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A quiz show

• A contestant is faced with a number of quizzes
• If quiz j is answered correctly, the contestant 

wins Rj (euros)
• The contestant can continue until he/she fails 

(and he/she carries home what gained so far)
• The contestant decides in which order should 

he/she answer the quizzes 
[Kadane 1969]
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Rj (€)
1. Which movie got 14 academy awards 
nominations (and won 11) in 1997?

1000

2. What is the title of Leonard Cohen’s 1984 album 
containing Hallelujah?

2000

3. What is the name of Charlie Brown’s favorite 
baseball player? 

3000

4. Which team won the Italian soccer 
championship in the year 1991?

5000

5. What is the value of the optimal solution of 
Muth and Thompson’s 1963 job shop instance?

10000



A quiz show

• For each quiz j, the contestant estimates a 
probability of correctly answering the quiz j
(i.e., pj is her/his confidence in the answer)



Rj (€) pj

1. Which movie got 14 academy awards 
nominations and won 11 in 1997?

1000 0.8

2. What is the title of Leonard Cohen’s 1984 
album containing Hallelujah?

2000 0.9

3. What is the name of Charlie Brown’s favorite 
baseball player? 

3000 0.3

4. Which team won the Italian soccer 
championship in the year 1991?

5000 0.7

5. What is the value of the optimal solution of 
Muth and Thompson’s 1963 job shop instance?

10000 0.2



A quiz show
• The contestant’s goal is to maximize expected 

reward
• In which order should the contestant sequence 

the quizzes?
• Intuitively, quizzes with high rewards and high 

probabilities should be chosen first, but they 
may not be agreeable…



Outline

• Unrecoverable interruptions
• The single-machine case
• The m-machine case
• Exponential failures
• Job replication
• Time-critical testing



UNRECOVERABLE 
INTERRUPTIONS



Uncoverable interruptions
• In certain systems, machines carrying out 

tasks may fail during the execution of a task
• A “failure” may be an actual breakdown, or 

simply the fact that a machine is withdrawn 
(without forewarning) by some higher-
priority user or process (and never returned)

• The problem becomes to “take home” as 
much value as possible 



Stochastic activities
• A set of n jobs (processes, activities) is 

given to be processed by m parallel 
machines

• There is a probability pj to successfully carry 
out job j

• If an activity succeeds, a reward Rj is earned
• If a machine fails, the current job and all

subsequently scheduled jobs on the 
machine are lost



The problem

• The problem is to allocate and sequence the 
jobs on the machines in order to maximize 
expected reward, accounting for the 
possibility of unrecoverable interruptions



Expected reward
• Let k jobs be scheduled on a machine, and s(j) 

be the job in j-th position
• The expected reward on that machine is given 

by

ER(s)= ps(1) Rs(1)+
ps(1)ps(2) Rs(2)+
……………………….+

ps(1) ps(2)… ps(k) Rs(k)



Given:
• J={1,…,n} job set 
• m number of parallel (identical) machines
• pj success probability of job j (rational)
• Rj reward for job j, if completed
Find an assignment of jobs to the machines and 
a sequence on each machine maximizing 
expected reward

Unreliable Jobs Scheduling Problem 
(m||ER)



SINGLE MACHINE



1||ER

• When m=1, the problem is to decide in 
which order should the jobs be sequenced

• Solved by processing the jobs by 
nonincreasing values of the ratios: 

[Stadje 1995]
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Rj (€) pj Zj

1. Which movie got 14 academy awards 
nominations (and won 11) in 1997?

1000 0.8 4

2. What is the title of Leonard Cohen’s 1984 
album containing Hallelujah?

2000 0.9 18

3. What is the name of Charlie Brown’s
favorite baseball player? 

3000 0.3 1.28

4. Which team won the Italian soccer 
championship in the year 1991?

5000 0.7 11.6

5. What is the value of the optimal solution
of Muth and Thompson’s job shop instance?

10000 0.2 2.5



TWDCT (1||Swj (1-e-r Cj ))
• A related problem is the minimization of Total 

Weighted Discounted Completion Time
• A set of jobs is given, each having a processing 

time pj and a weight wj

• Also, a discount factor r>0 is given
• The problem is to minimize
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Relation to TWDCT
• A schedule that minimizes

is a schedule that maximizes
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TWDCT and UJSP

