1+¢€)T" where T’ is maximum fractional
load of the input with probability at least 1- 1 / mc.

33

Predict a parameter

1 is the Ik-norm error in the prediction for some k
Prove algorithm is f(77) competitive

Pros

* Often can show desirable trade-off guarantees
Cons

 Difficult to compare across parameters

34

 Theorem: Given predictions of the machine weights
with maximum relative error 77 > 1, there exists an

online algorithm yielding fractional assignments for
which the fractional max load is bounded by O(T

min{log(#), log(m)}).

» Corollary: There exists an O(min{(loglog(m))3log(n),

log m}) competitive algorithm for restricted assignment
In the online algorithms with learning setting

35

Other Robustness

e Additional robustness model

 |nstance robustness

|_earnability Model

« Unknown distribution model &
* |nstance drawn from unknown distribution
* Best prediction y* := argmax Ez.p[ALG(Z,y)]

 How many samples s to compute vy giving the
following performance with high probability

EIND[ALG(I, g)] Z (1 — G)EIND[ALG(I, y*)]

37

|_earnability Model

e Similar to
 PAC learning
e Data-driven algorithm design
e Alternative: competitive analysis
e Show a small number of samples needed for

the following performance with good
probabillity

ErplALG(Z,)] > (1 —)Erp|OPT(T)]

38

|_earnability

« Theorem: Let & be a product distribution such
that E¢_o,[OPT(S)] > Q(log m). There exists an

algorithm that constructs nearly optimal weights
using a polynomial number of samples in m.

39

Summary for Restricted
Assignment

e EXxistence

* Weights

e Parameter and Instance Robustness

e Learnability

 Low sample complexity

40

Predictions for Online
Algorithms

« Lots of success for online algorithm design
« Matching
e Caching
« Ski-rental
« Scheduling
e Online learning
e Heavy hitters
« What about the original question of speeding up algorithms offline?

41

Warm-Start

 Many problems are solved repeatedly on ‘similar’ instances

e e.g. scheduling yesterday versus today

e \We solve from scratch

Framework

 Problem instances X, X,, ... are drawn from an
unknown distribution &

e Learn a starting summary S

« Design an algorithm that runs faster when given §

43

FRL Framework Pitfalls

e Existence: What to predict?

* Robustness
* Feasibility: The warm start may not be feasible
e Optimization: The warm start may not be useful

e [earnability: The starting solution may not be
learnable

44

Weighted Bipartite Matching

« Input a bipartite graph G = (L U R, E) with edge

Costs ¢; ;

* Qutput the minimum cost perfect matching

45

EXistence
What to Predict?

* |dea 1: Edges in optimal solution

e Brittle

e |dea 2: LP duality

46

EXxistence

Primal Dual
min Z CeTE max Z Yi
ee eV
subject to: Z Te =1 VieV subject to: y; + y; < ¢y v(i,j) € E
eeN (i)
Te > 0 Ve e &

e Dual:
* Assigns prices to vertices
 Complementary slackness

e Edges in the matching have tight dual constraints

47

EXxistence

Primal Dual
min Z CeTE max Z Yi
ee eV
subject to: Z Te =1 VieV subject to: y; + y; < ¢y v(i,j) € E
eeN (i)
Te > 0 Ve e &

e Hungarian algorithm (popular in practice)
e Start with dual values at O
« Compute max cardinality matching on tight edges
* |f not done, find a set violating Hall's theorem. Update duals

48

EXxistence

Primal Dual
min Z CeTE max Z Yi
ee eV
subject to: Z Te =1 VieV subject to: y; + y; < ¢y v(i,j) € E
eeN (i)
Te > 0 Ve e &

e Hungarian algorithm (popular in practice)
e Predict dual values
« Compute max cardinality matching on tight edges
* |f not done, find a set violating Hall's theorem. Update duals

49

" Main |dea

— Predict the dual values, i.e. predict ¥;

— “Warm start” Hungarian algorithm from predicted duals.

Feasibility issue:

— Hungarian algorithm slowly increases duals. Always has a feasible solution
— But, predicted dual may be infeasible

— Have an edge s.t.: §; + U5 > ¢ij

Approach:
— Minimally reduce predicted duals to attain feasibility
— Must do it quickly (since speed is of the essence)

50

Making Duals Feasible

* Write LP for the feasibility problem:
minZéi

subject to: &; +d; > (9; + U5 — cij) ™ V(i,j) € E

Algorithm (greedy):
— Pick any vertex i. Set its 0; value to the minimum that satisfies all of the constraints
— Remove i from the graph and repeat.
— Theorem: Resulting solution is a 2-approximation for the LP, runs in linear time!

51

Overview

Existence:
— Predict the dual values, i.e. predict ¥;

— “Warm start” Hungarian algorithm from predicted duals.
— Quickly round predicted duals g; to feasible ones,yg .

— Run Hungarian algorithm starting from rounded duals, y;

Learnability:

— Can show duals have small sample complexity.

52

Overall approach:
— Obtain (learn) duals: 41, ..., Un

— Given a new matching instance, G = (V, E) find feasible duals ¥, - - -

— Run Hungarian method starting with v, ..., 4.,

Theorem: The overall running time is: O(||g — y*||1) - mv/n
— Strictly better when the error is small
— Can prove that it's no worse than vanilla Hungarian algorithm

53

» Yn

Does it Work"?

Experiment 1(a):
— Start with a bipartite graph with a planted min cost perfect matching

— Generate new instances by adding random noise of increasing magnitude to
the edge weights

Type Model Iteration Count vs. Noise Variance

Method
—— Hungarian
Learned Duals

lteration Count
w B
o o

N
o

-
o

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Noise Variance / Mean Weight

— When noise is low, learning approach dominates.
54

Does it Work"?

Experiment 1(b):
— Start with a bipartite graph with a planted min cost perfect matching

— Generate new instances by adding random noise of increasing magnitude to
the edge weights

2

Type Model Running Time vs. Noise Variance

Method
—— Hungarian
o7 Learned Duals

N
o

o

Running Time (seconds)
N

w

Noise Variance / Mean Weight

— When noise gets high, nothing to be learned, so converge to Hungarian
method. 55

Does it Work"?

Experiment 2:

— Perfect matching problems derived from geometric datasets

Clustering-Based Instances, kK = 500

Method
mmm Hungarian
1000 | m== |earned Duals

800

600

Iteration Count

400

200

Shuttle Skin Blog Feedback Covertype KDD
Dataset

— Learned gains can be substantial (10x in some cases)

56

Does it Work"?

Experiment 3:

— How many samples do you need to learn?

Covertype - Online Setting

Method
600 —— Hungarian
Learned Duals
550
4
C
S
§ 500
C
R
)
©
3450
400
350

01 2 3 4 5 6 7 8 91011121314 151617 18 19
Instance Number

— Many fewer than the theory predicts

57

Future Work

 How useful is this new paradigm empirically and
theoretically

- Rich area: Online algorithms to cope with
uncertainty, running time off-line, other applications?

Thank you!

Questions?

