

Machine Learning for Scheduling and Resource Allocation

Ben Moseley

Operations Research
Tepper School of Business, Carnegie Mellon University
Relational-Al

<u>schedulingseminar.com</u>

Collaborators

T. Lavastida

M. Dinitz

S. Im

C. Xu

S. Lattanzi R. Ravi S. Vassilvitskii

Online Scheduling via Learned Weights. SODA 2020. Learnable and Instance-Robust Predictions for Matchings, Flows and Load Balancing. ESA 2021 Using Predicted Weights for Ad Delivery. ACDA 2021

Faster Matching via Learned Duals. NeurIPS 2021

Machine Learning is Transforming Society

- Has not fundamentally changed combinatorial algorithms for resource allocation problems
- However, could it?

Optimization Augmented with Machine Learning

[Kraska et al. SIGMOD 2018]

- Array of n integers A
- Over time queries arrive asking if q is in A

- Array of n integers A
- Over time queries arrive asking if q is in A

- Train a predictor h(q) to predict where q is in the array
 - Estimates where the integer is based on prior queries
- Could be wrong, but hopefully not too far off
 - Use doubling binary search from prediction

- Analysis
 - Let η be the value of |h(q) OPT(q)|, the error in the prediction
 - Run time is $O(\log \eta)$
- Need to be careful about overhead of the prediction
 - Can make this work in practice

- Run time binary search O(log n)
- Run time prediction $O(\log \eta)$

- Perfect predictions give constant lookup
- Worst case is the same as the best classical algorithm
 - Gracefully degrades to the worst case
- Omitted empirical results show predictions using little space can give much faster lookups

Punchline:

- Machine learning can be combined with classical algorithms to obtain better results
- Gives us new widely applicable models for beyond worst-case analysis

Worst-Case Analysis

Current Status

ERL: Desirable Analysis Framework

- Existence: Predictions should allow the algorithm to go beyond worst-case bounds
 - Location in the array
 - What to predict is often the main question
- Robustness: Algorithms are robust to minor changes in the problem input
 - Algorithm is robust to incorrect location in the array
- Learnability: Predictions should be learnable if data is coming from a distribution
 - Example: PAC-Learning

Beyond Worst-Case Analysis Frameworks

- Online algorithm design
 - Competitive ratio parameterized by error in the predictions
- Running time
 - Worst case run time parameterized by error in the predictions

Online Restricted Assignment Makespan Minimization

- Client Server Scheduling
 - Processed in m machines in the restricted assignment setting (some results hold for unrelated machines)
 - Jobs arrive over time in the online-list model
 - · All arrive at time 0
 - · Jobs revealed one at a time
 - Assign jobs to the machines to minimize **makespan**

Restricted Assignment Makespan Minimization

- m machines
- n jobs
 - Online list: a job must be immediately assigned before the next job arrives
 - N(j): feasible machines for job j
 - p(j): size of job j (complexity essentially the same if *unit* sized)
- Minimize the maximum makespan
 - Optimal makespan is T

Online Competitive Analysis Model

- c-competitive $\frac{ALG(I)}{ODT(I)}$
- Worst case relative performance on each input I

- Problem well understood:
 - A $\Omega(\log m)$ lower bound on any online algorithm
 - Greedy is a $O(\log m)$ competitive algorithm [Azar, Naor, and Rom 1995]

Beyond Worst Case via Predictions

- Reasonable assumption:
 - Access to last week's job sequence

- Predict the future based on the past.
- What should be predicted?
- How can it be used?

Existence

- First show natural predictions that fail
- Next give a good parameter to predict

- Number of jobs assigned to machines in the optimal solution?
 - Perhaps we can identify the contentious machines?

- Load of the machines in the optimal solution?
 - Perhaps we can identify the contentious machines? No

new instance padded with dummy jobs

loads the **same**

- Number of jobs that can be assigned to a machine?
 - Perhaps machines that can be assigned more jobs are more contentious?

- Number of jobs that can be assigned to a machine?
 - Perhaps machines that can be assigned more jobs are more contentious?

Distribution on job types

- Is this the best predictive model?
 - 2^m job types possible
 - Perhaps not the right model if information is sparse

- Predict dual variables
- Known to be useful for matching in the random order model [Devanur and Hayes, Vee et al.]
 - Read a portion of the input
 - Compute the duals
 - Prove a primal assignment can be (approximately) constructed from the duals online
 - Use duals to make assignments on remaining input

- Predict dual variables for makespan scheduling
 - Can derive primal based on dual
 - Sensitive to small error (e.g. changing a variable by a factor of 1+1/poly(n) has the potential to drastically change the schedule)

What to Predict?