• Therefore, TWDCT reduces to UJSP by letting
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Single-machine problems

• Problem 1||Swj (1-e-rCj ) is solved ordering 
the jobs by nonincreasing ratios 
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Single-machine problems

• Problems 1||SwjCj and 1||Swj (1-e-rCj ) 
are the only single-machine scheduling 
problems of the form

1||S wj f(Cj )
which are solved by means of a simple
index rule                                     

[Rothkopf 1984]



Jj pj Rj Zj

1 3/4 1 3
2 1/2 1 1
3 1/6 4 4/5

ER({1,2,3}) = 3/4 * 1 + 
3/4 * 1/2 * 1 +
3/4 * 1/2 * 1/6 * 4

= 11/8 = 1.375



The selection problem variant
• Suppose now that we can only select K out 

of n jobs, and we still want to maximize the 
expected reward

• Given K selected jobs, they will then be 
sequenced according to nonincreasing ratios 
Zj

• However, is the selection problem easy or 
not?



Naïve idea
• Order the jobs by nonincreasing ratios Zj

• Take the first K jobs of the list…
• Is this the optimal choice?



ER({1,2}) = 3/4 * 1 + 
3/4 * 1/2 * 1 = 

= 3/4 * 3/2 = 9/8 = 1.125

K=2

Jj pj Rj Zj

1 3/4 1 3
2 1/2 1 1
3 1/6 4 4/5



Ji pi Ri Zi

1 3/4 1 3
2 1/2 1 1
3 1/6 4 4/5

ER({1,3}) = 3/4 * 1 + 
3/4 * 1/6 * 4 = 

= 3/4 * 5/3 = 5/4 = 1.25

K=2

• It can be shown that the naïve heuristic 
may perform arbitrarily bad !



Optimal algorithm [Kadane 1969, Stadje 1995]:
• Start from the empty set S=;
• While |S|<K

̶ Add to S the job which maximizes the 
marginal expected reward;

̶ Insert the new job in the appropriate 
position in the optimal sequence

• endwhile.

The selection problem variant



General selection problem
• For each job set S a submodular cost c(S) is 

defined, and one wants to select a set S in 
order to maximize:

total expected reward – c(S)
• Can the greedy approach be extended to 

this scenario?
• The idea is to recursively add the job that 

maximizes the marginal net expected 
reward as long as it is positive, then stop



General selection problem
• This idea yields the optimal solution if c(S)

only depends on the size |S|(i.e., c(S)=f(|S|) 
where f is concave)

[Olszewski and Vohra 2016]

• Suppose that each job has a purchasing cost 
cj and 

• Does this greedy approach work?
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j cj pj Rj

1 9.9 0.9 11.1
2 9.89 0.5 20
3 0.11 0.9 0.22

• The optimal choice in the first step is 
S={2} which gives 

0.5*20 - 9.89 = 0.11
• However, the optimal solution is S*={1,3} 

which gives 0.19



Open problem

Given:
• J={1,…,n} job set 
• a single processing machine

• pj success probability of job j
• Rj reward for job j, if completed
• cj purchasing cost of job j
Select a subset of jobs and sequence them in 
order to maximize net expected reward



m MACHINES



m||ER

• The problem is strongly NP-hard even for 
m=2 (reduction from PRODUCT 
PARTITION)

• We consider simple approximation 
algorithms for m||ER
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First heuristic: Round Robin

• A very simple heuristic is the Round-
Robin heuristic (RR):
― Sort the jobs by nonincreasing Zj, and 

then schedule them on machine 1, 2, 
…, m, 1, 2,…,m, 1, 2,…

• What is the worst-case behavior of this
heuristic?



First heuristic: Round Robin

• The worst-case ratio of the Round-Robin 
heuristic is:

and the bound is tight
[A., Detti, Pranzo, Sodhi 2009]
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Second heuristic: List Scheduling

• A more reasonable heuristic algorithm 
is List Scheduling (LS):

― order the jobs by a criterion
depending on jobs’ parameters

― Sequentially assign the jobs to the 
machines, choosing the machine on 
the basis of a simple criterion



List scheduling for Pm||SwjCj

• LS has been analyzed for the classical 
problem Pm||SwjCj

― order the jobs by nonincreasing
values of the ratio wj/pj (Smith’s
ratio) 

― the next job on the list is scheduled
on the currently least loaded
machine



List scheduling for Pm||SwjCj

• Kawaguchi and Kyan (1986) proved that

and the bound is tight
→ Schwiegelshohn (2011) provided a 

simpler proof of this result
→ By a similar approach, we can derive an 

approximation result for m||ER 
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The List Scheduling (LS) algorithm for
m||ER is the following:

― order the jobs by nonincreasing
values of the ratio Zj=Rjpj/(1-pj) and 
schedule them in this order

― the next job on the list is scheduled
on the machine currently having the 
highest cumulative probability

List scheduling for m||ER



List scheduling for m||ER

1.Given an instance I of m||ER, there is an 
instance I’ such that (I’)≤ (I) and all jobs 
have the same value of Zj (uniform case)

→ The “worst” instances are those in 
which all jobs have the same Z-ratio

→ Hence, any job ordering obeys the 
priority rule



Identical Z-ratios

• If all jobs have the same Z-ratio, with no loss 
of generality we can assume Z=1, i.e.

and a machine’s contribution to expected 
reward simplifies to

ER(s)= 1−ps(1)ps(2)… ps(k)

p
p
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Identical Z-ratios

• Notice that ER(s) does not depend on the 
sequencing of the jobs on the machine

• The value of the objective function is therefore 
given by:

s p p p
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2. We can further restrict to instances 
containing only two types of jobs:
-- low-value jobs, i.e., jobs having pj
arbitrarily close to 1
-- high-value jobs, i.e., jobs having pj0
Let Pmax be the maximum cumulative 
probability of a machine at the end of LS 

List scheduling for m||ER



List scheduling for m||ER

3. Given an instance I of UJSP, there is an 
instance I’ such that (I’)≤ (I), Zj=1 for all 
jobs and:
a. only low-value jobs are scheduled as 

long as the cumulative probability is 
larger than Pmax

b. on some machines, a single high-value
job is scheduled thereafter



LS solution
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Optimal solution
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List scheduling for m||ER

• Hence, the worst-case ratio is a function 
of Pmax=p and t

• We find the minimum for 0 ≤ p ≤ 1 and 
m/t ≥1

m m
t t

m
pm tp t

m
m tp p

t
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List scheduling for m||ER

m bound

2 0.85355…

3 0.86179…

4 0.85355…

5 0.85541…

any m 0.853196 [A. and Lidbetter 2020]

[A., Detti, Pranzo 2014]



m=3

• The bound for m=3 is:

where

[Morandi 2022]

 =                 = 0.86179…
3 – x
3 – x3

x =
3
1 (12 sin(    arctan(      ) ) )
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EXPONENTIALLY 
DISTRIBUTED MACHINE 

FAILURES
(m|exp|ER)



Exponential machine failures

• Each job has processing time pj

• The reward coincides with the amount of 
work Rj =pj

• Machines break down according to an 
exponential failure process with 
parameter l, i.e. MTBF = 1/l

• Hence the success probability of job j is 
pj = e-lpj



Expected amount of work done

• In this case, the reward of job j is 
precisely the job length:
−pj = e-lpj

−Rj = pj

• Hence,
pj Rj = pj e-lpj
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Subcase pj ≥ 1/l for all j

• In this case,

pi ≤ pj ↔ pi e-lpi ≥ pj e-lpj ↔ pi e-lpi pj e-lpj

and the problem is solved by the round-
robin rule, once the jobs are SPT-ordered

1-pi 1-pj

≥



Not all pj ≥ 1/l

• In the general case is the problem still 
solvable by means of some list 
scheduling algorithm?

• No. The jobs with larger pjpj (candidate 
to being scheduled first) may also be 
those with smaller pj (candidate to being 
scheduled last)

• The problem 2|exp|ER is NP-hard       
[A., Detti, Martineau 2017]



JOB REPLICATION



Job replication

• As a protection from failures, one 
can think of replicating jobs on 
different machines 

[Benoit et al 2011, 2013]
• One copy of each job j is scheduled 

on each machine, and the revenue Rj
is attained if at least one copy of job j 
is successfully carried out