- Idea: capture contentiousness of a machine
 - Seems like the most important quantity besides types of jobs

Prediction: Machine Weights

- Predict a weight for each machine
 - Single number (compact)
 - Lower weight means more restrictive machine
 - Higher weight less restrictive
- Framework:
 - Predict machine weights
 - Using to construct fractional assignments online
 - Round to an integral solution online

Fractional Assignments via Weights

• Each machine i has a weight w_i

 Job j is assigned to machine i fractionally as follows:

$$x_{i,j} = \frac{w_i}{\sum_{i' \in N(j)} w_{i'}}$$

Existence

- Theorem (existence of weights): Let T be optimal max load. For any ε > 0, there exists machine weights such that the resulting fractional max load is at most (1+ε)T.
- Theorem (rounding assignments): There exists an online algorithm that takes as input fractional assignments and outputs integer assignments for which the maximum load is bounded by O((loglog(m))³T'), where T' is maximum fractional load of the input. The algorithm is randomized and succeeds with probability at least 1- 1 / m°
- Theorem (tightness of rounding): Any randomized online rounding algorithm has worst case load at least $\Omega(T'\log\log m)$
- Large makespan case: [fractional makespan larger than log(m)]
 - Randomized rounding gives gives a (1+ε)T' where T' is maximum fractional load of the input with probability at least 1- 1 / m^c.

Parameter Robustness

- Predict a parameter
- η is the lk-norm error in the prediction for some k
- Prove algorithm is $f(\eta)$ competitive
- Pros
 - Often can show desirable trade-off guarantees
- Cons
 - Difficult to compare across parameters

Results on Robustness

- **Theorem:** Given predictions of the machine weights with **maximum relative error** $\eta > 1$, there exists an online algorithm yielding fractional assignments for which the fractional max load is bounded by O(T min{log(η), log(m)}).
- **Corollary**: There exists an $O(\min\{(\log\log(m))^3\log(\eta), \log m\})$ competitive algorithm for restricted assignment in the online algorithms with learning setting

Other Robustness

- Additional robustness model
 - Instance robustness

Learnability Model

- Unknown distribution model
 - Instance drawn from unknown distribution
 - Best prediction $y^* := \operatorname{argmax}_y \mathbb{E}_{\mathcal{I} \sim \mathcal{D}}[ALG(\mathcal{I}, y)]$
- How many samples s to compute \hat{y} giving the following performance with high probability

$$\mathbb{E}_{\mathcal{I} \sim \mathcal{D}}[ALG(\mathcal{I}, \hat{y})] \ge (1 - \epsilon) \mathbb{E}_{\mathcal{I} \sim \mathcal{D}}[ALG(\mathcal{I}, y^*)]$$

Learnability Model

- Similar to
 - PAC learning
 - Data-driven algorithm design
- Alternative: competitive analysis
 - Show a small number of samples needed for the following performance with good probability

$$\mathbb{E}_{\mathcal{I} \sim \mathcal{D}}[ALG(\mathcal{I}, \hat{y})] \ge (1 - \epsilon) \mathbb{E}_{\mathcal{I} \sim \mathcal{D}}[OPT(\mathcal{I})]$$

Learnability

• Theorem: Let \mathscr{D} be a product distribution such that $\mathbf{E}_{S \sim \mathscr{D}}[OPT(S)] \geq \Omega(\log m)$. There exists an algorithm that constructs **nearly optimal** weights using a polynomial number of samples in m.

Summary for Restricted Assignment

- Existence
 - Weights
- Robustness
 - Parameter and Instance Robustness
- Learnability
 - Low sample complexity

Predictions for Online Algorithms

- Lots of success for online algorithm design
 - Matching
 - Caching
 - Ski-rental
 - Scheduling
 - Online learning
 - Heavy hitters
- What about the original question of speeding up algorithms offline?