Prob. of achieving 1: p1 + p2p3p1 - p1
2p2p3

Prob. of achieving 2: p1p2+p2 - p1p2
2

Prob. of achieving 3: p1p2p3 + p2p3 - p1p2
2p3

2

Job replication

p1 p2 p3

p2 p3 p1



Two problems
• Sequence the m copies of each job on 

each machine in order to: 
P1) maximize the expected reward 
(m|rep|ER)
P2) maximize the probability of having a 
complete kit, i.e., at least one copy of each 
job (Kit Availability Maximization problem, 
KAMm)



Two problems
• Sequence the m copies of each job on 

each machine in order to: 
P1) maximize the expected reward 
(m|rep|ER)
P2) maximize the probability of having a 
complete kit, i.e., at least one copy of each 
job (Kit Availability Maximization problem, 
KAMm)



Given:
• J={1,…,n} job set, m copies of each job
• m parallel (identical) machines
• pj success probability of a copy of job j
• Rj reward for job j, if at least one copy is 

successfully completed
Find, for each machine, a sequence s so that 
the overall expected reward is maximized

m|rep|ER



2|rep|ER

• The first (naïve) idea may be: will 
the Z-rule work also for 
2|rep|ER?



2|rep|ER

j Rj pj Zj

1 5 0.9 45

2 2 0.9 18

3 4 0.6 6



Identical schedule

1 (0.9) 2 (0.9) 3 (0.6)

1 (0.9) 2 (0.9) 3 (0.6)

Probability of achieving 1: 
0.9+0.9-(0.9)2 = 0.99 
Probability of achieving 2: 
2(0.9*0.9)-(0.9*0.9)2 = 0.9639
Probability of achieving 3: 
2(0.9*0.9*0.6)+(0.9*0.9*0.6)2 = 0.7358



Reverse schedule

1 (0.9) 2 (0.9) 3 (0.6)

3 (0.6) 2 (0.9) 1 (0.9)

Probability of achieving 1: 
0.9+(0.6*0.9*0.9)-(0.6*0.93) = 0.9486 
Probability of achieving 2: 
0.9*0.9+0.6*0.9-(0.6*0.93 )= 0.9126
Probability of achieving 3: 
(0.9*0.9*0.6)+0.6-(0.92*0.62) = 0.7944



2|rep|ER

j Rj pj Zj

1 5 0.9 45

2 2 0.9 18

3 4 0.6 6

ER of the identical schedule = 9.821016

ER of the reverse schedule = 9.7458



2|rep|ER

j Rj pj Zj

1 5 0.9 45

2 2 0.9 18

3 4 0.8 16

ER of the identical schedule = 10.38218

ER of the reverse schedule = 10.436



2|rep|ER – uniform case
• A special case is the uniform case, 

i.e., all jobs have Zj=1
• In this case, all reverse schedules 

are optimal



2|rep|ER
• However, if all jobs have Zj=1, 

except for one that has ZK=1-e, 
then the problem becomes NP-
hard (ordinary sense)

[A., Benini, Detti, Hermans, Pranzo 2022]

• Open as for strong NP-hardness



2|rep|ER
• A simpler problem: fix the order on 

M1 and find the optimal order on M2

• Pj
(1): cumulative probability up to j 

on M1

• The optimal sequence on M2 is 
found by solving an instance of 
1||ER with Rj’=Rj (1-Pj

(1))



Heuristic for 2|rep|ER
• In view of this result, a somewhat 

natural (meta)heuristic approach is:
→ for each job sequence on machine 

M1, optimize on M2

→ explore sequences on M1 through a  
pairwise interchange-based tabu 
search algorithm



Quadratic formulation

Max 

for all i,j

for all i,j

for all j

for all j

for all i,j

for all i,j



Quadratic formulation

Max 

for all i,j

for all i,j

for all j

for all j

for all i,j

for all i,j



Computational experiments
– Rewards ~ [10,100]
– Probabilities~ Ip=[pmin , pmax]

[0.1,1]; [0.5,1]; [0.9,1] 
– n  {10, 20, 30, 40, 50}
– The QP has been solved by Gurobi

(v.9), on a pc with Windows 10, 
3.5Ghz Intel Core i7, 64GB RAM

– time limit: 20 minutes



Computational experiments



Z-rule heuristic for m|rep|ER

Sequence the jobs on each machine 
according to the Z-rule

• Complexity O(n log n)
• It can be shown that the 

approximation is Hm/m where Hm is 
the m-th harmonic number



Modified Z-rule heuristic
– Sequence M1 according to the Z-rule 

(s1);
– Given s1, optimally sequence M2(s2);
– Given {s1,s2}, optimally sequence 

M3(s3);
– …
– Given {s1,s2 ...sm-1}, }, optimally 

sequence Mm(sm);
Complexity is O(n2 log n)



• Given a schedule S for k-1 machines:
S={s1, s2,…,sk-1} 

let Pj(s) denote the cumulative 
probability of job j in schedule s and 

Zj(S)= Zj P (1- Pj(s))
• the optimal sequence sk on machine 

Mk is obtained by sequencing the jobs 
according to the modified Z-ratios Zj(S)

sS

Modified Z-rule heuristic



• Let ER(s1, s2,…, sk) denote the expected 
revenue when k (out of m) machines are 
accordingly scheduled

• ER(·) is an increasing, submodular 
function over the set of permutations 

• Machine Mk is scheduled so to 
maximize the marginal gain, given the 
first k-1 schedules >>> Greedy 
heuristic

Modified Z-rule heuristic



• The problem is in the form:
max ER(S)
|S|=m

where ER(S) is a submodular function >>> 
the greedy algorithm is (1-1/e)-
approximate [Nemhauser, Wolsey, Fisher 1978]

Modified Z-rule heuristic



Mutual best-reply heuristic
– Apply the modified Z-rule heuristic;
– While (a schedule on some machine 

Mk can be improved)
Reschedule Mk given the sequences on 
the other machines

• Complexity is open (but converges in a 
finite number of steps)



Computational experiments

– Rewards ~ [10,100]
– Probabilities~ Ip=[pmin , pmax]

[0.1,1]; [0.5,1]; [0.9,1] 
– n  {10, 20, 30, 40, 50}



m=2



m=3



Open problem (m|rep,exp|ER)
Given:
• J={1,…,n} job set
• m machines, subject to exponential failures

with frequency l
• pj processing time of job j
Sequence the n jobs on each machine to 
maximize the expected amount of work
(Complexity is open for any fixed m≥2)



Two problems
• Sequence the m copies of each job on 

each machine in order to: 
– maximize the expected reward 

(m|rep|ER)
– maximize the probability of having a 

complete kit, i.e., at least one copy of 
each job (Kit Availability Maximization 
problem, KAMm)



Two problems
• Sequence the m copies of each job on 

each machine in order to:
– maximize the expected reward 

(m|rep|ER)
– maximize the probability of having a 

complete kit, i.e., at least one copy of 
each job (Kit Availability Maximization 
problem, KAMm)



KAM
• With two machines (KAM2), any 

arbitrary reverse schedule is 
optimal

• With m machines and only two 
job types, the optimal solution 
can be found in O(log m)

[A., Benini, Detti, Hermans, Pranzo 2022]



Open problem (KAMm)
Given:
• J={1,…,n} job set 
• m processing machines

• pi success probability of job i
Sequence the n jobs on each machine to 
maximize the probability of having a complete kit
(Complexity is open for any fixed m≥3)



TESTING PROBLEMS



Sequential testing of n-out-of-n systems

• A complex system consists of n modular 
components 

• The system is up iff all of the n components 
are working

• Testing component j has a cost cj and the 
component works with probability pj



• As soon as a defective component is found, 
the test stops (the system is down)

• For a given test sequence, the expected 
testing cost is:

C(s) = cs(1) + ps(1)cs(2) +ps(1)ps(2) cs(3)+…+

ps(1) ps(2)… ps(n-1) cs(n)

Sequential testing of n-out-of-n systems



Given:
• J={1,…,n} set of components to be tested
• pj probability that component j is UP
• cj cost of performing test j
Find a test sequence s minimizing the expected 
cost

Sequential testing of n-out-of-n systems



C(s) = cs(1) + ps(1)cs(2) +ps(1)ps(2) cs(3)+…+

ps(1) ps(2)… ps(n-1) cs(n)

ER(s)= ps(1) Rs(1)+ps(1)ps(2) Rs(2)+…+

ps(1) ps(2)… ps(n) Rs(n)

• Letting Rj = cj / pj , an instance of the testing 
problem is formally identical to an instance of 
1||ER in which we want to minimize the 
objective function

Sequential testing of n-out-of-n systems



Sequential testing of n-out-of-n systems

• As a consequence, the optimal testing 
sequence is obtained by nondecreasing values 
of the ratio                                        [Mitten 1960]

p
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Search problem

• An object is hidden in one of n locations, 
a searcher wants to find it

• Searching location j costs cj, and there is 
a probability pj that the object is hidden 
there

• What is the location sequence that 
minimizes expected costs?