Warm-Start

- Many problems are solved repeatedly on 'similar' instances
 - e.g. scheduling yesterday versus today

We solve from scratch

Framework

• Problem instances X_1, X_2, \dots are drawn from an unknown distribution \mathcal{D}

- Learn a starting summary S
- Design an algorithm that runs faster when given S

ERL Framework Pitfalls

- Existence: What to predict?
- Robustness
 - Feasibility: The warm start may not be feasible
 - Optimization: The warm start may not be useful
- Learnability: The starting solution may not be learnable

Weighted Bipartite Matching

- Input a bipartite graph $G = (L \cup R, E)$ with edge costs $c_{i,j}$
- Output the minimum cost perfect matching

Existence What to Predict?

- Idea 1: Edges in optimal solution
 - Brittle
- Idea 2: LP duality

Existence

Primal

$$\min \sum_{e \in E} c_e x_E$$

$$\max \sum_{i \in V} y_i$$
 subject to:
$$\sum_{e \in N(i)} x_e = 1 \quad \forall i \in V$$
 subject to:
$$y_i + y_j \le c_{ij} \quad \forall (i, j) \in E$$

$$x_e \ge 0 \quad \forall e \in E$$

Dual

$$\max \sum_{i \in V} y_i$$
 subject to: $y_i + y_j \le c_{ij} \quad \forall (i, j) \in E$

- Dual:
 - Assigns prices to vertices
- Complementary slackness
 - Edges in the matching have tight dual constraints

Existence

- Hungarian algorithm (popular in practice)
 - Start with dual values at 0
 - Compute max cardinality matching on tight edges
 - If not done, find a set violating Hall's theorem. Update duals

Existence

- Hungarian algorithm (popular in practice)
 - Predict dual values
 - Compute max cardinality matching on tight edges
 - If not done, find a set violating Hall's theorem. Update duals

Robustness Main Idea

Idea:

- Predict the dual values, i.e. predict \hat{y}_i
- "Warm start" Hungarian algorithm from predicted duals.

Feasibility issue:

- Hungarian algorithm slowly increases duals. Always has a feasible solution
- But, predicted dual may be infeasible
- Have an edge s.t.: $\hat{y}_i + \hat{y}_j > c_{ij}$

Approach:

- Minimally reduce predicted duals to attain feasibility
- Must do it quickly (since speed is of the essence)

Robustness Making Duals Feasible

Write LP for the feasibility problem:

$$\min \sum_{i \in V} \delta_i$$
subject to: $\delta_i + \delta_j \ge (\hat{y}_i + \hat{y}_j - c_{ij})^+ \quad \forall (i, j) \in E$
$$\delta_i \ge 0 \quad \forall i \in V$$

Algorithm (greedy):

- Pick any vertex i. Set its δ_i value to the minimum that satisfies all of the constraints
- Remove i from the graph and repeat.
- Theorem: Resulting solution is a 2-approximation for the LP, runs in linear time!

Overview

Existence:

- Predict the dual values, i.e. predict \hat{y}_i
- "Warm start" Hungarian algorithm from predicted duals.

Feasibility:

- Quickly round predicted duals \hat{y}_i to feasible ones, y_i' .

Optimization:

- Run Hungarian algorithm starting from rounded duals, y_i' .

Learnability:

- Can show duals have small sample complexity.

Robustness

Overall approach:

- Obtain (learn) duals: $\hat{y}_1, \ldots, \hat{y}_n$
- Given a new matching instance, G=(V,E) find feasible duals y_1',\ldots,y_n'
- Run Hungarian method starting with y_1', \ldots, y_n'

Theorem: The overall running time is: $O(\|\hat{y} - y^*\|_1) \cdot m\sqrt{n}$

- Strictly better when the error is small
- Can prove that it's no worse than vanilla Hungarian algorithm

Experiment 1(a):

- Start with a bipartite graph with a planted min cost perfect matching
- Generate new instances by adding random noise of increasing magnitude to the edge weights

- When noise is low, learning approach dominates.

Experiment 1(b):

- Start with a bipartite graph with a planted min cost perfect matching
- Generate new instances by adding random noise of increasing magnitude to the edge weights

When noise gets high, nothing to be learned, so converge to Hungarian method.

Experiment 2:

- Perfect matching problems derived from geometric datasets

Learned gains can be substantial (10x in some cases)

Experiment 3:

– How many samples do you need to learn?

Many fewer than the theory predicts

Future Work

- How useful is this new paradigm empirically and theoretically
 - Rich area: Online algorithms to cope with uncertainty, running time off-line, other applications?

Thank you!

Questions?