C(s) = cs(1) + (1-ps(1))cs(2) +(1-ps(1)-ps(2))cs(3)+…+

+(1-ps(1)-ps(2)-… ps(n-1))cs(n)

• The single-searcher problem can be solved by 
sequencing the locations in nondecreasing order 
of the ratio cj / pj (Smith’s rule)

Search problem



Time-critical problems

• What happens if strict time constraints have 
to be respected? >>> Time-critical problems

• Each tester/searcher is active on a single 
component at a time

• All testing/searching operations require the 
same (unit) time

• As soon as one of the testers [searchers] 
detects a faulty component [finds the object], 
the process stops



Given:
• n components 
• m testers
• pj probability that component j is working
• cj cost for testing j
• T deadline
Assign and sequence the n components to the 
m testers so that the process is completed 
within T and the expected costs are minimized

Time-critical testing problem



Given:
• n components 
• m testers
• pj probability that component j is working
• cj cost for testing j
• T deadline
Assign and sequence the n components to the 
m testers so that the process is completed 
within T and the expected costs are minimized

Time-critical testing problem



Given:
• n locations 
• m searchers
• pj probability that object is in j
• cj cost for searching location j
• T deadline
Assign and sequence the n locations to the m
searchers so that the process is completed 
within T and the expected costs are minimized

Time-critical search problem



Given:
• n locations 
• m searchers
• pj probability that object is in j
• cj cost for searching location j
• T deadline
Assign and sequence the n locations to the m
searchers so that the process is completed 
within T and the expected costs are minimized

Time-critical search problem



1

2

3

4

S1 S2 S3 …. ST-1 ST

w.l.o.g., n=mT

Testers

Time slots

Assignment
within a time
slot is immaterial



Time-critical testing problem

• Let St be the set of components which are 
tested in slot t

s p

p p p


 

  

=    

  
1 21

1 2 1

( ) ...

...
TT

j j j
j S j Sj S

j j j j
j Sj S j S j S

f c c

c



Time-critical search problem

• Let St be the set of locations which are 
searched in slot t

s p

p p p
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Properties

Consider a subset S  N of tasks [locations], and 
let, in the testing problem:

and in the search problem:

p


=


( )
( )

1TEST
j

j S

c S
Z S

p


=


( )
( )SEARCH

j
j S

c S
Z S



Properties

If a partition {S1,S2,…, ST } is given, the optimal 
sequence is attained by scheduling the subsets:
• For the testing problem, by nondecreasing

values of ZTEST(Sk)
• For the search problem, by nondecreasing

values of ZSEARCH(Sk)
These rules generalize the Z-rule and Smith’s 
rule respectively



Time-critical problem

… so the question is: how to find a partition 
{S1,S2,…, ST } so that the expected cost is 
minimum?



Complexity results

• Both the testing and search problems are NP-
hard in the ordinary sense for T = 2 

• Both the testing and search problems are at 
least NP-hard for fixed T ≥ 3 
(open as for strong NP-hardness)

• Both the testing and search problems are 
strongly NP-hard for every fixed m ≥ 3

[A., Hermans, Leus, Rostami 2022]



Open problem

• What is the complexity of the time-critical 
testing problem and of the search problem for 
m =2 ?











FURTHER RESEARCH



Further research
• Problems with precedence constraints: 

solution approaches for 1|prec|ER, 
1|prec,exp|ER

• Analysis of m|rep,exp|ER
• Approximation algorithms for time-critical 

testing problems
• Time-dependent failure processes
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1. Which movie got 14 academy awards 
nominations (and won 11) in 1997?

Titanic

2. What is the title of Leonard Cohen’s 1984 
album containing Hallelujah?

Various
Positions

3. What is the name of Charlie Brown’s favorite 
baseball player? 

Joe
Shlabotnik

4. Which team won the Italian soccer 
championship in the year 1991?

Sampdoria

5. What is the value of the optimal solution of 
Muth and Thompson’s 1963 job shop instance?

930


